ILC におけるヒッグス・電子結合測定のシミュレーション研究

ILCの重心エネルギー125GeV Total Luminoity 30.15pb^(-1) ビーム偏極RRまたはLL

Higgsのピークは標準模型通り殆ど見えない σ H~Oの時

Γ(H->ee)の90CL=2.34(±0.016)*10^(-7)GeV

標準模型のにおけるHiggs

Higgsとの結合

Higgs とフェルミオンと の結合は、その粒子の質量に 比例する

ILCについて

ベースラインは500GeV(全長31km)まで アップグレード1TeVまで

10Hzオペレーター

			Baseline 500 GeV Machine			1st Stage	L Upgrade	E_{CM} Upgrade	
Centre-of-mass energy	$E_{\rm CM}$	GeV	250	350	500	250	500	A 1000	B 1000
Collision rate Electron linac rate	$f_{ m rep} \ f_{ m linac}$	Hz Hz	5 10	5 5	5 5	5 10	5 5	4 4	4 4
Number of bunches	$n_{ m b}$		1312	1312	1312	1312	2625	2450	2450
Bunch population	N	$ imes 10^{10}$	2.0	2.0	2.0	2.0	2.0	1.74	1.74
Bunch separation	$\Delta t_{ m b}$	ns	554	554	554	554	366	366	366
Pulse current	$I_{\rm beam}$	mA	5.8	5.8	5.8	5.8	8.8	7.6	7.6
Main linac average gradient	G_{a}	${\rm MV}{ m m}^{-1}$	14.7	21.4	31.5	31.5	31.5	38.2	39.2
Average total beam power	$P_{\rm beam}$	MW	5.9	7.3	10.5	5.9	21.0	27.2	27.2
Estimated AC power	$P_{\rm AC}$	MW	122	121	163	129	204	300	300
RMS bunch length	$\sigma_{ m z}$	mm	0.3	0.3	0.3	0.3	0.3	0.250	0.225
Electron RMS energy spread	$\Delta p/p$	%	0.190	0.158	0.124	0.190	0.124	0.083	0.085
Positron RMS energy spread	$\Delta p/p$	%	0.152	0.100	0.070	0.152	0.070	0.043	0.047
Electron polarisation	P_{-}	%	80	80	80	80	80	80	80
Positron polarisation	P_+	%	30	30	30	30	30	20	20
Horizontal emittance	$\gamma \epsilon_{\mathrm{x}}$	μm	10	10	10	10	10	10	10
Vertical emittance	$\gamma\epsilon_{ m y}$	nm	35	35	35	35	35	30	30
IP horizontal beta function	β_*^*	mm	13.0	16.0	11.0	13.0	11.0	22.6	11.0
IP vertical beta function	β_{y}^{*}	mm	0.41	0.34	0.48	0.41	0.48	0.25	0.23
IP RMS horizontal beam size	$\sigma_{\cdot\cdot}^*$	nm	729.0	683.5	474	729	474	481	335
IP RMS veritcal beam size	σ_{y}^{*}	nm	7.7	5.9	5.9	7.7	5.9	2.8	2.7
Luminosity	L	$\times 10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.75	1.0	1.8	0.75	3.6	3.6	4.9
Fraction of luminosity in top 1%	$\frac{-}{L_{0.01}/L}$		87.1%	77.4%	58.3%	87.1%	58.3%	59.2%	44.5%
Average energy loss	$\delta_{\rm BS}$		0.97%	1.9%	4.5%	0.97%	4.5%	5.6%	10.5%
Number of pairs per bunch crossing	Npairs	$\times 10^3$	62.4	93.6	139.0	62.4	139.0	200.5	382.6
Total pair energy per bunch crossing	$E_{\rm pairs}$	TeV	46.5	115.0	344.1	46.5	344.1	1338.0	3441.0

アンジュレータでァを出すのに使った電子数と同数以上の陽電子を 出すには、電子ビームのエネルギー150GeV以上が必要

研究目的

ILCを使って、ヒッグスの質量MH=125GeV付近でのエネル ギースキャンをする事によって、Higgsから電子用電子対へ の崩壊幅「eeを測る事、もしくはその上限値を測る事 目安:標準模型での「eeの値 理論家の計算(LHCのHiggs cross sectionのレポート、信頼性は高い) によると、Brµµがあるので、これを元に計算。(Bree は無かった) MH=125GeVのとき、 $Bruu = 2.19*10^{(-4)} (+6.0\%, -5.9\%)$ ΓH =4.07 (+4.0%, -3.9%) MeV Bree=Br μ μ^* (Me/M μ)^2=2.19*10^(-4)*(0.511/106.658)^2 かなりゼロに近い値 =5.12*10^(-9) (+6.0%, -5.9%) 標準模型を越えた新物理の =5.12 (+0.30, -0.30) *10^(-9) 中にはΓeeがかなり大きい Γee(GeV)=Bree* ΓH=5.12*10^(-9)*4.07*10^-3 ものがある可能性も =2.08*10^(-11)(+10.0%, -9.8%) =2.08 (+0.21, -0.20) *10^(-11) (GeV)

スピン平均(s1s2が偏極していない場合)のブライトウィグナーの式

$$\begin{split} \sigma_{BW}(E_{cm}) &= \frac{(2J+1)}{(2S_1+1)(2S_2+1)} \frac{\pi}{k^2} \frac{B_{in}B_{out}\Gamma_{tot}^2}{(E_{cm} - E_R)^2 + \frac{\Gamma_{tot}^2}{4}} & \text{spin:S}_1 & \text{spin:J} & \text{out} \\ \\ B_{in}:Br(J \rightarrow S_1 + S_2) \\ B_{out}: Br(J \rightarrow out) \\ E_{R}: \cup \forall \neq \lor Z \\ \sigma \Box \neq \forall \neq \lor Z \\ \sigma \Box \neq \forall \neq \lor Z \\ \sigma \Box \neq \Box \neq \Box \\ \sigma H = 4\pi\Gamma_e + e^{-}\Gamma_f f \frac{1}{(s - M_H^2)^2 + \frac{s^2\Gamma_H^2}{M_H^2}} & B_{in} \Gamma \text{ tot} = \Gamma_{ff} \\ B_{out} \Gamma \text{ tot} = \Gamma_f f \\ B_{ou} \Gamma \text{ tot} = \Gamma_f f \\ B_{out} \Gamma \text{ tot} = \Gamma_f$$

$$\sigma_H = 4\pi \Gamma_{e^+e^-} \Gamma_{ff} \frac{1}{(s - M_H^2)^2 + \frac{s^2 \Gamma_H^2}{M_H^2}}$$

$$\begin{split} \Gamma_{e^+e^-} &= \frac{M_H^2}{2\pi^2} \frac{\Gamma_H}{\Gamma_{ff}} \int_{-\infty}^{\infty} \sigma_H(E) dE_{cm} \\ \Gamma_{e^+e^-} &= \frac{M_H^2}{2\pi^2} \frac{\Gamma_H}{\Gamma_{ff}} \int_{-\infty}^{\infty} G(E_0) dE_0 \\ \Gamma_{e^+e^-} &= \frac{M_H^2}{2\pi^2} \frac{\Gamma_H}{\Gamma_{ff}} \int_{-\infty}^{\infty} G(E_0) dE_0 \\ H \dot{h} \dot{f} de \tau \delta \tau \delta \tau \int_{\Gamma_{ff}} C(E_0) dE_0 \\ \Pi \dot{h} de \tau \delta \tau \delta \tau \int_{\Gamma_{ff}} C(E_0) dE_0 \\ \Gamma(H \rightarrow ee) GeV &= 2.0328^* 10^{(-6)} \int_{\Gamma_{e0}}^{\infty} G(E_0) dE_0 \\ \end{split}$$

0. ヒッグスの質量を125GeV →125GeVにピークがあると仮定 1.125GeV辺りの生成断面積を300回ラ ンダム生成(ガウス分布)

2.125GeVのピークの高さp0の分布から、90%CLを決定

Ζ,γ

・干渉は無視出来る

3.90%CLが一番小さくなる最適なLuminosity。 を見つけ、その時の90%CLを評価

元となる生成断面積はPDB p. にあるグラフのものを使用

ランダム生成2

ランダム生成にはガウス分布を使用 →y、ey(yの誤差)が必要 生成断面積の誤差ey;ey=y/√Ny (Ny=dlum*y) Total Luminosity を30.15pb-1として、 各ポイント(x,y)に適当にLuminosity を振り分ける(dlum)

の幅はLuminosity spectrumの幅となる

Luminosity spectrumの偏差SD=0.2199

ILCのLuminosity spectrum の誤差

Figure 5: Principle of the s' reconstruction.

$$\frac{\sqrt{s'}}{\sqrt{s}} = \sqrt{1 - 2\frac{\sin(\theta_1 + \theta_2)}{\sin(\theta_1 + \theta_2) - \sin\theta_1 - \sin\theta_2}}$$

3点取った方が10点より精度が良い

・125GeVでの値-ピークの裾の値の平均

今回は、Higgsのピークはほぼ見えないという標準模型に従っ た予想を採用したときの90%CLを見積もった

つまりp0=0。90%CLは単純にガウシアンの右半分の面積の 90%をとることになる。

90%CL=1.65SD

ILCの重心エネルギー125GeV Total Luminoity 30.15pb^(-1) ビーム偏極RRまたはLL Higgsのピークは標準模型通り殆ど見えない=σH~0の時

Γ(H->ee)の90%CL=2.34(±0.016)*10^(-7) (GeV)

標準模型での理論計算値

Γ(H->ee)_{SM}=2.08 (+0.21, -0.20) *10^(-11) (GeV) (GeV)

-APPENDIX-

P2、式の導出1、相対論とそうでない時。 P2、式の導出2、実際の観測値から求めるには ーbeam energy spreadがターゲットのエネルギー 近辺で同じとする時

P5、トータルルミノシティ30.15pb-1はどこからきたのか P5、ランダム生成をポアソンではなくガウスにしたわけ P10、「標準模型通りの予想だとσH~0」はどこからきた のか

P12、SDの誤差

