

素粒子実験 根岸 健太郎 B1SD2015 平成27年1月 29日

Study for the measurement of ϕ_3 using B⁰→DK^{*0} followed by D→K_S $\pi^+\pi^-$ with model-independent Dalitz analysis (ϕ_3 測定に向けたモデル依存の無いDalitz解析 を用いたB⁰→DK^{*0}, D→K_S $\pi^+\pi^-$ 崩壊の研究)

- D論本文 1章 1. ϕ_3 測定 2. Belle 実験 3. B⁰ → DK^{*0} 崩壊の解析 - 信号再構成 - 背景事象除去 - D_{π}コントロールサンプルの研究 4. 結果 - 信号抽出
 - 統計誤差
 - 系統誤差

5. 結論、及び考察

4章

2章

3章

5-6章

- KM機構:弱い相互作用のクオークセクターでCP非保存を説明 $\mathcal{L}_{int.} = -\frac{g}{\sqrt{2}} (\bar{U}_L V_{CKM} \gamma_\mu D_L W^+_\mu) + h.c.$

 複素位相を持つ

 $U = \begin{pmatrix} u \\ c \\ t \end{pmatrix} \cdot D = \begin{pmatrix} d \\ s \\ b \end{pmatrix} V_{CKM} \equiv \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \sim \begin{pmatrix} 1 \lambda^2/2 & \lambda & A\lambda^3(\rho i\eta) \\ -\lambda & 1 \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 \rho i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$
- CKM行列はユニタリ $V_{CKM}^{\dagger} \cdot V_{CKM} = I$

φ₃ 測定

- ϕ_3 の測定は V_{ub} の位相を測る事と同義 $\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right) \sim -\arg(V_{ub})$
- B → DK 崩壊はb → u 遷移を含む経路と含まない経路が干渉する

博士論文審査会

5

B⁰→DK*⁰崩壊の₉₃測定

Dalitz 解析 (GGSZ 法)

$$\begin{split} B^{0} \rightarrow DK^{*0} \textbf{/(i)} \overset{\mathsf{N}}{|} A_{(\bar{B}^{0} \rightarrow D\bar{K}^{*0})} |^{2} &= |A_{(D^{0} \rightarrow K_{S}\pi^{+}\pi^{-})} + r_{S}e^{i(\delta_{S} + \phi_{3})}A_{(\bar{D}^{0} \rightarrow K_{S}\pi^{+}\pi^{-})} |^{2} \\ &= |A + r_{S}e^{i(\delta_{S} + \phi_{3})}\bar{A}|^{2} \\ &= |A|^{2} + r_{S}^{2} |\bar{A}| + 2r_{S} |A| |\bar{A}| (\cos(\delta_{S} + \phi_{3})\cos\delta_{D} + \sin(\delta_{S} + \phi_{3})\sin\delta_{D}) \\ &|A|(m_{+}^{2}, m_{-}^{2})|\mathbf{i}D^{0} \rightarrow \mathbf{K}_{S}\pi^{+}\pi^{-}\mathbf{O}\mathbf{/\mathcal{N}}\mathbf{V}\mathbf{b}\mathbf{b}\mathbf{b}\mathbf{i}\mathbf{j}\mathbf{j}\mathbf{c}\mathbf{a}\mathbf{b}\mathbf{c}\mathbf{f}\mathbf{k} \\ &\delta_{D}(m_{-}^{2}, m_{+}^{2})\mathbf{b}\mathbf{c}\mathbf{h}\mathbf{h}\mathbf{i}\mathbf{i}(\phi_{3}, \delta_{S}, \mathbf{r}_{S})\mathbf{j}\mathbf{i}\mathbf{c}\mathbf{h}\mathbf{o}\mathbf{f}\mathbf{k} \end{split}$$

Dalitz 解析 (GGSZ 法)

Model-Independent Dalitz

 $K_{i}: D^{0} \rightarrow K_{S}\pi\pi$ イベント数 $D^{*\pm} \rightarrow D^{0}\pi^{\pm}, D^{0} \rightarrow K_{S}\pi\pi$ から求める k : 補正係数(後述) $x_{\pm} = r_{S}\cos(\delta_{S} \pm \phi_{3})$ $y_{\pm} = r_{S}\sin(\delta_{S} \pm \phi_{3})$ 別定値

7

博士論文審査会

DKπ, K*の高次共鳴状態からの補正(k (≦ 1))が干渉項に掛かる
 i Bin目のシグナル数

$$N_i = h_B [K_i + (x^2 + y^2)K_{-i} + 2k\sqrt{K_i K_{-i}}(xc_i + ys_i)]$$

博士論文審査会 **Model-Independent vs Model-Dependent**

かつて, $(\delta_D M Charm-Factoryから報告されていなかった)$ Modelを"仮定"し評価

Intermediate state	Amplitude	Phase (°)	Fit fraction (%)
$K_S \sigma_1$	1.56 ± 0.06	214 ± 3	11.0 ± 0.7
$K_S \rho^0$	1.0 (fixed)	0 (fixed)	21.2 ± 0.5
$K_S \omega$	0.0343 ± 0.0008	112.0 ± 1.3	0.526 ± 0.014
$K_{S}f_{0}(980)$	0.385 ± 0.006	207.3 ± 2.3	4.72 ± 0.05
$K_S \sigma_2$	0.20 ± 0.02	212 ± 12	0.54 ± 0.10
$K_{S}f_{2}(1270)$	1.44 ± 0.04	342.9 ± 1.7	1.82 ± 0.05
$K_{S}f_{0}(1370)$	1.56 ± 0.12	110 ± 4	1.9 ± 0.3
$K_{S}\rho^{0}(1450)$	0.49 ± 0.08	64 ± 11	0.11 ± 0.04
$K^{*}(892)^{+}\pi^{-}$	1.638 ± 0.010	133.2 ± 0.4	62.9 ± 0.8
$K^{*}(892)^{-}\pi^{+}$	0.149 ± 0.004	325.4 ± 1.3	0.526 ± 0.016
$K^*(1410)^+ \pi^-$	0.65 ± 0.05	120 ± 4	0.49 ± 0.07
$K^*(1410)^-\pi^+$	0.42 ± 0.04	253 ± 5	0.21 ± 0.03
$K_0^*(1430)^+ \pi^-$	2.21 ± 0.04	358.9 ± 1.1	7.93 ± 0.09
$K_0^*(1430)^-\pi^+$	0.36 ± 0.03	87 ± 4	0.22 ± 0.04
$K_2^*(1430)^+\pi^-$	0.89 ± 0.03	314.8 ± 1.1	1.40 ± 0.06
$K_2^*(1430)^-\pi^+$	0.23 ± 0.02	275 ± 6	0.093 ± 0.014
$K^{*}(1680)^{+}\pi^{-}$	0.88 ± 0.27	82 ± 17	0.06 ± 0.04
$K^*(1680)^-\pi^+$	2.1 ± 0.2	130 ± 6	0.30 ± 0.07
Nonresonant	2.7 ± 0.3	160 ± 5	5.0 ± 1.0

Modelの不定性が不可避	Belle フルデータ B ⁻ →DK ⁻
(もし、知らない共鳴状態が存在した	ModDep. (2004) 統計 系統 Model不定性 $\phi_2 = 80.8^{+13.1} \pm 5.0 \pm 8.9$
or 仮定した共鳴状態が実は無かった	φ ₃ 00.0 - 14.8 - 0.0 - 0.0
or	ModInd. (2012) 統計 系統 c _i ,s _i の測定精度
$\rightarrow (\phi_3, \mathbf{r}_S, \mathbf{\delta}_S)$ の測定にバイアスを生む)	$\phi_3 = 77.3 \substack{+15.1 \\ -14.9} \pm 4.1 \pm 4.3$

中性B崩壊 荷電Bとの比較

- ただしr(\$\phi_3\$ の効果)は大きい
 中性B崩壊のr_sは3σ以上でnon-0の測定出来ていない

2. Belle 実験

博士論文審査会

Superconducting

Belle実験 KEKB加速器

博士論文審査会

12

KEKB加速器 (1999 - 2010)

- 重心エネルギー: 10.58 GeV
 Y(4S) → BB (~ 100 %)
- 世界最高のルミノシティ
 - (積分): 1040 fb⁻¹
 - (瞬間): $2.11 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

本解析では全Y(4S)データ (711 fb⁻¹, 7.72億BBペア)を使用

• 崩壊点分解能,粒子識別能力が高い

B物理に適した実験,検出器である

博士論文審査会

14

3. B⁰ → DK^{*0} 崩壊の解析

育京爭家际去

- 特に中性Bの解析はシグナルの崩壊分岐比が小さく、 背景事象の理解、評価がとても重要である
 - コンティニュアム背景事象
 - e⁺e⁻→qq̄, (q = u,d,s,c); Y(4S)以外の事象(次ページ)
 - BB 背景事象
 - e⁺e⁻からBB ペアが生成され、シグナル以外の崩壊をしているが、
 シグナルとして再構成されてしまう事象
 - D⁰が真なBB背景事象
 - D⁰が偽なBB背景事象
 - ピーキング背景事象
 - 特定の崩壊モードが特にシグナルに見え易く,
 シグナルの抽出に用いられるパラメータ(ΔE, M_{bc})でピークを作るもの
 - D⁰ρ⁰背景事象
 - D⁰a₁+背景事象

これら三種類の背景事象をシグナル抽出の際に同時に評価する

博士論文審査会

19

コンティニュアム背景事象の抑制

コンティニュアム背景事象抑制に12の変数を用いる
 イベントトポロジーによる
 B崩壊による

シグナルとコンティニュアム事象が分離可能なパラメータを見つけた

博士論文審査会

20

コンティニュアム背景事象の抑制

 コンティニュアム背景事象抑制出来る12の変数をコンバイン (NeuroBayesというニューラルネット利用)

NB'に変換する事でフィットし易くなる $^{NB_{high} = 0.9992}$

このNB'もシグナルの抽出に用いる →シグナルは(ΔE, NB', M_{bc})の3次元から抽出

ピーキング背景事象

博士論文審査会

博士論文審査会

22

シグナル抽出に用いるPDF

・ シグナルは3次元(ΔE, NB', M_{bc})の分布をフィットして得る

MCから 分布の形状を得る

3次元(ΔE, NB', M_{bc})フィットによりシグナル数を求める、
 ここで, Dalitz平面上Bin分けせず, シグナルの総数N_{total}を求めた

Dπ[±] コントロールサンプルの解析

- Dπ崩壊(実データ)を用いて,
 Bin分けしたシグナル抽出で(x,y)が得られるか妥当性のチェック
 - Dπ崩壊
 - DKと同様に φ₃ 測定が可能
 - ϕ_3 感度は非常に低い $r \sim 0.01$ $r = \frac{|振幅(\phi_3 効果を含む崩壊)|}{|振幅(\phi_3 効果を含まない崩壊)|}$
 - ・信号数は非常に大きい $Br(B^+ \rightarrow D^0 \pi^+) = (4.81 \pm 0.15) \times 10^{-3} \sim 100 \oplus 10^{-3} \times 10^{-3}$
 - B⁻→DK⁻を用いたモデル依存の無いDalitz解析でも コントロールサンプルとして用いられ,結果が報告されている

$$x_{-} = -0.0045 \pm 0.0087 \pm 0.0056$$

 $y_{-} = -0.0231 \pm 0.0107 \pm 0.0077$
 $x_{+} = -0.0172 \pm 0.0089 \pm 0.0065$
 $y_{+} = +0.0129 \pm 0.0103 \pm 0.0088$
 $r \sim 0.01 \text{ bis}$
 $|x(\text{or y})| \sim 0.01程度を期待される$
Phys.Rev. D85 (2012) 112014
本解析と同じ
Belle実験のフルデータ

この先行研究と,同じデータサンプルから コンシステントな結果を得られるかチェックする

博士論文審査会

2015/1/29

Dπ[±] コントロールサンプルの結果

 (x_{-}, y_{-}) Y (x_+, y_+) r_S ϕ_3 ϕ_3 r_S δ \mathcal{X} 4. 結果

博士論文審査会

27

DK*⁰ 実データにおける(x_±, y_±)の結果

測定値からフィットバイアスを含む真値,統計誤差を求める _{→次ページ}

Feldman-Cousin frequentist法

真値,統計誤差をFeldman-Cousin法を用いて求める

F.C.法を用いConfidence Level(x,y)_{true}を測定
 PDFはN_i(x,y)_{true}をPoissonでふらつかせたMCシミュレーションより求める

糸統誤差

2	n
J	U

1)		Source of uncertainty	Δx_{-}	Δy_{-}	Δx_+	Δy_+
1)	Daniz凶工Bin毋U快山刘华UI湘正	1) Dalitz plots efficiency	± 0.00	$^{+0.01}_{-0.00}$	± 0.01	$^{+0.00}_{-0.01}$
2)	Dalitz図トBin問のCross feedの補正	2) Crossfeed between bins	± 0.00	$^{+0.01}_{-0.00}$	$^{+0.01}_{-0.00}$	± 0.00
2)		3) PDF shape	+0.01 -0.07	+0.07 -0.01	$+0.01 \\ -0.10$	$^{+0.04}_{-0.06}$
3)	=次元フィット時のPDFの誤差	Signal	± 0.00	± 0.00	± 0.00	± 0.00
5)		$Bar{B}$	+0.01 -0.07	$^{+0.07}_{-0.01}$	$^{+0.01}_{-0.10}$	$^{+0.04}_{-0.06}$
4)	D ⁰ 崩壊の統計誤差(Kの誤差)	Continuum	± 0.00	± 0.00	± 0.00	$+0.00 \\ -0.01$
•)		$D^0 ho^0$	± 0.00	± 0.00	± 0.00	+0.00 -0.01
5)	c _i , s _i の誤差(CLEOより)	$D^{0}a_{1}^{+}$	± 0.00	$+0.00 \\ -0.01$	± 0.00	± 0.00
$\hat{\mathbf{O}}$		4) Flavor-tagged statistics	± 0.00	± 0.00	± 0.00	$+0.00 \\ -0.01$
6)	kの誤差(BaBarより)	5) c_i, s_i precision	± 0.03	$^{+0.09}_{-0.08}$	± 0.05	$+0.08 \\ -0.10$
		6) k precision	± 0.00	± 0.01	± 0.00	± 0.00
		Total without c_i , s_i precision	$+0.01 \\ -0.07$	$^{+0.07}_{-0.02}$	$^{+0.02}_{-0.10}$	$^{+0.04}_{-0.06}$
		Total	+0.03	+0.12	+0.05	+0.09

シグナル抽出のPDF(特にBB) D崩壊の強い相互作用の位相差c_i, s_i

•
$$\Delta x_{-} = \stackrel{+0.0}{-0.1} \pm 0.0$$

• $\Delta y_{-} = \stackrel{+0.1}{-0.0} \pm 0.1$
• $\Delta y_{+} = \stackrel{+0.0}{-0.1} \pm 0.1$
• $\Delta y_{+} = \stackrel{+0.0}{-0.1} \pm 0.1$

系統誤差は上記の誤差分に相当する(x,y)平面のガウシアンを仮定し PDFに畳込み,統計誤差と系統誤差をコンバインする

(x,y)測定の結果

系統誤差も含んだPDFから(x,y)平面上のC.L.を求める

本研究の
測定値((x,y)値)
の最終結果

$$x_{-} = + 0.4 \stackrel{+1.0}{_{-0.6}} \stackrel{+0.0}{_{-0.1}} \pm 0.0$$

 $y_{-} = -0.6 \stackrel{+0.8}{_{-1.0}} \stackrel{+0.1}{_{-0.4}} \pm 0.1$
 $x_{+} = + 0.1 \stackrel{+0.7}{_{-0.4}} \stackrel{+0.0}{_{-0.1}} \pm 0.1$
 $y_{+} = + 0.3 \stackrel{+0.5}{_{-0.8}} \stackrel{+0.0}{_{-0.1}} \pm 0.1$
B⁰ (x₊,y₊) が0と無矛盾

 (Λ_+, y_+)

(x,y)測定の結果

系統誤差も含んだPDFから(x,y)平面上のC.L.を求める

本研究の 測定値((x,y)値) の最終結果 統計 系統 c_i,s_i $x_{-} = +0.4 + 1.0 + 0.0 \pm 0.0$ $y_{-} = -0.6 \begin{array}{c} +0.8 \\ -1.0 \\ -0.0 \end{array} \pm 0.1$ $x_{+} = +0.1 + 0.7 + 0.0 \pm 0.1$ $y_{+} = +0.3 + 0.5 + 0.0 \pm 0.1$ B⁰ (x₊,y₊) が0と無矛盾 →角度の測定は

内皮の原定は 出来ないので, r_sの上限値を求める

- 物理量の一つである r_s を測定し、上限を求めた r: ϕ_3 測定を制限する因子 ϕ_3 測定誤差は $x_{\pm} = r_S \cos(\delta_S \pm \phi_3)$ 1/rでスケールされる $y_{\pm} = r_S \sin(\delta_S \pm \phi_3)$

Belle II + Super-Charm-Factory

 $=|\pm 0.1$

 $\Delta(x,y)_{stat}$

34

結論,及び考察

- r_sは0と無矛盾
 - B⁰→DK*⁰シグナル数が小さかった 44.2 ^{+13.3}/_{-12.1} (統計誤差が支配的)
 崩壊分岐比で Br(B⁰→DK*⁰) = (2.9 ± 0.9)×10⁻⁵

	イベント数	$Br(B^0 \rightarrow DK^{*0})$	ずれ	
本結果	44.2	$(2.9 \pm 0.9) \times 10^{-5}$		
BaBar	78	$(5.2 \pm 1.2) \times 10^{-5}$	-1.5σ	ただし"ずれ"は
PDG	64	$(4.2 \pm 0.6) \times 10^{-5}$	-1.2σ	大きくない

- 統計的なふらつきによる
- ・ Belle II 実験(予定)では

まとめ

- 本解析モードB⁰→DK^{*0}崩壊はφ₃測定に有用
 - φ₃は多くのモードから制限をかけて測定する
- 中性B中間子を用いたモデル依存の無いDalitz解析は世界初

- 結果

$$\begin{array}{c} & \text{ $\widehat{\kappa}$ih $\widehat{}_{n}$ $\widehat{\kappa}$ih $\widehat{}_{n}$ $\widehat{\kappa}$ih $\widehat{}_{n}$single $x_{-}=+0.4$ $\stackrel{+1.0}{-0.6}$ $\stackrel{+0.0}{-0.1}$ $\stackrel{\pm 0.0}{\pm 0.1}$ \\ & y_{-}=-0.6$ $\stackrel{+0.8}{-1.0}$ $\stackrel{+0.1}{-0.0}$ $\stackrel{\pm 0.1}{\pm 0.1}$ \\ & x_{+}=+0.1$ $\stackrel{+0.7}{-0.4}$ $\stackrel{+0.0}{-0.1}$ $\stackrel{\pm 0.1}{\pm 0.1}$ \\ & y_{+}=+0.3$ $\stackrel{+0.5}{-0.8}$ $\stackrel{+0.0}{-0.1}$ $\stackrel{\pm 0.1}{\pm 0.1}$ \\ & r_{S}<0.87 \quad @ 68% C.L. \\ \end{array}$$

r_sが小さく, φ₃測定出来なかった **本モードでのφ₃測定可能性を示せた**

THANK YOU FOR LISTENING

ありがとうございました
37

BACKUP

- 1. Belle subdetectors
- 2. <u>qq suppression parameters</u>
- 3. Other ϕ_3 measurements B \rightarrow DK
- 4. <u>B⁰ \rightarrow DK^{*0}, D \rightarrow K π ADS Belle (MY M THESIS)</u>
- 5. <u>B⁰ \rightarrow DK^{*0}, D \rightarrow K π , KK, $\pi\pi$ ADS+GLW LHCb (Most precise r_s)</u>
- 6. <u>B⁰ \rightarrow DK^{*0}, D \rightarrow K_S $\pi\pi$ Mod.-Dep. Dalitz BaBar</u>
- 7. <u>B⁺ \rightarrow DK⁺, D \rightarrow K_S $\pi\pi$ Mod.-Ind. Dalitz Belle (First Mod.-Ind. Dalitz, D π)</u>
- 8. <u>B</u>⁺ \rightarrow D^(*)K⁺, D \rightarrow K_S $\pi\pi$ Mod.-Dep. Dalitz Belle
- 9. (Value of r_s) W.A vs Belle Modeled Dalitz r_s
- 10. <u>CLEO c_i, s_i measurement (δ_D)</u>
- 11. About small signal statistic and large backgrounds
- 12. misc.

0.1

∆E (GeV)

02

0.1

∆E (GeV)

0.2

DK*⁰ 実データにおける(x₊, y₊)の結果

博士論文審査会

38

02

∆E (GeV)

0.1

∆E (GeV)

DK*⁰ 実データにおける(x₊, y₊)の結果

博士論文審査会

DK*⁰ 実データにおける(x_±, y_±)の結果

博士論文審査会

DK*⁰ 実データにおける(x_±, y_±)の結果

博士論文審査会

¹The luminosity is described as $\mathcal{L} = N_+ N_- f / 4\pi \sigma_x^* \sigma_y^*$, where N_{\pm} is the number of particles e^{\pm} per bunch, f is the frequency of collision, and $\sigma_{x,y}^*$ is the beam size at IP in x or y direction.

SVD (Silicon Vertex Detector)

<u>戻る</u> 43

CDC (Central Drift Chamber)

戻る 44

- Anode: 50 layers including 18 stereo wires (30µm-diameter gold-plated tungsten)
- r from beam axis = 8.3-86.3 cm
- $-77 < z < 160 \text{ cm} (17^{\circ} < \theta < 150^{\circ})$

ACC (Aerogel Cherenkov Counter)

TOF (Time-of-Flight Counter)

47

ECL (Electromagnetic Calorimeter)

- PINフォトダイオードを用い、電磁シャワーを検出。
- エネルギー分解能は、~1.3%/√E。位置分解能は~0.5 cm/√E。(E in GeV)
 (回路ノイズ、シャワーの漏れ、較正誤差などが効いてくる。)

BELLE CSI ELECTROMAGNETIC CALORIMETER

博士論文審査会

KLM (K_L/Muon Detector)

戻る 48

- 鉄とRPC (Registive Plate Chamber)のサンドイッチ構造(14層)。
- $K_L($ **シ**ャワーを発生)とMuon(長い飛跡)の検出を行う。

コンテニウム抑制パラメータ

<u>戻る</u>

コンテニウム抑制パラメータ

<u>戻る</u>

Variable	Only this (σ)	Without this (σ)	Corr. to others
LR(KSFW)	290	62	0.85
v1_v1	280	35	0.87
Δz	145	68	0.29
$distance_{DK^{*0}}$	105	49	0.23
qr	126	51	0.31
$ \cos \theta_B $	102	42	0.21
$ \cos \theta_{ m thr} $	246	14	0.81
thru_oth	58	12	0.23
v_Z	42	9	0.18
v3_v3	84	7	0.64
v2_v2	80	6	0.66
$\cos \theta_B^D$	10	4	0.12

• Fox-Wolfram (FW) moment ($P_l = l$ -th Legendre polynomial):

$$H_l \equiv \sum_{i,j} |\vec{p_i}| |\vec{p_j}| P_l(\cos \theta_{ij}),$$

• Fisher discriminant of Super FW (SFW):

$$\text{SFW} \equiv \sum_{l=2,4} \alpha_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right) + \sum_{l=1}^4 \beta_l \left(\frac{H_l^{\text{so}}}{H_0^{\text{so}}} \right)$$

Separate signal B and the other B.

• Kakuno-SFW:

$$\text{KSFW} \equiv \sum_{l=0}^{4} R_{l}^{\text{so}} + \sum_{l=0}^{4} R_{l}^{\text{oo}} + \gamma \sum_{n=1}^{N_{t}} |p_{t,n}|,$$

Missing momentum, Charges of tracks, ... Fisher coefficients are determined for seven missing mass regions.

- B-flavor taggingは、下記の情報を用いて行う。
- (1) high-momentum leptons from $B^0 \to X \ell^+ v$ decays,
- (2) kaons, since the majority of them originate from $B^0 \to K^+ X$ decays through the cascade transition $\overline{b} \to \overline{c} \to \overline{s}$,
- (3) intermediate momentum leptons from $\bar{b} \rightarrow \bar{s}$ 事象ごとに、(1)から(2)に $\bar{c} \rightarrow \bar{s}\ell^- \bar{v}$ decays, 関連した約50の変数を得て、
- (4) high momentum pions coming from $B^0 \rightarrow 3$ 次元Likelihood法を用いる。 $D^{(*)}\pi^+X$ decays,
- (5) slow pions from $B^0 \to D^{*-}X, D^{*-} \to \overline{D}^0 \pi^-$ Taggingの精度r_{tag}は、 decays, and qq背景事象分離に用いる。
- (6) \overline{A} baryons from the cascade decay $\overline{b} \to \overline{c} \to \overline{s}$.

 未だB⁰→D[K⁺π⁻]_{K*0}の主にb→uを介した suppressed decayは観測されず

- 荷電Bよりb→u遷移含む崩壊の干渉が強い

- 中性B中間子のDK*⁰崩壊について研究が望まれる
- また2012年, B⁺→[K_sπ⁺π⁻]_DK⁺ にて世界初のモデル依 存の無いDalitz解析を用いたφ₃測定結果が発表された
 - $-\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^{\circ} \text{ PRD 85, 112014 (2012)} @ \text{ Belle Collaboration}$ $(r_B = 0.145 \pm 0.030 \pm 0.010 \pm 0.011)$
 - このモデル依存の無いDalitz解析を用いた ϕ_3 測定は 将来Super-B Factoryにおいて非常に有用であり、 これを用いたB⁰→ $[K_S \pi \pi]_D [K^+ \pi^-]_{K*0}$ の ϕ_3 測定を目指す _{博士論文審査会}

*φ*₃測定法の中でDalitz法が最も感度が高い Model-Independentでは(c_i, s_i)の誤差もチャーム物理より将来的に小さく出来る

戻る

経路A,BのAmplitudeの足し算をする

- Charge Conjugateで弱い相互作用の位相は符号が反転する
- 経路A,B間で強い相互作用の位相差δが入ってくる (Charge Conjugateで符号は反転せず)

観測量は赤線の(経路A,Bの干渉を経た)二乗 (B-とB+の崩壊分岐比)

- B⁻→DK⁻
 - GLW**法** (Gronau-London-Wyler) D→ππ, CP Eigenstate
 - Signal大きい
 - ・ CP非対称性小さい
 - ADS法 (Atwood-Dunietz-Soni) D \rightarrow K π , Flavor Specific
 - Signal小さい
 - ・ CP非対称性大きい
 - GGSZ法(Dalitz) (Giri-Grossman-Soffer-Zupan) D→K_Sππ, 三体崩壊
 - GLWとADSを引っ括め解析

 D^0K^-

経路B

GLW, ADS法

D⁰K⁻

経路B

強い相互作用の位相差

59

Model Independent Dalitz

- $D \rightarrow K_S \pi \pi$, etc
 - D崩壊が三体崩壊
 - 三体崩壊のレゾナンス分布に φ3の影響が現れる
 - ・ 経由するレゾナンス(Dalitz図の場所)によって
 D崩壊の強い相互作用の位相(δ_D)が異なる
 - ▶ Dalitz図上δ_D値の等高線を引き、Bin切りして単純にSignalを数える Bin毎にδ_Dが解っているのでφ₃が出せる

60

• B⁻→DK⁻

2015/1/29

- GLW法
 - D→ $\pi\pi$, CP Eigenstate
 - Signal大きい
 - ・ CP非対称性小さい
- ADS法
 - $D \rightarrow K\pi$, Flavor Specific
 - Signal小さい
 - ・ CP非対称性大きい
- GGSZ法(Dalitz)
 - D→K_Sππ, 三体崩壊
 - GLWとADSを引っ括め解析

全部ひっくるめて、連立方程式を作る事になるので、 他のモードを解析すればする程 ϕ_3 の制限がかかる!

現在の ϕ_3 は これらの結果を Combineしたもの

博士論文審査会

 \rightarrow 次ペ

ージ

中性Bで同様に解析した時の欠点と利点

- ③K^{*0}→K⁺ π ⁻によるB Flavor Tag

 $\mathbf{K}^{*0} \longrightarrow \begin{bmatrix} \mathbf{K}^{+} \pi^{-} & \sim 2/3 \\ \mathbf{K}^{0} \pi^{0} & \sim 1/3 \end{bmatrix}$

B⁰-B⁰混合の効果が入らない

 $B^0 \rightarrow DK^{*0}$

PRD 86, 011101 (2012)

$$- R_{ADS} = (4.5^{+5.6+2.8}_{-5.0-1.8}) \times 10^{-2}$$

 $< 0.16 (@ 95 \% C.L.)$

 $r_D^2 = (3.80 \pm 0.10) \times 10^{-3} (PDG)$ k ~ 1 (BaBar simulation studies) からR_{DK*} ~ r_S^2 (非常に保守的に)として $r_S < 0.4 \leftarrow$ 予想値より小さい可能性!!

- ・ これからやる事
 - $D \rightarrow K_S \pi \pi$ Model Independent Dalitz

博士論文審查合

		$B_0 \rightarrow [K\pi]$	DK* ADS metho)d <u>戻る</u>
	30	45 <u> </u>	Mode ϵ (%) $N \mathcal{R}_{DK^{*0}}$
(0.01)		40 (35 40 35 40 40 40 40 40 40 40 40 40 40	$B^{0} \to [K^{+}\pi^{-}]_{D}K^{*0} \ 21.0 \pm B^{0} \to [K^{-}\pi^{+}]_{D}K^{*0} \ 20.9 \pm$	$ \begin{array}{c} 0.3 & 190^{+22.3}_{-21.2} \\ 0.3 & 7.7^{+10.6}_{-9.5} \end{array} (4.1^{+5.6}_{-5.0}) \times 10^{-2} \end{array} $
Events		Source	Uncertainty $[10^{-2}]$	
		Signal PDFs	+0.1 - 0.2	
	-0.1 0 0.1 0.2 0.3 ∆E (GeV)	-10 -5 0 5 10 C' _{NB}	$ar{D}^0 ho^0~{ m PDFs}$	+0.0 - 0.1
			Combinatorial $B\bar{B}$ PDFs	+1.8 - 1.2
Events / (0.01)	50 40 30 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Peaking background PDFs	+0.1 - 0.1	
		$qar{q}~{ m PDFs}$	+2.2 - 1.4	
		$\bar{D}^0 K^+$ PDFs	+0.0 - 0.0	
		$\bar{D}^0\pi^+$ PDFs	+0.0 - 0.1	
		Fit bias	+0.4 - 0.0	
		Efficiency	+0.1 - 0.1	
	0 -0,1 0 0,1 0,2 0,3		Charmless decay	+0.0 - 0.3
	∆E (GeV)	C' _{NB}	Combined	+2.8 - 1.8

 $\mathcal{R}_{DK^{*0}} \equiv \Gamma(B^0 \to [K^-\pi^+]_D K^+\pi^-) / \Gamma(B^0 \to [K^+\pi^-]_D K^+\pi^-) \text{ to be } (4.1^{+5.6+2.8}_{-5.0-1.8}) \times 10^{-2}$

 $\mathcal{R}_{DK^{*0}} < 0.16$ at the 95% confidence level

$$\mathcal{R}_{DK^{*0}} \equiv \frac{\Gamma(B^0 \to [K^- \pi^+]_D K^+ \pi^-)}{\Gamma(B^0 \to [K^+ \pi^-]_D K^+ \pi^-)} \qquad r_S = \sqrt{\frac{\Gamma(\bar{B}^0 \to \bar{D}^0 \bar{K}^{*0})}{\Gamma(\bar{B}^0 \to D^0 \bar{K}^{*0})}} \\ = r_S^2 + r_D^2 + 2kr_S r_D \cos(\delta_S + \delta_D) \cos\phi_3$$

$\mathbf{B}^{0} \rightarrow$	[K _S ππ] _D K* ⁰
------------------------------	--

B⁰→[K_Sππ]_DK*⁰/こModel IndependentなDalitzを適用する - 予想されるシグナル数 $N_{sig} = N_{fav} \times \frac{Br(D \to K_S \pi \pi)}{Br(D \to K \pi)} \times \frac{eff_{K_S \pi \pi}}{eff_{fav}} \times \frac{eff_{K_S \pi \pi}}{eff_{fav}} = N_{fav} : B^0 \to [K\pi]_D K^{*0}$ Favored Mode $\sim 190 \times \frac{3 \times 10^{-2}}{4 \times 10^{-2}} \times \frac{9.7 \times 10^{-2}}{21.0 \times 10^{-2}}$

 $\sim 68~{\rm events}$

- 参考)荷電Bで同等程度のSginal統計による ϕ_3 測定の結果(Belle)

• A. Poluktov, PRD 70, 072003 (2004) B⁻ \rightarrow D^(*)K⁻ CModel Dependent

 $φ_3 = (77 + 17 + 13 + 11 (model))^\circ$ DK⁻ 146 events → $r_B = 0.26 + 0.10 - 0.14$ (D*K⁻ 39 events) $^{-0.14}$ ~2σ で求まっている

・統計ではFactor~1/2程度だが、
 中性Bの方が非対称度が大きい

LHCb B⁰ ADS+GLW

博士論文審査会

<u>戻る</u> 66

Channel	Signal yield	Channel	Signal yield		
$\overline{B}{}^0 \to D(\pi^- K^+) \overline{K}{}^{*0}$	24 ± 12	$B^0 \rightarrow D(\pi^+ K^-) K^{*0}$	26 ± 12	$\mathcal{A}_d^{KK} = -0.20 \pm 0.15 \pm 0.02,$	$\mathcal{A}_d^{\pi\pi} = -0.09 \pm 0.22 \pm 0.02$
$\overline{B}{}^0 \to D(K^-\pi^+)\overline{K}{}^{*0}$	370 ± 22	$B^0 \rightarrow D(K^+\pi^-)K^{*0}$	405 ± 23	$\mathcal{R}_{d}^{KK} = 1.05 \substack{+0.17 \\ -0.15} \pm 0.04,$	$\mathcal{R}_d^{\pi\pi} = 1.21 \substack{+0.28 \\ -0.25} \pm 0.05,$
$\overline{B}{}^0 \to D(K^+K^-)\overline{K}{}^{*0}$	36 ± 9	$B^0 \to D(K^+K^-)K^{*0}$	53 ± 10	$\mathcal{R}_d^+ = 0.06 \pm 0.03 \pm 0.01,$	$\mathcal{R}_d^- = 0.06 \pm 0.03 \pm 0.01$
$\overline{B}{}^0 \to D(\pi^+\pi^-) \overline{K}{}^{*0}$	18 ± 6	$B^0\to D(\pi^+\pi^-)K^{*0}$	21 ± 7	$\mathcal{R}_{ds}^{KK} = 0.10 \pm 0.02 \pm 0.01,$	$\mathcal{R}_{ds}^{\pi\pi} = 0.15 \pm 0.04 \pm 0.01$
$B^0_s ightarrow D(\pi^- K^+) \overline{K}^{*0}$	933 ± 33	$\overline B{}^0_s \to D(\pi^+ K^-) K^{*0}$	993 ± 34	$\mathcal{A}_{*}^{KK} = -0.04 \pm 0.07 \pm 0.02,$	$\mathcal{A}_{\circ}^{\pi\pi} = 0.06 \pm 0.13 \pm 0.02$
$B_s^0 \to D(K^+K^-)\overline{K}^{*0}$	115 ± 12	$\overline B{}^0_s \to D(K^+K^-)K^{*0}$	125 ± 13	$A_{K\pi}^{K\pi} = -0.03 \pm 0.04 \pm 0.02$	$A^{\pi K} = -0.01 \pm 0.03 \pm 0.02$
$B^0_s \to D(\pi^+\pi^-) \overline{K}{}^{*0}$	39 ± 7	$\overline B{}^0_s \to D(\pi^+\pi^-) K^{*0}$	35 ± 7	$v_d = 0.00 \pm 0.04 \pm 0.02,$	Vi _g = 0.01 ± 0.00 ± 0.02

• 3.0 fb⁻¹ @ LHC pp collision

BaBar B⁰ Dalitz

戻る 67

- 371 × 10⁶ BB @ BaBar
- Signal 39 ± 9
- eff. (10.8 ± 0.5) %

 $\begin{array}{rcl} & 68 \% \\ \gamma &= (162 \pm 56)^{\circ} \text{ or } (342 \pm 56)^{\circ}; \\ \delta_S &= (62 \pm 57)^{\circ} \text{ or } (242 \pm 57)^{\circ}; \\ r_S &< 0.30; \end{array}$

95 %

$$\gamma \in [77, 247]^{\circ} \text{ or } [257, 426]^{\circ};$$

 $\delta_S \in [-23, 147]^{\circ} \text{ or } [157, 327]^{\circ};$
 $r_S < 0.55.$

博士論文審査会

Belle B[±] Dalitz Mod.-Ind.

	*	
Bin <i>i</i>	N_i^-	N_i^+
-8	49.8 ± 8.2	37.8 ± 7.5
-7	42.2 ± 8.6	24.9 ± 7.2
-6	0.0 ± 1.9	3.4 ± 2.9
-5	9.6 ± 4.5	23.6 ± 6.2
-4	32.9 ± 7.5	42.1 ± 8.3
-3	3.5 ± 2.8	0.7 ± 2.5
-2	11.3 ± 4.1	0.0 ± 1.3
-1	16.6 ± 5.4	7.7 ± 4.4
1	37.6 ± 8.0	65.1 ± 9.9
2	68.6 ± 9.6	75.5 ± 9.8
3	83.4 ± 10.1	82.4 ± 10.2
4	49.3 ± 9.1	86.5 ± 11.4
5	34.0 ± 7.3	38.3 ± 7.6
6	34.8 ± 6.8	41.9 ± 7.5
7	70.8 ± 10.6	46.4 ± 9.0
8	9.4 ± 4.3	14.2 ± 5.1
Total	574.9 ± 29.9	601.6 ± 30.8

Parameter	$B^{\pm} \rightarrow D\pi^{\pm}$	$B^{\pm} \rightarrow DK^{\pm}$
x_	$-0.0045 \pm 0.0087 \pm 0.0049 \pm 0.0026$	$+0.095 \pm 0.045 \pm 0.014 \pm 0.010$
y_	$-0.0231 \pm 0.0107 \pm 0.0041 \pm 0.0065$	$+0.137^{+0.053}_{-0.057} \pm 0.015 \pm 0.023$
$\operatorname{corr}(x_{-}, y_{-})$	-0.189	-0.315
x_+	$-0.0172 \pm 0.0089 \pm 0.0060 \pm 0.0026$	$-0.110 \pm 0.043 \pm 0.014 \pm 0.007$
y ₊	$+0.0129 \pm 0.0103 \pm 0.0059 \pm 0.0065$	$-0.050^{+0.052}_{-0.055} \pm 0.011 \pm 0.017$
$\operatorname{corr}(x_+, y_+)$	-0.205	+0.059

$$\phi_3 = (77.3^{+15.1}_{-14.9} \pm 4.1 \pm 4.3)^\circ$$

$$r_B = 0.145 \pm 0.030 \pm 0.010 \pm 0.011$$

$$\delta_B = (129.9 \pm 15.0 \pm 3.8 \pm 4.7)^\circ,$$

<u>戻る</u> 68

Belle B[±] Dalitz Mod.-Dep.

博士論文審査会

<u>戻る</u> 69

Parameter	$B^+ \rightarrow DK^+$
x_	$+0.105 \pm 0.047 \pm 0.011$
<i>y</i> _	$+0.177 \pm 0.060 \pm 0.018$
$x_{-} - y_{-}$ correlation	-0.289
<i>x</i> ₊	$-0.107 \pm 0.043 \pm 0.011$
<i>y</i> ₊	$-0.067 \pm 0.059 \pm 0.018$
$x_+ - y_+$ correlation	+0.110

Intermediate state	Amplitude	Phase (°)	Fit fraction (%)
$K_S \sigma_1$	1.56 ± 0.06	214 ± 3	11.0 ± 0.7
$K_S \rho^0$	1.0 (fixed)	0 (fixed)	21.2 ± 0.5
$K_S \omega$	0.0343 ± 0.0008	112.0 ± 1.3	0.526 ± 0.014
$K_{S}f_{0}(980)$	0.385 ± 0.006	207.3 ± 2.3	4.72 ± 0.05
$K_S \sigma_2$	0.20 ± 0.02	212 ± 12	0.54 ± 0.10
$K_{S}f_{2}(1270)$	1.44 ± 0.04	342.9 ± 1.7	1.82 ± 0.05
$K_{S}f_{0}(1370)$	1.56 ± 0.12	110 ± 4	1.9 ± 0.3
$K_{S}\rho^{0}(1450)$	0.49 ± 0.08	64 ± 11	0.11 ± 0.04
$K^{*}(892)^{+}\pi^{-}$	1.638 ± 0.010	133.2 ± 0.4	62.9 ± 0.8
$K^{*}(892)^{-}\pi^{+}$	0.149 ± 0.004	325.4 ± 1.3	0.526 ± 0.016
$K^*(1410)^+ \pi^-$	0.65 ± 0.05	120 ± 4	0.49 ± 0.07
$K^*(1410)^-\pi^+$	0.42 ± 0.04	253 ± 5	0.21 ± 0.03
$K_0^*(1430)^+ \pi^-$	2.21 ± 0.04	358.9 ± 1.1	7.93 ± 0.09
$K_0^*(1430)^-\pi^+$	0.36 ± 0.03	87 ± 4	0.22 ± 0.04
$K_2^*(1430)^+\pi^-$	0.89 ± 0.03	314.8 ± 1.1	1.40 ± 0.06
$K_2^*(1430)^-\pi^+$	0.23 ± 0.02	275 ± 6	0.093 ± 0.014
$K^{*}(1680)^{+}\pi^{-}$	0.88 ± 0.27	82 ± 17	0.06 ± 0.04
$K^*(1680)^-\pi^+$	2.1 ± 0.2	130 ± 6	0.30 ± 0.07
Nonresonant	2.7 ± 0.3	160 ± 5	5.0 ± 1.0

Parameter	$B^+ \rightarrow DK^+ \text{ mode}$
φ ₃	$(80.8^{+13.1}_{-14.8} \pm 5.0 \pm 8.9)^{\circ}$
r	$0.161^{+0.040}_{-0.038} \pm 0.011^{+0.050}_{-0.010}$
δ ($(137.4^{+13.0}_{-15.7} \pm 4.0 \pm 22.9)^{\circ}$

70

r_Bのずれ

Modelに依るバイアスではないのだろうか...

71

CLEO c_i, s_i

$$c_{i} = \frac{\int_{\mathcal{D}_{i}} \sqrt{p_{D}\bar{p}_{D}} \cos(\Delta\delta_{D}(m_{+}^{2}, m_{-}^{2})) d\mathcal{D}}{\sqrt{\int_{\mathcal{D}_{i}} p_{D} d\mathcal{D} \int_{\mathcal{D}_{i}} \bar{p}_{D} d\mathcal{D}}},$$

The coefficients K_i are obtained precisely from a very large sample of D^0 decays in the flavor eigenstate, which is accessible at *B*-factories. The expected number of events in the Dalitz plot of D_{CP} decay equals to

$$\langle M_i \rangle = h_{CP}[K_i + K_{-i} + 2\sqrt{K_i K_{-i}}c_i],$$
 (10)

and thus can be used to obtain the coefficient c_i . As soon as the c_i and s_i coefficients are known, one can obtain x and y values (hence, ϕ_3 and other related quantities) by a maximum likelihood fit using equation ($\underline{\mathbb{S}}$).

In the case of a binned analysis, the number of events in the region of the $(K_S^0\pi^+\pi^-)^2$ phase space is

$$\langle M \rangle_{ij} = h_{\text{corr}} [K_i K_{-j} + K_{-i} K_j - 2\sqrt{K_i K_{-i} K_j K_{-j}} (c_i c_j + s_i s_j)].$$
(14)

Here two indices correspond to two D mesons from $\psi(3770)$ decay. It is logical to use the same binning as in the case of D_{CP} statistics to improve the precision of the determination of c_i coefficients, and to obtain s_i from data without model assumptions, contrary to D_{CP} case. Note that in the case of using $(K_S^0 \pi^+ \pi^-)^2$ decays, the parameters c_i and s_i are treated as independent variables. The obvious advantage of this approach is its being unbiased for any finite $(K_S^0 \pi^+ \pi^-)^2$ statistics (not only asymptotically as in the case of D_{CP} data).

		CLEO measurement
	c_1	$-0.009 \pm 0.088 \pm 0.094$
	c_2	$+0.900 \pm 0.106 \pm 0.082$
	c_3	$+0.292 \pm 0.168 \pm 0.139$
	c_4	$-0.890 \pm 0.041 \pm 0.044$
	c_5	$-0.208 \pm 0.085 \pm 0.080$
	c_6	$+0.258 \pm 0.155 \pm 0.108$
	c_7	$+0.869 \pm 0.034 \pm 0.033$
2	c_8	$+0.798 \pm 0.070 \pm 0.047$
	s_1	$-0.438 \pm 0.184 \pm 0.045$
	s_2	$-0.490 \pm 0.295 \pm 0.261$
	s_3	$-1.243 \pm 0.341 \pm 0.123$
	s_4	$-0.119 \pm 0.141 \pm 0.038$
	s_5	$+0.853 \pm 0.123 \pm 0.035$
	s_6	$+0.984 \pm 0.357 \pm 0.165$
	s_7	$-0.041 \pm 0.132 \pm 0.034$
	s_8	$-0.107 \pm 0.240 \pm 0.080$

Bias vs N_{total}

