ILCの重心系エネルギー500 GeVにおける トップ対生成のdi-leptonic終状態を用いた Matrix element法によるttZ結合の測定

日本物理学会第72回年次大会

佐藤瑶

Francois Le Diberder^A, 洪江美^A, 山本均, 石川明正, 藤井恵介^B, Junping Tian^C

ILCについて

ILC : International Linear Collider

- 電子-陽電子衝突型の線形加速器 全長:31 km > 50 km
- 入射粒子を偏極可能: $(P_{e^{-}}, P_{e^{+}}) = (\pm 0.8, \pm 0.3)$
 - 目的とする物理
 - ヒッグス粒子の精密測定
 - トップクォークの精密測定
 - 新物理の探索

- 重心系エネルギー: 250 GeV → 350,500GeV, 1TeV

semi-leptonic 終状態を用いた先行研究

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v + F_{1A}^v \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v \gamma_5) t \right]$$
$$g_L^Z = F_{1V}^Z - F_{1A}^Z, \quad g_R^Z = F_{1V}^Z + F_{1A}^Z$$

□ semi-leptonic 終状態 ($e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}q\bar{q}l\nu$) を用いた先行研究では、 全断面積・前後非対称度から $F_{1V}, F_{1A}, F_{2V}, g_L, g_R$ の測定精度を見積もった

$$\sigma_{I} = 2 \left(\frac{4\pi\alpha^{2}}{3s} \right) N_{c}\beta \left[(1+0.5\gamma^{-2})(\mathcal{F}_{1V}^{I})^{2} + (\beta \mathcal{F}_{1A}^{I})^{2} + 3\mathcal{F}_{1V}^{I} \mathcal{F}_{2V}^{I} \right] : \texttt{\widehat{E}} \texttt{\widehat{E}} \texttt{\widehat{I}} \texttt{\widehat{I}} = -F_{ij}^{\gamma} + \left(\frac{-\frac{1}{2} + s_{w}^{2}}{s_{w}c_{w}} \right) \left(\frac{s}{s-m_{Z}^{2}} \right) F_{ij}^{Z}} \\ (A_{FB}^{t})_{I} = \frac{-3\beta \mathcal{F}_{1A}^{I}(\mathcal{F}_{1V}^{I} + \mathcal{F}_{2V}^{I})}{2 \left[(1+0.5\gamma^{-2})(\mathcal{F}_{1V}^{I})^{2} + (\beta \mathcal{F}_{1A}^{I})^{2} + 3\mathcal{F}_{1V}^{I} \mathcal{F}_{2V}^{I} \right]} : \texttt{\widehat{I}} \texttt{\widehat{I}} \texttt{\widehat{I}} \texttt{\widehat{I}} \texttt{\widehat{I}} \texttt{\widehat{I}} = -F_{ij}^{\gamma} + \left(\frac{s_{w}^{2}}{s_{w}c_{w}} \right) \left(\frac{s}{s-m_{Z}^{2}} \right) F_{ij}^{Z}},$$

Quantity	F_{1V}^{γ}	F_{1V}^Z	F_{1A}^Z	F_{2V}^{γ}	F_{2V}^Z	g_L^γ	g_R^γ	g_L^Z	g_R^Z
SM Value at tree level	2/3	0.230	-0.595	0	0	2/3	2/3	0.824	-0.364
Standard deviation	0.002	0.003	0.007	0.001	0.002	0.005	0.005	0.008	0.009
Relative precision [%]	0.3	0.9	1.2	-	-	0.8	0.8	1.0	2.5

arXiv:1505.06020 [hep-ph]

$$\mathcal{L}_{\text{int}} = \sum_{v=\gamma,Z} g^v \left[V_l^v \bar{t} \gamma^l (F_{1V}^v + F_{1A}^v \gamma_5) t + \frac{i}{2m_t} \partial_\nu V_l \bar{t} \sigma^{l\nu} (F_{2V}^v + F_{2A}^v \gamma_5) t \right]$$

□ 先行研究は観測量が限られており F_{2A}には感度がない

F_{2A}: CPを破る因子で標準模型では禁止されている

 トップクォークはハドロン化する前に崩壊するため、崩壊粒子の角度も ttZ/ttyのVertexに対して情報を持つ

トップ対生成のdi-leptonic終状態 ($e^+e^- \rightarrow t\bar{t} \rightarrow b\bar{b}l^+\nu l^-\bar{\nu}$) を用い、Vertexの 情報を持つ<u>9つの角度</u>を再構成し、より多くの物理量に感度のある研究を行う

9つの角度 = $(\cos \theta_t, \cos \theta_{W^+}, \phi_{W^+}, \cos \theta_{\mu^+}, \phi_{\mu^+}, \cos \theta_{W^-}, \phi_{W^-}, \cos \theta_{\mu^-}, \phi_{\mu^-})$

di-leptonic 終状態を用いた解析はこれまで parton levelのみ

→本終状態を用いた初の full simulation 研究(イベントのみ)

シグナル	トップ対生成, di-muonic 終状態 (SM-LO) <i>e⁺e[−] → tī → b̄μ⁺νμ[−]ν</i>				
イベント生成	Whizard				
検出器シミュレーション	ILD_01_v05 (DBD ver.)				
重心系エネルギー	500 GeV				
積分ルミノシティ	500 fb ⁻¹				
偏極 (P _e -,P _e +)	(-0.8, +0.3) / (+0.8, -0.3)				

※ ISR/BS, gluon emission等を含まないサンプルを使用 (現在研究が進行中)

- ① 2つのレプトンの測定
- ② 2つのb-jetの測定 (E_b は方向に比べて精度が低い)
- ③ 力学的再構成:
 - 2つのニュートリノと2つのb-jetのエネルギーを求める

力学的再構成について

_力学的再構成の原理

①**8つの未知数** ($\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}, E_b, E_{\overline{b}}$) を8つの力学的制限 ($E_{CM}, \vec{P}_{init.}, m_t, m_{\overline{t}}, m_{W^+}, m_{W^-}$) を課すことで求める

力学的再構成について

-力学的再構成の原理

①**8つの未知数** ($\vec{p}_{\nu}, \vec{p}_{\overline{\nu}}, E_b, E_{\overline{b}}$) を8つの力学的制限 ($E_{CM}, \vec{P}_{init.}, m_t, m_{\overline{t}}, m_{W^+}, m_{W^-}$)

を課すことで求める

② $E_b, E_{\bar{b}}$ それぞれ再構成値と測定値を比較することで最適解を選択する

再構成の結果: $\cos \theta_t$ 分布

トップの極角分布, $\cos \theta_t$ (= 前後非対称度)

- (-0.8, +0.3)において分布のずれが見られる
 - = b-jetの組み間違いによる効果
- → 力学的再構成の精度 ($E_{\mu^{\pm}}^{**}$ や χ_b^2) によって信 頼度の低いイベントをCut
- 分布のずれが小さくなることが確かめられた

b-jetの組み間違い比	(-0.8, +0.3)	(+0.8, -0.3)
Cut 前 (efficiency = ~92 %)	8.9 %	6.0 %
Cut 後 (efficiency = ~50 %)	5.5 %	3.0 %

日本物理学会第72回年次大会

Matrix element 法

理論計算によって得られる|M|²をPDFとする、最尤推定法に基づく

実験的に最も効率的な推定手法

• 得られた全ての観測量を同時に扱うことができる

→ 高い精度での推定が可能

→ 再構成した9つの角度及び全断面積を同時に用いて解析を行う

F_{2A}を含む10個の形状因子を同時推定

- □ 測定精度は典型的に~0.04 程度 Parton level では~0.01 程度
- →この差の原因の理解が必要
- □ 中心値のずれは、b-jetの組み間違いや 検出器の効果と考えられる

→<u>適切なカットや検出器効果を|M|²に</u>

<u> 畳み込むことで削減が期待できる</u>

Preliminary

(efficiency = ~50 %、約2000イベント)

$\int \mathcal{R}e \delta ilde{F}_{1V}^{\gamma}$	$+0.0046 \pm 0.0125$
${\cal R}e \delta ilde F_{1V}^Z$	-0.0455 ± 0.0269
${\cal R}e \delta { ilde F}^\gamma_{1A}$	-0.0887 ± 0.0193
${\cal R}e \delta ilde F^Z_{1A}$	$+0.0555 \pm 0.0274$
${\cal R}e \delta { ilde F}^\gamma_{2V}$	-0.0143 ± 0.0414
$\mathcal{R}e \ \delta \tilde{F}_{2V}^Z$	-0.0757 ± 0.0679
${\cal R}e \delta { ilde F}_{2A}^{\gamma}$	$+0.0011 \pm 0.0237$
$\mathcal{R}e \ \delta \tilde{F}^Z_{2A}$	$+0.0297 \pm 0.0529$
${\cal I}m \delta { ilde F}^{\gamma}_{2A}$	-0.0347 ± 0.0403
$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\overline{Z}}$	$+0.0084 \pm 0.0325$

$$\begin{split} F_{1V}^{\tilde{v}} &= -(F_{1V}^{v} + F_{2V}^{v}), \quad F_{2V}^{\tilde{v}} = F_{2V}^{v}, \\ F_{1A}^{\tilde{v}} &= -F_{1A}^{v}, \quad F_{2A}^{\tilde{v}} = -iF_{2A}^{v}, \end{split}$$

まとめと今後

トップ対生成 di-leptonic 終状態を用いた ILD full simulation解析によって、 より多くの形状因子の同時推定を行い、精度を見積もる

- □ 再構成
 - レプトン・b-jetの測定、力学的制限によって9つの角度を再構成した
- Matrix element 法による解析
 - F_{2A}をふくむ10個の形状因子の同時推定を行い、**典型的に~0.04 程度**の 測定精度を得た

□ 今後

- Parton level の結果との差を正しく理解する
- 推定値のずれを小さくするため、適切なカットやPDFの最適化を行う
- 現在無視している効果含めて最終的な精度の見積もりを行い、どのような 新物理モデルの同定・排除が可能か検討する

Back up

Parton level での結果

- □ 理想的な環境 (Parton level) でのシミュレーション
- トップ対生成のdi-muonic終状態から9つの helicity angle を再構成
- ttZ/ttγ結合に関連した結合因子10個を同時に、1%の精度で測定可能

→より現実的な状況で、どの程度精度が保たれるか検証が必要

孤立レプトンの抽出

Thrust axis 法による2b-jetの測定

- ① 孤立レプトンを除く全ての粒子を集める
- ② 集めた粒子の静止系にそれらをブーストしThrust axis を計算する
- ③ Thrust axis に沿う二つのベクトルをILC'系にブーストする

(ILC'系:電子陽電子の静止系)

カ学的再構成に用いるアルゴリズム

1. χ_{μ}^2 を定義

$$\chi^2_{\mu} = \chi^2_{\mu^+} + \chi^2_{\mu^-}, \qquad \chi^2_{\mu^{\pm}} = \left(\frac{E^{**}_{\mu^{\pm}}(\theta_t, \phi_t) - m_{W^{\pm}}/2}{\sigma \left[E^{**}_{\mu^{\pm}}
ight]} \right)^2$$

=> W^{\pm} の静止系では μ^{\pm} のエネルギーは $m_{W^{\pm}}/2$ に等しい

2. χ_b^2 を定義

$$\chi_b^2 = \left(\frac{E_b^{meas.} - E_b^{rec.}(\theta_t, \phi_t)}{\sigma[E_b^{meas.}]}\right)^2 + \left(\frac{E_{\overline{b}}^{meas.} - E_{\overline{b}}^{rec.}(\theta_t, \phi_t)}{\sigma[E_{\overline{b}}^{meas.}]}\right)^2$$

3. $\chi^2_{\text{tot.}} = \chi^2_\mu + \chi^2_b$ を最小化する

 $\chi^2_{tot.}$ を最小化する(θ_t , ϕ_t)を最適解として選択する

再構成の結果(2)

終状態の再構成によって9つの角度が得られる;

$\cos\theta_t$, $\cos\theta_{W^+}$, ϕ_{W^+} , $\cos\theta_{\mu^+}$, ϕ_{μ^+} , $\cos\theta_{W^-}$, ϕ_{W^-} , $\cos\theta_{\mu^-}$, ϕ_{μ^-}

(-0.8, +0.3) と(+0.8, -0.3)で異なる分布 > トップの偏極の情報を持つ

解析の工夫

確率密度関数としてMatrix elementを用いる

|M|²は形状因子の二次までしか含まないため、2次式で展開可能

$$-\log \mathcal{L}(\alpha) = \sum_{e=1}^{N} \left(f_e + (f')_e^i \alpha^i + \frac{1}{2} (f'')_e^{ij} \alpha^i \alpha^j \right) - N \left(F + (F')^i \alpha^i + \frac{1}{2} (F'')_e^{ij} \alpha^i \alpha^j \right)$$

① パラメータ依存の無い係数F,F',F"を一度だけ求めればよい

② 次の式から推定値と精度が計算できる

$$-\frac{\partial \log \mathcal{L}(\alpha)}{\partial \alpha^{i}} = 0, \ V_{ij} = \left(-\frac{\partial^{2} \log \mathcal{L}(\alpha)}{\partial \alpha^{i} \alpha^{j}}\right)^{-1}$$

計算コストを大幅に削減し、高精度の測定が可能

解析結果(2) 分散共分散行列

Preliminary (efficiency = ~50%、約2000イベント)

$\mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma}$	${\cal R}e \delta { ilde F}^Z_{1V}$	${\cal R}e \delta { ilde F}^{\gamma}_{1A}$	${\cal R}e \; \delta \tilde{F}^Z_{1A}$	${\cal R}e \delta { ilde F}^{\gamma}_{2V}$	${\cal R}e \delta { ilde F}^Z_{2V}$	${\cal R}e \; \delta { ilde F}^{\gamma}_{2A}$	${\cal R}e \delta { ilde F}^Z_{2A}$	$\mathcal{I}m \ \delta \tilde{F}_{2A}^{\gamma}$	$\mathcal{I}m \ \delta \tilde{F}_{2A}^Z$
0.0125	-0.27	-0.01	+0.14	+0.71	$-0.2\bar{3}$	0	-0.06	+0.08	-0.01
	0.0269	+0.16	0	-0.21	+0.69	+0.01	-0.02	-0.01	+0.05
		0.0193	-0.19	-0.07	+0.14	+0.02	-0.04	-0.03	+0.01
			0.0274	+0.05	0	-0.02	0	+0.04	+0.02
				0.0414	-0.31	0	-0.05	0	+0.02
					0.0679	0	0	-0.01	+0.04
						0.0237	-0.35	+0.03	-0.05
							0.0529	0	0
								0.0403	-0.28
_									0.0325

解析結果(3) 緩いカット, b-jetの不定性の除去の場合

緩いCut の場合 (efficiency = ~80 %) (+0.8, -0.3) 8.05% (-0.8, +0.3) 5.53%

${\cal R}e \delta { ilde F}^\gamma_{1V}$	-0.0093 ± 0.0098
${\cal R}e \delta ilde F_{1V}^{ec Z}$	-0.0634 ± 0.0214
${\cal R}e \delta { ilde F}_{1A}^{\overline{\gamma}}$	-0.1163 ± 0.0151
${\cal R}e \delta { ilde F}_{1A}^{\overline Z}$	$+0.1066 \pm 0.0217$
${\cal R}e \delta { ilde F}^\gamma_{2V}$	-0.0293 ± 0.0322
${\cal R}e \delta { ilde F}^{\overline Z}_{2V}$	-0.0504 ± 0.0544
${\cal R}e \delta { ilde F}_{2A}^\gamma$	$+0.0177 \pm 0.0187$
${\cal R}e \delta { ilde F}^Z_{2A}$	-0.0078 ± 0.0446
$\mathcal{I}m \delta ilde{F}_{2A}^{\gamma}$	-0.0187 ± 0.0331
$\mathcal{I}m \delta ilde{F}_{2A}^{ar{Z}^-}$	$+0.0025 \pm 0.0258$

緩いCutの場合 (efficiency = ~80%)

MC Truthを用いてb-jetの不定性を除去

 $\begin{bmatrix} \mathcal{R}e \ \delta \tilde{F}_{1V}^{\gamma} & -0.0276 \pm 0.0105 \\ \mathcal{R}e \ \delta \tilde{F}_{1V}^{Z} & +0.0166 \pm 0.0221 \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{\gamma} & -0.0440 \pm 0.0159 \\ \mathcal{R}e \ \delta \tilde{F}_{1A}^{Z} & -0.0094 \pm 0.0225 \\ \end{bmatrix}$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{\widetilde{\gamma}} \quad -0.1078 \pm 0.0315$ $\mathcal{R}e \ \delta \tilde{F}_{2V}^{Z} + 0.0634 \pm 0.0588$ $\begin{array}{ll} \mathcal{R}e \ \delta \tilde{F}_{2A}^{2V} & +0.0121 \pm 0.0177 \\ \mathcal{R}e \ \delta \tilde{F}_{2A}^{Z} & -0.0056 \pm 0.0450 \end{array}$ $\mathcal{I}m \ \delta \tilde{F}_{2A}^{\hat{\gamma}} -0.0105 \pm 0.0304$ $\mathcal{I}m \; \delta \tilde{F}_{2A}^{\tilde{Z}} - 0.0039 \pm 0.0274$

組み間違いによって $\cos \theta_t$ がずれる理由

組み間違いの場合の $\cos \theta_t$ 分布 赤(-1,+1)/青(+1,-1) (-1,+1)の場合のみ大きく分布がずれる 理由 トップがleft-handedの場合、 bがトップの進行方向に放出されやすい →bの運動量が大きくなり、組み間違え

ることで方向が大きくずれる