Lake Louise Winter Institute

1

$φ_3(γ)$ measurement by $B^0 \rightarrow [K_S^0 π^+ π^-]_D K^{*0}$ at Belle

Kentaro Negishi

19th February 2015 Lake Louise **TOHOKU** UNIVERSITY

Introduction

- CKM (Cabibbo-Kobayashi-Maskawa) matrix
 - The quark mixing matrix, which is unitary.

$$V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

- Unitary triangle $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

LLWI'15 K.Negishi

Complex phase

Introduction

- CKM (Cabibbo-Kobayashi-Maskawa) matrix
 - The quark mixing matrix, which is unitary.

$$V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

Complex phase

φ₃ Measurement

– Access ϕ_3 with interference $\overline{D}^0\overline{K}^{*0}$ and $D^0\overline{K}^{*0}$ decays.

	Weak Int. phase	Strong Int. phase	Amp.
Difference between D^0K^{*0} and \overline{D}^0K^{*0}	ф ₃	δ_{S}	$\mathbf{r}_{S} \equiv \left \frac{A(\bar{B}^0 \to \bar{D}^0 \bar{K}^{*0})}{A(\bar{B}^0 \to D^0 \bar{K}^{*0})} \right $

 r_s is crucial parameter in ϕ_3 measurement. (Expected to be ~0.3.)

- Measure \overline{B}^0/B^0 asymmetry across Dalitz plot.
 - D is required to decay in to three body like $K_S^{0}\pi^{+}\pi^{-}$.
- $\bar{B}^0 \to [K_S^0 \pi^+ \pi^-]_D \bar{K}^{*0} \\ A_{\bar{B}^0(B^0)} = f(m_+^2, m_-^2) + r_S e^{i(\delta_S \pm \phi_3)} f(m_-^2, m_+^2)$

- Sensitivity to ϕ_3 in interference term.
 - − $|f(m_{+}^2, m_{-}^2)|$ from flavor-tagged D^{*+}→D⁰π⁺ events.
 - Phase difference(δ_{D}) between D^{0}/\overline{D}^{0} from Charm-Factory.

5

Model-Independent Dalitz

6

[A. Giri, Y. Grossman, A. Soffer, J. Zupan, PRD 68, 054018 (2003)]

Number of events in **D**⁰-plot :
$$K_i$$

Number of events in **B**-plot :
 $f = h_B[K_i + (x^2 + y^2)K_{-i} + 2k\sqrt{K_iK_{-i}}(xc_i + ys_i)]$
 $C(m_+^2, m_-^2) = \cos(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$
 $S(m_+^2, m_-^2) = \sin(\delta_D(m_+^2, m_-^2) - \delta_D(m_-^2, m_+^2))$
From Charm-Factory
 $D_{CP} \to K_S^0 \pi^+ \pi^-]$
 $P_{CP\pm}(m_+^2, m_-^2) = |f_D \pm \bar{f}_D|^2 = P_D + \bar{P}_D \pm 2\sqrt{P_D\bar{P}_D}C$
 $\Psi(3770) \to [K_S^0 \pi^+ \pi^-]_D[K_S^0 \pi^+ \pi^-]_D]$
 $P_{Corr.}(m_+^2, m_-^2, m_+'^2, m_-'^2) = |f_D \bar{f}_D - \bar{f}_D f_D'|^2$
 $= P_D \bar{P}_D + \bar{P}_D P_D' - 2\sqrt{P_D \bar{P}_D P_D'\bar{P}_D'}(CC' + SS')$

where
$$\begin{cases} x_{\pm} = r_S \cos(\delta_S \pm \phi_3) \\ y_{\pm} = r_S \sin(\delta_S \pm \phi_3) \end{cases}$$
 observables

Belle Experiments

KEKB accelerator

- Asymmetric energy collision
 (8.0 v.s. 3.5 GeV)
- 10.58 GeV center of mass energy at Y(4S) resonance; It is suitable for BB production.
- 772 × 10⁶ BB pair

- Charged particle momentum $(\sigma_{pt}/p_t(\%) = 0.19p_t \oplus 0.30\beta)$
- Good particle identification ((K/π) Eff. ~90%, Fake ~10%)
- Good vertex resolution (~50 μm)

Signal and Backgrounds

3D Fit for Signal Extraction

After reconstruction and BG rejection, 3-D fit (ΔE , C'_{NB}, M_{bc}) is done without Dalitz information.

Each component yield is free. Shapes are fixed.

Red : Signal **Yellow :** $D^0 \rho^0$ Green : $D^0 a_1^+$ Blue : D fake BB Light blue : D true BB Magenta : qq

 $\Delta E \equiv E_B - E_{\text{Beam}}$

Energy difference

btw. beam energy

and B candidate.

C'_{NB}

Modified distribution of

Neural network output

used qq suppression.

$$M_{\rm bc} \equiv \sqrt{E_{\rm Beam}^2 - p_B^2}$$

Mass of B candidate from beam energy and B's momentum.

Yield is $N_{total} = 44.2 + 13.3 - 12.1$ (statistic significance 2.8 σ), which are used for the (x,y) fit.

10

(x,y) Fit

# Bin		
(=i)	c_i	s_i
1	-0.009	-0.438
2	+0.900	-0.490
3	+0.292	-1.243
4	-0.890	-0.119
5	-0.208	+0.853
6	+0.258	+0.984
7	+0.869	-0.041
8	+0.798	-0.107

 K_i from $D^{*+} \rightarrow D^0 \pi^+$, D^0 decay

 $(B^0): N_i = h_B[K_i + (x_+^2 + y_+^2)K_{-i} + 2k\sqrt{K_iK_{-i}}(x_+c_i + y_+s_i)]$ $(\bar{B}^0): N_i = \bar{h}_B[K_i + (x_-^2 + y_-^2)K_{-i} + 2k\sqrt{K_iK_{-i}}(x_-c_i + y_-s_i)]$

(x, y) Result

(x, y) Result

stat. syst.
$$c_i, s_i$$

 $x_{-} = + 0.4^{+1.0}_{-0.6} + 0.0_{-0.1} \pm 0.0$
 $y_{-} = -0.6^{+0.8}_{-1.0} + 0.1_{-0.0} \pm 0.1$
 $x_{+} = +0.1^{+0.7}_{-0.4} + 0.1_{-0.1} \pm 0.1$
 $y_{+} = +0.3^{+0.5}_{-0.8} + 0.0_{-0.1} \pm 0.1$

(x, y) Result

14

r_s Result

• r_s is crucial parameter in ϕ_3 measurement.

Conclusion

• New result of $B^0 \rightarrow [K_s^0 \pi^+ \pi^-]_D K^{*0}$ Mod.-Ind. Dalitz analysis.

stat. syst.
$$c_i, s_i$$

 $x_- = + 0.4^{+1.0}_{-0.6} + 0.0_{-0.1} \pm 0.0$
 $y_- = -0.6^{+0.8}_{-1.0} + 0.1_{-0.0} \pm 0.1$
 $x_+ = + 0.1^{+0.7}_{-0.4} + 0.0_{-0.1} \pm 0.1$
 $y_+ = + 0.3^{+0.5}_{-0.8} + 0.0_{-0.1} \pm 0.1$
 $r_S < 0.87$ at 68 % C.L.

ϕ_3 measurement with neutral B is promising for Belle II!!

LLWI'15 K.Negishi

16

BACK UP

• Primary track

– IP $|\Delta r| < 5$ mm, $|\Delta z| < 5$ cm

• K_s reconstruction

– NIS K_s Finder

- D⁰ reconstruction
 - K_s and opposite charge 2 π (LR(K/ π) < 0.6)
 - $|M_{KS\pi\pi} m_{D0}| < 0.015 \text{ GeV}$
- K^{*0} reconstruction
 - Opposite charge K(LR(K/ π) > 0.7) and π (LR(K/ π) < 0.6)
 - $|M_{K\pi} m_{K^*0}| < 0.050 \text{ GeV}$
- B⁰ reconstruction
 - Best candidate is selected by D⁰ mass and B⁰ vertex
 - $\Delta m > 0.15$ GeV for real D⁰ BG from D^{*±}
 - $|M_{K^*0\pi^-} m_{D0}| > 0.04 \text{ GeV for } [K^+\pi^-\pi^-]_{D^-}[K_S\pi^+]_{K^{*+}}$

qq suppression

 qq events are suppressed by using following 12 parameters as NeuroBayes inputs.

18

PDF

19

シグナルは3次元(ΔE, NB', M_{bc})の分布をフィットして得る

• To check (x,y) fit, we use $B^+ \rightarrow D\pi^+$ as control sample.

- K_s selection
- qq suppression
- D⁰ mass selection
- BGs Dalitz distributions
- Cross-feed between bins
- Efficiency correction.

• We obtain Dπ (x,y) consistent with previous result.

LLWI'15 K.Negishi

Statistical uncertainty

- We decide to not use normal error of likelihood distribution on (x,y) because of unreliable of (x,y) likelihood due to small statistics.
- <u>To obtain statistic uncertainty, we use</u> Feldman-Cousin method.

Total signal number = $44.2^{+13.3}_{-12.1}$

LLWI'15 K.Negishi

(x_{true}, y_{true})

it result =

 $(\mathbf{x}_{\text{meas,}}^{\prime} / \mathbf{y}_{\text{meas.}})$

21

Statistic significance = 2.8σ

(x(-2., 2.), y(-2., 2.))

CL(x_{true}, y_{true})

(BN#564 appendix D)

0.1 step $P(x_{obt.}, y_{obt.})$

Feldman-Cousin method

- 1. Generate >20,000 (x,y) fit result with toy MC at 1600 points.
- 2. Dist. of $(x,y)_{obt.}$ fit results at $(x,y)_{true}$ space are obtained. (PDF($x_{obt.}, y_{obt.} | x_{true}, y_{true}$))
- 3. We define confidence level as integral of the PDF in a region Ω which satisfy PDF(x,y) > PDF(x_{meas.},y_{meas.}). (We call it "CL(x_{true},y_{true})".)
- 4. Draw contours of e.g.) α = 0.393 (1 σ), 0.865 (2 σ) and so on.

Systematic uncertainty

0	0
2	Ζ

Source of uncertainty	Δx_{-}	Δy_{-}	Δx_+	Δy_+
1) Dalitz plots efficiency	± 0.00	$^{+0.01}_{-0.00}$	± 0.01	$+0.00 \\ -0.01$
2) Crossfeed between bins	± 0.00	+0.01 -0.00	$+0.01 \\ -0.00$	± 0.00
3) PDF shape	+0.01 -0.07	$+0.07 \\ -0.01$	$+0.01 \\ -0.10$	$+0.04 \\ -0.06$
Signal	± 0.00	± 0.00	± 0.00	± 0.00
$B\bar{B}$	+0.01 -0.07	+0.07	+0.01	+0.04
Continuum	± 0.00	± 0.01	± 0.00	+0.00 -0.01
$D^0 ho^0$	± 0.00	± 0.00	± 0.00	$+0.00 \\ +0.00 \\ -0.01$
$D^{0}a_{1}^{+}$	± 0.00	$+0.00 \\ -0.01$	± 0.00	± 0.00
4) Flavor-tagged statistics	± 0.00	± 0.00	± 0.00	$+0.00 \\ -0.01$
5) c_i, s_i precision	± 0.03	$^{+0.09}_{-0.08}$	± 0.05	$+0.08 \\ -0.10$
6) k precision	± 0.00	± 0.01	± 0.00	± 0.00
Total without c_i, s_i precision	$+0.01 \\ -0.07$	$+0.07 \\ -0.02$	$+0.02 \\ -0.10$	$+0.04 \\ -0.06$
Total	+0.03 -0.08	+0.12 -0.08	+0.05 -0.11	+0.09 -0.12
	0.00	0.00	0.11	0.12

• $\Delta x_{-} = \stackrel{+0.0}{-0.1} \pm 0.0$ • $\Delta y_{-} = \stackrel{+0.1}{-0.0} \pm 0.1$ • $\Delta y_{+} = \stackrel{+0.0}{-0.1} \pm 0.1$ • $\Delta y_{+} = \stackrel{+0.0}{-0.1} \pm 0.1$

We combine the uncertainty from stat. and syst. with assumption of (x,y) 2D Gauss. for syst. err.

Discussion

- r_sは0と無矛盾
 - B⁰→DK*⁰シグナル数が小さかった 44.2 ^{+13.3} (統計誤差が支配的) 崩壊分岐比で Br(B⁰→DK*⁰) = (2.9 ± 0.9)×10⁻⁵

	イベント数	Br(B ⁰ →DK* ⁰)	ずれ	
本結果	44.2	(2.9 ± 0.9)×10 ⁻⁵		
BaBar	78	(5.2 ± 1.2)×10 ⁻⁵	-1.5σ	ただし"ずれ"は
PDG	64	(4.2 ± 0.6)×10 ⁻⁵	-1.2σ	大きくない

- 統計的なふらつきによる
- Belle II 実験(予定)では

 $\Delta(x,y)_{syst.}$ $=\pm 0.1$ 統計 系統 統計誤差→ O(<0.1) ______ 50倍BB $x_{-} = +0.4 + 1.0 + 0.0$ ≻ 現系統誤差と同等 $y_{-} = -0.6 + \frac{0.8}{-1.0} \pm 0.1$ -0.5 -1. K/π識別能力が上がる $x_{+} = +0.1 + 0.7 \pm 0.1$ →BB背景事象の抑制 $y_{+} = +0.3 + 0.5 + 0.1$ 2. Super-Charm-Factory -1 -0.5 0.5 0 →c_i, s_iの誤差が減る B⁰→DK^{*0}崩壊を用い_{φ3}測定の可能性

Belle II + Super-Charm-Factory

 $= \pm 0.1$

 $\Delta(x,y)_{stat.}$