Study of time-dependent CP violation in Ks eta gamma decays at Belle

Tohoku University **Hiroshi Nakano** 20th-Feb-2014

This work is supported by JSPS KAKENHI No. 23-3221.

What is time dependent CP violation ?

Time dependent CPV is caused by quantum interference (like double slit experiment).

Formula of TDCPV

Formulas of decay time distribution of $\overline{B^0}$ and $\overline{B^0}$ are shown here.

 $\begin{cases} \Gamma_{\overline{B^0}}(t) \propto e^{-t/\tau_B} \left[1 \bigoplus \{ \mathcal{A}_{CP} \cos(\Delta m t) + \mathcal{S}_{CP} \sin(\Delta m t) \} \right] \\ \Gamma_{B^0}(t) \propto e^{-t/\tau_B} \left[1 \bigoplus \{ \mathcal{A}_{CP} \cos(\Delta m t) + \mathcal{S}_{CP} \sin(\Delta m t) \} \right] \end{cases}$.gif animation S = 0.7A=0Combine equations using "q". q = +1: $\overline{B^0}$ at t = 0. $A \cos + S s$ q = -1: B^0 at t = 0. $e^{-t/\tau_B} \left[1 + q\{\mathcal{A}_{CP} \cos(\Delta m t) + \mathcal{S}_{CP} \sin(\Delta m t)\}\right]$ $au_{
m B} = 1.519 \pm 0.007 \; [{
m ps}]$ There are two CPV parameters in the formula. Life time of B meson. \mathcal{A}_{CP} t : Decay time. Coefficient of cosine term. $\Delta m = 0.507 \pm 0.004 \text{ [ps}^{-1]}$ Caused by CP asymmetry in $B \rightarrow f_{CP}$ amplitude. **Frequency of B-Bbar** \mathcal{S}_{CP} oscillation. Coefficient of sine term. Caused by CP phase in B-Bbar oscillation. TDCPV of b to s $\gamma \rightarrow$

Why TDCPV of $b \rightarrow s\gamma$ mode is interesting ?

In the SM, $b \to s \gamma_R$ (and $\overline{b} \to \overline{s} \gamma_L$) process is strongly suppressed. Because γ_L and γ_R are different, TDCPV cannot be seen. On the other hand, some new physics permit $b \to s \gamma_R$ process.

If we observe TDCPV, this is the sign of new physics !

 $*X_s^{CP}$ is CP eigenstate which contain s quark. In this study, it is Ks eta.

Why TDCPV of $b \rightarrow s\gamma$ mode is interesting ?

In the SM, $b \to s \gamma_R$ (and $\overline{b} \to \overline{s} \gamma_L$) process is strongly suppressed. Because γ_L and γ_R are different, TDCPV cannot be seen. On the other hand, some new physics permit $b \to s \gamma_R$ process.

How to measure TDCPV experimentally

Y(4S), b b-bar resonance, is produced by e+ e- collision. B mesons are produced by decay of Y(4S).

How to measure TDCPV experimentally

How to measure TDCPV experimentally

"q" (B B-bar identification) can be measured by using particle type and momentum from "another B".

$$\overline{b} \leq W^{+} \qquad \qquad \ell^{+} (\operatorname{high} \vec{p}) \\ \overline{b} \leq V^{+} \qquad \qquad \ell^{-} (\operatorname{low} \vec{p}) \\ \overline{c} \leq \overline{s} \qquad \qquad K^{+}, \overline{\Lambda}$$

"t" corresponds to decay time difference Δt .

- O(100 μm) flight length by asymmetric energy collision and
- Better accuracy of vertex reconstruction than flight length enables us to measure Δt by Δz (decay position) measurement.

KEKB accelerator / Belle detector

KEKB accelerator

- Asymmetric energy collision
 (8 vs. 3.5 GeV) for large Δz.
 Average Δz is ~200 μm.
- 10.58 GeV center of mass energy at Y(4S) resonance;
 It is suitable for BB production.
- 772 x 10⁶ BB pair !

Belle detector

- 1) ~75 μ m resolution of vertex detector for Δz measurement.
- Drift chamber measures particle's momentum.
- 3) CsI (TI) calorimeter for γ and e^{\pm} .
- Other sub detectors distinguish particle's kind (e[±], μ[±], π[±], K) for selection and B identification.

Signal and backgrounds

to maximize significance (except for known CPV BGs rejection).

3D fit for signal yield

After reconstruction and BG rejection, 3 dimensional fit (ΔE , M_{hc} , NN') is done. Fit on ΔE , M_{bc} and NN' distribution. Free parameters are N_{sig} and N_{qq} . Function shapes and N_{BB} are fixed. A RooPlot of "M_{bc} [GeV]" A RooPlot of " A E [GeV]" A RooPlot of "NB" **Projections on** each parameter Щ30 Д Red: signal 10 20 Blue: qq BG 20 10 10 Green: BB BG -0.2 5.22 5.24 Ò 5.26 0.2 5.28 $\Delta E [GeV]$ M_{bc} [GeV] NN' $\Delta E \equiv E_B - E_{\rm beam}$ $M_{\rm bc} \equiv \sqrt{E_{\rm beam}^2 - p_B^2}$ Modified distribution of Neural network output Energy difference Mass of B candidate used for qq BG rejection. btw. beam energy from beam energy and B candidate. and B's momentum. Yield is $\begin{cases} N_{\eta \to 2\gamma} = 70^{+13}_{-12} \\ N_{\eta \to 3\pi} = 22^{+7}_{-6} \end{cases}$, they will be used for Δ t distribution fit. How to fit $\Delta t \rightarrow$

The way of Δt analysis

Current status of TDCPV in $b \rightarrow s\gamma$

Golden mode for this study is $B \rightarrow Ks$ pi0 gamma. However, measurements of other decay mode are also important. This study is **first Ks eta gamma measurement of Belle experiment data**.

HFAG 2012	http://www.slac.stanford.edu/xorg/hfag/triangle/moriond2012/index.shtml#bsgamma		
Mode	Experiment	S _{CP} (b → sγ)	A CP (b \rightarrow sy)
K*(892)γ	BaBar N(BB)=467M	$-0.03 \pm 0.29 \pm 0.03$	$-0.14 \pm 0.16 \pm 0.03$
	Belle N(BB)=535M	$-0.32 + 0.36 = -0.33 \pm 0.05$	$0.20 \pm 0.24 \pm 0.05$
	Average	-0.16 ± 0.22	-0.04 ± 0.14
K _S π ⁰ γ (incl. K*γ)	BaBar N(BB)=467M	$-0.17 \pm 0.26 \pm 0.03$	$-0.19 \pm 0.14 \pm 0.03$
	Belle N(BB)=535M	$-0.10 \pm 0.31 \pm 0.07$	$0.20 \pm 0.20 \pm 0.06$
	Average	-0.15 ± 0.20	-0.07 ± 0.12
К _S	BaBar N(BB)=465M	-0.18 ^{+0.49} _{-0.46} ± 0.12	$-0.32 + 0.40 - 0.39 \pm 0.07$
	New	-1.32 ± 0.77 ± 0.36	-0.48 ± 0.41 ± 0.07
К _S ρ ⁰ γ	Belle N(BB)=657M	0.11 ± 0.33 ^{+0.05} _{-0.09}	$-0.05 \pm 0.18 \pm 0.06$
K _S φ γ	Belle N(BB)=772M	0.74 +0.72 -1.05 +0.10 -0.24	$-0.35 \pm 0.58 + 0.10 - 0.23$

Conclusion

- Time dependent CP violation is one of probe of new physics which predict $b \rightarrow s\gamma_R$ process.
- $B \rightarrow Ks \eta \gamma$ mode is studied with using data of Belle experiment. The result obtained is

$$S_{CP} = -1.32 \pm 0.77 (\text{stat.}) \pm 0.36 (\text{syst.})$$
 Preliminary
 $A_{CP} = -0.48 \pm 0.41 (\text{stat.}) \pm 0.07 (\text{syst.})$

We couldn't see significant deviation from the SM expectation.

• The result can be used for constraint on new physics model.

BackupsExample of new physics (P18, 19)Upgrade of B factory (P20)

Back up

Related new physics model (LRSM) [1/2]

Let's consider Left Right Symmetric Model (W^{\pm} can couple to ψ_R as well as ψ_L).

Although precise $BR(b \rightarrow s\gamma)$ measurement is consistent to the SM expectation, $A_{\rm NP}$ and $a_{\rm NP}$ can be large if they satisfy

$$|A_{\rm SM} + A_{\rm NP}|^2 + |a_{\rm NP}|^2 = |A_{\rm SM}|^2 \\ \propto \overline{BR(b \to s\gamma)}$$

[LRSM] Phys. Rev. D 61, 054008 (2000)

There are some parameter sets which permit S_{cp} have large value. ζ is mixing angle of W_{I} and W_{R} .

Such kind of model can be constrained by this type of study.

Related new physics model (LRSM) [2/2]

Right upper figure is based on an assumption $V_{CKM, L} = V_{CKM, R}$

Assuming that $V_{ts, R} >> V_{ts, L}$ (~0.04), S_{CP} can take large value while ζ is small. Unexplored area is still remaining, and the area can be searched by b \rightarrow sy TDCPV !

Although, simple parameter region is excluded by direct search already, TDCPV measurement of $b \rightarrow s\gamma$ can search unexplored area.

Future prospect

Upgrade to Belle II experiment is in progress.

- Improvement of vertexing resolution
- 50 times integrated luminosity
- Extension of silicon tracker volume (= Larger Ks acceptance).
- \rightarrow Error of S_{cp} is expected to be 1 order smaller.

Related douments

http://arxiv.org/abs/1002.5012

"Physics at Super B Factory" Section 3.4, 5.3.5

http://xxx.lanl.gov/abs/1011.0352

"Belle II Technical Design Report"

Wrong B B-bar identification probability

Probability of wrong identification $e^{-|\Delta t|/\tau_B} \left[1 + q \{\mathcal{A} \cos(\Delta m \Delta t) + \mathcal{S} \sin(\Delta m \Delta t)\}\right]$ must be considered.

 $e^{-|\Delta t|/\tau_B} \left[(1 - q \Delta w) + q(1 - 2w) \{ \mathcal{A} \cos(\Delta m \Delta t) + \mathcal{S} \sin(\Delta m \Delta t) \} \right]$

 w : Probability of wrong identification. In order to avoid bias from MC data, distribution is divided into 7 bins.
 Δw :Difference of w btw. B and B-bar. Considering efficiency of Λ, Λ-bar. O(1%) at most.

Distribution of 1-2w

Resolution function

BG Δt distribution

- Describe long tail component after Resolution function consideration.
- Fraction is an order of $O(10^{-4})$, Gaussian which has ~30-40 [ps] width.