

国際リニアコライダーにおける トップクォーク対生成閾値領域の研究

"Study of the threshold region of top quark pair production at the ILC"

2014/ 02/ 03 修士論文発表 素粒子実験 堀口朋裕

修士論文発表会

1

▶標準模型 **≻**トップクォーク

標準模型

精密測定されていない!!

Oヒッグス

2012年発見。素粒子に質量を与える。

Oトップクォーク

標準模型で最も重い粒子(mt~173 GeV、yt~1)。電弱対称性の破れに関係?

⇒ 本研究の目的はILCのターゲットの1つであるトップクォークの パラメータの測定精度を見積もる。 『ま論文発表会

トップクォーク

▶ 1995年にTevatronで発見
 ▶ 崩壊幅が大きい

$$\Gamma_{\rm t} \simeq \frac{G_{\rm F} m_{\rm t}^3}{8\sqrt{2}\pi} |V_{\rm tb}|^2 \sim 1.4 \ {\rm GeV} \gg \Lambda_{\rm QCD} (\sim 300 \ {\rm MeV})$$

- ハドロン化前に崩壊
- 漸近自由性のエネルギースケールに位置するため 摂動計算が可能

– <u>トップクォーク湯川結合(y</u>)

ヒッグス機構のテスト。標準模型が正しければ質量とヒッグスとの結合は比例関係。*y_t*~1

- <u>質量(m_t)</u>

標準模型のパラメータ。理論計算の重要なイン プット。Ex)真空の安定性の評価

- <u>崩壊幅([,</u>)

異常結合に感度

ハドロンコライダーでの測定

- tth(直接測定)が観測されていない
 - ➢ gghはあるので存在はする
 - ▶ LHC √s = 14 TeVの運転で16%(300fb⁻¹)、 9%(3000fb⁻¹)の統計誤差

- <u>m</u> の測定
 MC質量 ジェットの再構成により測定
 PDG: m_t = 173.5±0.6(stat.)±0.8(syst.)GeV
 - $\overline{\text{MS}}$ 質量 断面積測定により測定 D0:m_t^{$\overline{\text{MS}}$} = 160^{+4.8}_{-4.3}GeV
 - ハドロンコライダーでは理論的に定義された 質量を高精度で決定できない。

<mark>≻ <u>「</u>の測定</mark>

 $\begin{aligned} \text{CDF} &: 0.3 < \Gamma_t < 4.4 \text{GeV} \\ \text{D0} &: \Gamma_t = 1.99^{+0.69}_{-0.55} \text{GeV} \end{aligned}$

ILCでの測定:トップ対生成閾値領域の測定

- - グルーオンが何度も交換することによる断面積の上昇効果
 - − α が大きいため理論計算の誤差が大
 ぎい:NNLOで5%
 →将来的には2-3%
- ▶ 断面積測定
 - 閾値スキャンにより断面積が依存する トップのパラメータの決定が可能。

$$\sigma_{tt} \propto f(\sqrt{s}, m_t, \Gamma_t, \alpha_s, y_t, m_h)$$

- 本研究で用いる質量 "<u>Potential Subtracted</u>" 質量(m_t^{PS})
 - ▶ 束縛状態を作るときに定義可能な質量を用いる。

国際リニアコライダー (ILC) 実験

国際リニアコライダー(物理+加速器)

加速器 >

- 電子陽電子衝突型線形加速器
- 第1期

▶ 全長31km、√s= 250-500 GeV

- 第2期

▶ 全長50km、√s= 1 TeV

電子±80%、陽電子±30%の偏極が可能

- 物理
 - 新物理探索
 - ヒッグスの精密測定
 - トップクォークの全容解明

国際リニアコライダー(検出器)

シミュレーション

トップ質量	174 GeV
√s (<u>閾値 スキャン</u>)	<u> 341 - 350GeV (1 GeVごと)</u>
偏極	P(e ⁺ ,e ⁻) = (+0.3, -0.8), (-0.3, +0.8) "左巻き", "右巻き" と表記
積分ルミノシティ	各点 5 fb ⁻¹ (total 100fb ⁻¹ ,約一年間の蓄積) ※350GeVの運転スケジュールは未定、公式ではない
検出器モデル	ILD_01_v05 (詳細技術設計書に則ったモデル)
イベント生成	Physsim (含:閾値断面積上昇効果、ビーム効果(ISR/ beamstralung/beam energy spread))

信号事象と背景事象

孤立レプトンの抽出とジェットの再構成

③ダーラムアルゴリズムで粒子群をjetに再構成 **○Y値の最小化** $Y_{ij} = \frac{2min(E_i^2, E_j^2)(1 - \cos \theta_{ij})}{E_{vis}^2}$ Y_{ij} が最小になるi,jを見つけ出し強制的に目標のジェット数までまとめる $p_1 p_2 ... p_i p_j p_k ... p_{n-1} p_n$ $j_1 j_2 j_3 ... j_{n-1} j_n$

トップ対の再構成(6-Jet & 4-Jet)

再構成	6-Jet	4-Jet	light
孤立レプトン(<i>l_{iso}</i>)抽出	# of <i>l_{iso}</i> = 0	# of <i>l_{iso}</i> = 1	ident jet
anti-k _T アルゴリズムに。	よるビーム背景	事象の除去	Hadronic
ジェットの再構成	6本	4本	decay
bらしいジェットを2本 選ぶ	btag × 2	btag × 2	
Wを再構成×2	$q_1 + q_2 \& q_3 + q_4$	$q_1 + q_2 \& l_{iso} + v$	
トップを再構成×2	(b jet + W) × 2	(b jet + W) × 2	Leptonic
χ ² で最適化	$\chi^2_{ ext{6-Jet}}$	χ^2_{4-Jet}	decay t
$\chi_{6-\text{Jet}}^2 = \frac{(m_{3j^{\text{a}}\text{reco.}} - m_t)}{\sigma_t^2}$	$\frac{)^2}{\sigma_t^2} + \frac{(m_{3j^{\rm b} \rm reco.} - \sigma_t^2)}{\sigma_t^2}$	$\frac{(m_t)^2}{(m_{2j^{\mathrm{a}}\mathrm{rec}})^2} + \frac{(m_{2j^{\mathrm{a}}\mathrm{rec}})^2}{(m_{2j^{\mathrm{a}}\mathrm{rec}})^2}$	$\frac{\sigma_{\rm o.} - m_w)^2}{\sigma_w^2} + \frac{(m_{2\rm j^b reco.} - m_w)^2}{\sigma_w^2}$
$\chi^2_{4-\text{Jet}} = \frac{(m_{3\text{jreco.}} - m_t)^2}{\sigma_t^2}$	$\frac{2}{\sigma_t^2} + \frac{(m_{\rm jl}\nu_{\rm reco.} - m_{\rm jl})}{\sigma_t^2}$	$(\frac{m_t)^2}{\sigma_w^2} + \frac{(m_{2\text{jreco.}} - \sigma_w^2)}{\sigma_w^2}$	$(-m_w)^2$ 15

再構成後の質量分布

▶背景事象の除去

- 有意度が最大になるように選別

- 信号事象が支配的なため検出効率を落とさない ためカットはきつく入れない

運動学的カット(1)

トップの再構成で要求したbのクォリティカット

<bクォークタグ>

▶ 主に崩壊点の情報を用いた多 変数解析により"bらしさ"を0~1 で数値化。1に近いほどbらし いジェット。

▷ bタグによるカット

- トップはbWに崩壊するので2つのbクォークを要求
- bが出ないイベント、特にwwを排除できる。

運動学的カット(2)

≻ <u>スラスト</u>

選別結果 6-Jet @350GeV

$$\int \mathcal{L}(t)dt = 5(\text{fb}^{-1}) \quad S = \frac{N_{Sig}}{\sqrt{N_{Sig} + N_{BG.}}}$$

左巻き	tt6j	tt4j	tt2j	ww	ZZ	ZH	6f+4f	S _{6j}
Generated	1643	1583	381	32664	3004	694	71691	4.9
# of lepton = 0	1592	357	19	32079	2957	638	39983	5.7
btag > 0.1 × 2	1515	340	18	3601	1398	471	7399	12.5
Thrust<0.84	1485	313	13	398	433	383	1084	23.2
Evis>290 GeV	1481	159	1	218	310	309	90	29.2
missPt<38GeV	1473	72	0	217	307	303	80	29.7
$m_t > 100 \text{ GeV} \times 2$	1467	69	0	180	253	255	63	30.7
y45> 0.0015								
y56 >0.0007	1419	45	0	68	71	80	36	34.2
# of pfos>86	1406	38	0	45	59	73	33	34.6

S/N	5.67
δσ/σ	2.9%

選別まとめ

左巻き	\sqrt{s} GeV	341	342	343	344	345	346	347	348	349	350
	S _{6-Jet}	9.5	11.8	15.4	20.9	27.1	30.3	31.6	32.7	33.7	34.6
	$\delta\sigma/_{\sigma_{6-Jet}}$	10.5	8.5	6.5	4.8	3.7	3.3	3.2	3.1	3.0	2.9
	S _{4-Jet}	10.2	12.2	15.1	19.7	24.7	27.4	28.4	29.3	30.1	30.8
	$\delta\sigma/\sigma_{4-Jet}$	9.8	8.2	6.6	5.1	4.0	3.6	3.5	3.4	3.3	3.2
右巻き	\sqrt{s} GeV	341	342	343	344	345	346	347	348	349	350
右巻き	\sqrt{s} GeV S _{6-Jet}	341 6.9	342 8.6	343 11.1	344 14.9	345 19.2	346 21.4	347 22.3	348 23	349 23.7	350 24.3
右巻き	\sqrt{s} GeV S _{6-Jet} $\delta\sigma/_{\sigma}_{6-Jet}$	341 6.9 14.5	342 8.6 11.6	343 11.1 9.0	344 14.9 6.7	345 19.2 5.2	346 21.4 4.7	347 22.3 4.5	348 23 4.3	349 23.7 4.2	350 24.3 4.1
右巻き	\sqrt{s} GeV S _{6-Jet} $\delta\sigma/_{\sigma}_{6-Jet}$ S _{4-Jet}	341 6.9 14.5 7.5	342 8.6 11.6 8.9	343 11.1 9.0 11	344 14.9 6.7 14	345 19.2 5.2 17.5	346 21.4 4.7 19.3	347 22.3 4.5 20	348 23 4.3 20.7	349 23.7 4.2 21.3	350 24.3 4.1 21.8
右巻き	\sqrt{s} GeV S _{6-Jet} $\delta\sigma/\sigma_{6-Jet}$ S _{4-Jet} $\delta\sigma/\sigma_{4-Jet}$	341 6.9 14.5 7.5	342 8.6 11.6 8.9 11.2	343 11.1 9.0 11 9.1	344 14.9 6.7 14 7.1	345 19.2 5.2 17.5	346 21.4 4.7 19.3 5.2	347 22.3 4.5 20 5.0	348 23 4.3 20.7 4.8	349 23.7 4.2 21.3 4.7	350 24.3 4.1 21.8 4.6

選別まとめ

二つの偏極、√s=341~350GeVの選別から得た有意度を用いて、 トップ湯川の統計誤差を見積もる。

トップ湯川結合

ヒッグスがトップの断面積に与える影響は、ヒッグスがトップ対の間を交換することによる 9%の断面積上昇。

▶断面積のフィットによって求める - ルミノシティスペクトラムの畳み込み - NNLOの理論計算とのテンプレートフィット

断面積のフィット方法

▶ 断面積のテンプレート作成:

- m_t^{PS}、Γ_t、E_{cM}を変動させ断面積のグリッドを 作成
- 中心值 (mt^{PS}, Γt) = (172.000, 1.400)

-
$$\alpha_s$$
、 y_t を固定

<u>m_tとα でフィットする方法もあるが、今後α が格子QCD</u> で高精度で決められていると予想したためm_t^{PS}, Γ_tで フィット。

ToyMC

- LOの断面積をNNLOにスケール
- 各エネルギー点でm^{PS}, Γ_tを内挿し、断面積
 のフィット
- – 全エネルギー点を用いてmt^{PS}, Γtの最適化

≪☆=↓=□ 羊 (ヽィ 。ヽノ)	6	Jet	4-Jet		
│	m _t ^{PS}	Γ _t	m _t ^{PS}	Γ _t	
左巻き(50fb ⁻¹)	28	40	33	48	
右巻き(50fb ⁻¹)	42	63	48	67	
左巻き(50fb ⁻¹)+右巻き(50fb ⁻¹)	23	34	27	39	

中心值 : $m_t^{PS} = 172.000 \text{ GeV}, \Gamma_t = 1.400 \text{ GeV}$

◎PS→MS質量

$$m_t^{\overline{MS}} \sim m_t^{PS} - \frac{4}{3\pi} (m_t^{PS} - 20) \alpha_s + ...$$

 $m_t^{\overline{MS}} = 163.800 \pm 0.017 \text{ (stat.)(GeV)}$

ディスカッション

- ▶ 主な系統誤差
 - 実験側:ルミノシティスペクトラムの抽出
 - 理論側:理論計算の誤差 (Snowmass inputより)

項目	Уt	m _t ^{PS}	$m_t^{\overline{MS}}$	Γ _t
統計誤差	4.4%	18 MeV	17 MeV	26 MeV
実験	Unknown	~80MeV	~80MeV	Unknown
理論	22%	>100 MeV	>100MeV	Unknown
その他	Unknown	unknown	変換誤差※	Unknown

- ▶ トップ湯川結合
 - 短期間で高統計量が得られる
 - 理論計算:現状は22%。10年後11%?
- ▶ 質量
 - ※ PS→ MSに変換誤差
 - ・ 理論式の誤差10 MeV, α_sの不定性(現在:54MeV、10年後:??)

 MS質量の精度が現在の約30倍向上(D0は4.5GeVの誤差)
- ≻ 崩壊幅
 - 系統誤差のstudyはされていない。
 - ルミノシティスペクトラムの誤差はm_tほど大きくないと予想

ディスカッション

まとめ

- ➢ ILCの√s=350GeV付近では、閾値スキャンをしてトップクォーク対生 成断面積の測定によるm_t、「t の決定が可能。y_tにも感度。
- ▶ 本解析では6-Jetと4-Jetを用いてy_t、m_t、「tの統計誤差をフルシミュレーション解析で見積もった。
- ▶ 質量の測定精度は現在のものと比べ、約30倍の向上が見込める。

紛	計誤差	
	$\Delta y_t / y_t$	4.4 %
	m _t ^{PS}	172.001± 0.018 (GeV)
	$m_t^{\overline{MS}}$	163.800± 0.017 (GeV)
	Γ _t	1.399± 0.026 (GeV)

➤ ILCでは偏極により反応率をコントロールすることが可能(最大 偏極(e⁺, e⁻) = (±30, ∓80))。

ビーム効果

Initial State Radiation - 電子陽電子がγを放出する現象 Beam Energy Spread - 陽電子生成の際、電子はアンジュレータを通るためエネ ルギーに揺らぎができる現象 Beamstralung - 対になるバンチが電磁相互作用によりγを放出する現象 ソレノイド中の アンジュレータ 光子 ISR **斬空点へ** e^+ e **Beamstralung**

修士論文発表会

漸近自由性

▶ ポール質量

- 静止系のエネルギー
- 全てのgluonの相互作用を考慮
- ≻ MS 質量

- エネルギースケールでカットオフm_tの定義ではm_t自信に置く
- ➢ Potential Subtracted 質量
 - 束縛状態を作るときに定義可
 - r=0の時の波動関数で定義
 - ポール質量の不定性を ポテンシャルでキャンセル
- ▶ 1S質量
 - PS質量とほぼ同じ定義
 - 波動関数の期待値をとる

$$V_{\text{QCD}}(r) = \int \frac{d^3 \vec{q}}{(2\pi)^3} e^{i\vec{q}\cdot\vec{r}} \tilde{V}(q)$$

$$m_{\text{PS}} = m_{pole} + \int \frac{d^3 \vec{q}}{(2\pi)^3} \tilde{V}(q)$$

$$m_{1\text{S}} = m_{pole} + \langle V_{\text{QCD}}(r) \rangle$$

他実験との比較

≻ILC

– 100fb⁻¹の統計 – m_t^{PS}とΓ_tの2Dフィット – m_t^{PS}=18 MEV

フレーバータグ (LCFIPlus)

- ▶多変数解析
 - Boosted decision trees を用いた解析
 - ≻入力変数を与えて「トレーニング」すると関数を定義してジェットを抽出。
- ≻崩壊点の情報
 - Vertex mass
 - Primary vertex(PV)
 - Secondary vertex(SV)
 - –崩壊点からの距離
 - など

その他カット

Y45

損失横運動量

Y56

検出器の要求

▶これに加えParticle Flow Algorithmを採用

ジェット要素	ジェットに占める割合	検出器	$\sigma_{ m E}/{ m E}$
荷電粒子	60%	飛跡検出器	$0.00002 \times E$
光子	30%	ECAL	$0.2/\mathrm{E}$
中性ハドロン	10%	HCAL	$0.6/\mathrm{E}$

表 5.1: ジェットの組成と ILD 検出器の分解能