

国際リニアコライダーを用いた 荷電ヒッグス粒子の探索

日本物理学会第70回年次大会@早稲田大学早稲田キャンパス

2015年3月23日

新崎ゆう子

石川明正 Jan Strube ^A藤井恵介 ^B兼村晋哉 ^C柳生慶 山本均

東北大 A:KEK B:富山大 C:國立中央大

研究概要

2012年7月、LHCで新粒子発見 >翌年、ヒッグス粒子であることが確認された 今後はヒッグスセクターの構造(一重項、二重項、三重項の追加)を決めることが重要となる。 複数の拡張ヒッグス模型において、H[±]W⁺Z結合が現れる H[±]W⁺Z結合のツリーレベルの有効ラグランジアン

$$\mathcal{L}_{\rm eff} = g m_W f_{HWV} H^{\pm} W^{\mp}_{\mu} V^{\mu}$$

- H[±]W[∓]Z結合を観測することで、模型を区別可能
 →形状因子の上限値として、各模型に制限を与える
- 対生成(e+e⁻ → H++H⁻⁻)が不可能な重心系エネルギーの場合でも、e+e⁻ →W[±]H⁺ 過程を用いて荷電ヒッグス粒子を探索することが可能
 この研究では、W粒子の反跳質量を測定することで、荷電 ヒッグス粒子の探索を行う

- シミュレーションの条件
- 検出器シミュレーション
- 積分ルミノシティ

ILD_01_v05 (DBD ver.) L=250 fb⁻¹

- 偏極

<u>P(e+, e-) = (-30%, +80%)「右偏極」</u>

	崩壊過程	生成断面積(fb)	事象数(k)	
Sig1	WH (H → тv)	214	54	
Sig(2)	WH (H→WZ)	214	54	
	Di-jet	46200	12000	
	evW →evjj	445	110 W	由来の背景事象
	Zee → ijee	300		抑制(左偏極時)
	WW →jjlv	758(11000)	190(2700)	
SM BG	$WW \rightarrow jjjj$	600(8700)	150(2200)	
	ZZ →jjll	467	120 事	象数が
	ZZ → jjjj	402	¹⁰⁰ 1 0)分の1以下に
	ZZWWmix → jjjj	565	140	
	$Zh \rightarrow ffh$	205	51	

- Wが hadronicに崩壊する際の反跳を見ることで荷電ヒッグス 粒子の質量を計算する
- H→тv と H→WZ→lvvvを見たい→<u>3ジェット再構成</u>を行う
 - Durham algorithmを用いて、3本のジェットになるまで粒子を(強制的に)再構成する
 - 3本のジェットのうち χ² が最小になるように2つのジェットからW
 を再構成する
 - 反跳質量法により荷電ヒッグス粒子の質量を計算する

ILCのような素粒子-素粒子衝突の実験で可能になる解析手法

N_{sig} S $\overline{N_{sig} + N_{bg}}$

▶ 信号事象と終状態の近い事象を排除

信号有意度(S)を最大化するように信号事象の選別を行った

▶ニュートリノを含まない事象を排除

事象選別後の反跳質量分布 H→Tv過程

信号事象領域

70 < Mw < 90 (GeV) 140 < Mrec < 160 (GeV) 15 < Pt (GeV) 170 < Evis (GeV) 0.95 < | cosθwangle | -0.675<BDTG

	WH(τv)	Di-jet	evW→evjj	WW→jjlv	ZZ→jjII	others
no cut	53618	11553700	111356	189596	116797	51831 <mark>5</mark>
after cut	14276	581	837	1729	863	95
検出 信号	効率ε = 2 有意度S =	6.62% = 105		$S = \frac{1}{\sqrt{N_s}}$	N _{sig} sig+N _{bg}	
(Fhw	z=1, Fнw	%)		9		

事象選別後の反跳質量分布 H→WZ過程

信号事象領域

70 < Mw < 90 (GeV) 140 < Mrec < 160 (GeV) 15 < Pt (GeV) 200 < Evis (GeV) 0.95 < | cosθwangle |

	WH(WZ)	Di-jet	evW→evjj	WW→jjlv	ZZ→jjII	others		
no cut	53613	11553700	111356	189596	116797	51831 <mark>5</mark>		
after cut	4768	4792	5835	8697	5438	98 <mark>7</mark>		
検出效 信号有]率ε = 8.8 意度S =		$S = \frac{1}{\sqrt{N_s}}$	N _{sig} ig+N _{bg}				
(FHWZ:	=1, FHWy=		10					

生成断面積の上限値

2015/3/23

生成断面積の上限値の計算

▶ **тv**崩壊過程

背景事象数 N_{bg} 4015 信号事象検出効率 ε 0.2662 積分ルミノシティ \mathcal{L} 250 fb⁻¹ $\sigma_{95\%}^{UL} = \frac{N_{95\%}^{UL}}{\varepsilon \cdot \mathcal{L}} = \frac{2\sqrt{\langle N_{bg} \rangle}}{\varepsilon \cdot \mathcal{L}}$ $\sigma_{95\%}^{UL} = 1.92$ fb $\rightarrow F_{95\%}^{UL} = 0.0974$ $(|F_{95\%}^{UL}|^2 = 0.00897)$

 $F_{HWZ} = 1 のとき、$

 $\sigma = 214 \text{ fb}$

▶ WZ崩壊過程

背景事象数
$$N_{bg}$$
 25749
信号事象検出効率 ϵ 0.0889
積分ルミノシティ L 250 fb⁻¹
 $\sigma_{95\%}^{UL} = 14.4$ fb $\rightarrow F_{95\%}^{UL} = 0.259$
 $(|F_{95\%}^{UL}|^2 = 0.0673)$

TV過程の結果と2HDM(タイプX)の比較

WZ過程の結果と Georgi-Machacek模型の比較

WZ過程の解析の結果 |*F*^{UL}_{95%}|² = 0.0673 →この解析手法で検出できる可能性がある (検出できなかったとしても制限を与えることが可能)

まとめ

ILC実験の重心エネルギー250 GeVにおける荷電ヒッグス粒子探索の可能性を検証

- ▶積分ルミノシティ 250 fb⁻¹、右偏極、荷電ヒッグス粒子質量150GeV/c²を想 定
- ▶荷電ヒッグス粒子がWボソンを伴って生成する事象を反跳質量法により再構成
 - 荷電ヒッグス粒子がτvに崩壊する過程の解析
 - $\sigma_{95\%}^{UL} = 1.92 \text{ fb} \rightarrow F_{95\%}^{UL} = 0.0974 \ (|F_{95\%}^{UL}|^2 = 0.00897)$

→2HDM(タイプX)に対しては新たに制限を与えることはできない - 荷電ヒッグス粒子がWZに崩壊する過程の解析

 $\sigma_{95\%}^{UL} = 14.4 \text{ fb} \rightarrow F_{95\%}^{UL} = 0.259(|F_{95\%}^{UL}|^2 = 0.0673)$

→GM模型の荷電ヒッグス粒子であれば検出可能性あり 検出されなくても、新たに制限を与えることが出来る

今後の研究方針

- ▶ 重心エネルギー250 GeVにおけるWZ過程のより詳細な解析
- ▶荷電ヒッグス質量がより大きい場合の解析

クォークジェットのエネルギーを高分解能で測定可能 →W、Zを識別可能なエネルギー分解能

 $\sqrt{E_{jet}}$ (GeV)

TV過程の解析

▶ BR(H→ τ v)=100%を仮定
 ▶ Wが2ジェットに崩壊する事象を再構成する
 →反跳質量法により荷電ヒッグス粒子を再構成

▶ total Pt:測定された運動量のベクトル和の、ビーム軸に対して垂直な成分の大きさ

新崎ゆう子 日本物理学会第70回年次大会@早稲田大学早稲田キャンパス

2015/3/23

新崎ゆう子 日本物理学会第70回年次大会@早稲田大学早稲田キャンパス

W	/Z過程	の解析	WH→	WH→WWZ→jjl+3 v					
 ▶ BR(H→WZ)=100%を仮定 ▼ v 過程の場合と同じ再構成、 事象選別を行う 									
		Zボソ	ンの崩壊分	》岐比	$Z \sim \nu$				
Wボソン		ハドロン (~70%)	荷電 レプトン (~10%)	ニュート リノ (~20%)	サンプル中				
, の 崩 壊	ハドロン (~70%)	49%	7%	14%					
3分岐 比	レプトン (~30%)	21%	3%	6%	主に得られる 事象				

31

Wボソン質量と反跳質量のカット

生成断面積の上限値の計算方法

- ▶ 信号事象に対して生成断面積0 fbの 状態を考える
- ▶ 同統計数N_{obs}の実験を複数回行う
 →背景事象は< N_{bg} >中心に分布を
 つくる
- ► N_{bg}分布がガウス分布になると仮定 する→N_{obs} - N_{bg}が図のようになる
- ▶ N^{UL}_{95%}に対して断面積を求める
 →95%信頼度生成断面積上限値σ^{UL}_{95%}

$$\sigma_{95\%}^{UL} = \frac{N_{95\%}^{UL}}{\varepsilon \cdot \mathcal{L}} = \frac{2\sqrt{\langle N_{bg} \rangle}}{\varepsilon \cdot \mathcal{L}}$$

HDMの <u>タイプ</u>									
	•	Φ_1	Φ_2	u_R	d_R	ℓ_R	Q_L, L_L		
	Type-I	+		-	-	-	+		
	Type-II	+	—	—	+	+	+		
	Type-X	+	_	_	_	+	+		
	Type-Y	+	—	_	+	—	+		

Table 3.1: Variation in charge assignments of the Z_2 symmetry [38].

	ξ_h^u	ξ^d_h	ξ^d_h	ξ^u_H	ξ^d_H	ξ^ℓ_H	ξ^u_A	ξ^d_A	ξ^ℓ_A
Type-I	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$-\cot\beta$	\coteta	\coteta
Type-II	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$-\cot\beta$	$-\tan\beta$	$-\taneta$
Type-X	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$-\cot\beta$	\coteta	$-\taneta$
Type-Y	$\frac{\cos \alpha}{\sin \beta}$	$-\frac{\sin \alpha}{\cos \beta}$	$\frac{\cos \alpha}{\sin \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$\frac{\cos \alpha}{\cos \beta}$	$\frac{\sin \alpha}{\sin \beta}$	$-\cot\beta$	$-\taneta$	\coteta

Table 3.2: The mixing factors in Yukawa interactions in Eq. (3.24) [38].

2

Charged Higgs search at the LHC

- ► The CMS experiment searches MSSM charged Higgs at m_h^{max} scenario.
- Charged Higgs mass limited lager than 155 GeV

荷電ヒッグス 粒子の 崩壊分岐比 (HTM)

新崎ゆう子 日本物理学会第70回年次大会@早稲田大学早稲田キャンパス

LHC search of GM model 1 ATLAS-CONF-2014-009

Coupling summary

Simplest assumption

 $rightarrow K_V = K_W = K_Z$ and $K_F = K_t = K_b = K_\tau = ...$

- (Other models like different coupling scale btw. leptons and quarks are also tested.)
- Determine the ratio µVBF+VH/µggF+ttH.
- κ_V and κ_F seems compatible with SM.

18

KF-KV

FIG. 1: Scaling factors for the two custodial singlets, h and H_1^0 . The blue solid contours are for $v_3 = 0, 10, 30, 50$, and 70 GeV with varying α . The black dotted curves are for $\alpha = -\pi/6, -\pi/12, -\pi/24, 0, \pi/24, \pi/12$, and $\pi/6$ with varying β .

2015/3/23

► WZ過程のうちI+3 v 終状態になるのは6%程度 →他の終状態に最適な解析を行うべき

- 荷電ヒッグス粒子から生成されるWZは、どちらかがオフシェル

→χ²の最適化が難しい

- 運動量が大きくない

→ジェットの識別が正しく行えない

→W1とW2の識別ができない

▶ 重心エネルギーEcm=350 GeV条件下でのシミュレーションによって再 構成が容易になると考えられる

W1

 e^+