

Belle II 実験のためのK_s検出の研究

2017年1月30日

Contents

● K_s中間子とBの物理

- Belle Ⅱ 実験
- V0finderによるK_s vertexing
- 多変量解析によるK_s選別
- B→K_sπ+γの再構成
- まとめ

K_s:sクォークを含む最も軽い中性ハドロン→弱い 相互作用で崩壊し、寿命が長い (ct = 2.68 cm)

● K_sはπ⁺π⁻に崩壊する (分岐比 69.2%)

→クリーンな再構成が可能

$$\pi^+$$

 K_s
 K_s
 π^-
 π^-
 π^-
 π^-
 V^0 と呼ぶ
 $K_s \rightarrow \pi^+\pi^-$ 、 $\Lambda \rightarrow p^+\pi^-$ 、 $\gamma \rightarrow ee$ がある

B, D中間子の再構成

- B⁰→D⁺π⁻, D⁺→K_Sπ⁺など

● 新物理探索

 $- B \rightarrow K_S \pi^0 \gamma$ や $B \rightarrow \phi K_S$ (b \rightarrow s遷移)

Belle II 実験: SuperKEKB加速器

- 7 GeVの電子と4 GeVの陽電
 子を衝突させ、B中間子対を
 生成
- Belleの40倍のルミノシティ で大量の統計を得る
 - バンチ数を増やし電流を上げるビームサイズを縮小 (ナノビーム)

Belle II 実験: 検出器

荷電粒子の検出器反応

 崩壊点測定器 (VXD) と中央ドリフトチェンバー (CDC) で軌跡を検出

– アクセプタンス 立体角4πの91% (lab系)

● 運動量は磁場中の曲率で測定される

$$p_t = \frac{qB\rho}{\alpha} \; [\text{GeV/c}], \quad \alpha = 333.56$$

q [e], Β [T}, ρ [cm]

- CDCのdE/dx
- チェレンコフ検出器
 - TOPカウンター (バレル部分)
 - A-RICH (前方エンドキャップ)

- 2軌跡が1点を通るという制約をつけて崩壊点と運動量を再計算
- K_S 4元運動量 p^μ = Σp_i^μ

K_sの再構成:V0finder

K_sのバックグラウンド (BG)

● non-V⁰ BGの種類

- combinatorial
 - 軌跡の少なくとも一方がK_s起源でない
- curl track
 - 低運動量の1つの軌跡→静止したK_sに見える
- fake track
 - 軌跡の少なくとも一方がフェイク

goodKs

● Belleで標準的に用いられている選別方法

- 閾値カットによる

momentum $[GeV/c]$	MinD0 [cm]	Dphi [rad]	DistZ [cm]	Fl [cm]
p < 0.5	> 0.05	< 0.3	< 0.8	_
$0.5 \le p \le 1.5$	> 0.03	< 0.1	< 1.8	> 0.08
1.5 < p	> 0.02	< 0.03	< 2.4	> 0.22

変数はあとで説明する

NisKsFinder

●この研究:機械学習による多変量解析

11

Decision Tree (DT)

- SignalサンプルとBGサンプルのoutput分布がより乖離するようにカット パラメーターとカット値を最適化 (学習)
 - 選び間違い確率 (gini index) を最も減らすカットを選ぶことに相当

Boosted Decision Tree (BDT)

- 学習サンプルの各イベントに重みをつけ、重みを変 えてDTを多数作り、それぞれで計算されるoutput の重み付け平均を得る
- →サンプルの統計的揺らぎによる誤差を抑制

FastBDT

●BDTを発展・高速化したもの

多変量解析のK_s選別への応用

NisKsFinder

- Belle version
 - NeuroBayes (ニューラルネット)
- Belle II version
 - FastBDTを使用:この研究
 - inputパラメーターはBelle versionとほぼ同じ

モンテカルロ (MC) サンプル

- B事象とcontinuumを実際の頻度で 起こしたもの
- フルシミュレーション (実際のデー タのフォーマット)
- 実際の3D磁場マップを使用

• ビームバックグラウンド

- Radiative Bhabha
- Touschek 散乱
- ビームガス散乱
- BGx0 = なし、BGx1 = あり
- 1fb⁻¹相当

生成事象	イベント数/fb ⁻¹ (x 100)
中性BB	5346
荷電BB	5654
uubar	16050
ddbar	4010
ccbar	3830
ssbar	13290

K_sサンプルとバックグラウンドサンプル 15

● K_sサンプル

- 2つの軌跡がたしかにK_sから来ていたもの
- MCマッチング (この研究で改良) によって確認
- 9.82x10⁵イベント

non-V⁰ BG

- 2つの軌跡がV⁰ (K_s, Λ, γ) 由来でないもの
- 5.12x10⁶イベント (シグナルの5倍)
- NisKsFinder output = "V0like"

• V⁰ BG

- 2つの軌跡がΛ由来であるもの
- 2.27x10⁴イベント
- NisKsFinder output = "NoLambda"

NisKsFinder:inputパラメーター

6

V0like (non-V⁰ BG rejection)

- DistZ
- Fl
- Dphi
- MinD0
- MaxD0
- Mom
- DecayAngle
- VXDPoitive
- VXDNegative
- CDCAxialPositive
- CDCAxialNegative
- CDCStereoPositive
- CDCStereoNegative
- 13変数を使って計算

NisKsFinder:inputパラメーター

NoLambda (V⁰ BG rejection)

- PrPildPositive
- PrPrIdNegative
- LambdaMass
- MomPositive
- MomNetative
- SinThetaPositive
- SinThetaNegative

7変数を使って計算

Volike inputパラメーター: D0

D0 xy平面で見たIPから軌跡ま での距離

- IPで生成する軌跡では~0
- MinD0 = 2軌跡のD0の小さい方
- MaxD0 = 2軌跡のD0の大きい方

Volike inputパラメーター: DistZ

20

● fl (flight length) ビーム直交面での崩壊点までの距離

- K_sは寿命が長いため分布が広い

V0like inputパラメーター: Dphi

● **Dphi** K_sの運動量方向と崩壊点ベクトルとの間の角

21

- K_sの多くは崩壊点から見た生成点がほぼIPと同じ→dphi~0

V0like inputパラメーター: Mom

22

● Mom K_sの運動量

V0like inputパラメーター: DecayAngle 23

- DecayAngle K_sの運動量方向と、K_s系でのπ+の運動量方向との間の角
 - K_s はスカラーなのでcosineに対して均一分布をする

NoLambda inputパラメーター: LambdaMass 24

LambdaMass

- 2軌跡の片方にproton質量を仮定して
 Λ→pπとして不変質量を計算
- nominal 1.116 GeV/c² に近い値を採 用
- Aはnominal値でピーク

NoLambda inputパラメーター: MomPositive 25

MomPositive

- +軌跡の運動量

MomNegative

- --軌跡の運動量

NoLambda inputパラメーター: PrPild 26

PrPildPositive

- +軌跡のproton ID
- πに対する尤度比として得られる
- Aでは片方がproton

PrPildNegative

— 一軌跡のproton ID

NoLambda inputパラメーター: SinTheta 27

● sinθ: 軌跡のpolar angle

– Belle1では若干の分布の差があったがここでは見られなかった

アウトプット

28

挙げてきた変数 (13+7) から、VOlikeとNoLambdaを 計算

 2つの多変量解析によって non-V0とLambdaが効率よ く分離できる

purity vs efficiency plot

NoLambda閾値を下の3つの値に固定して、VOlike閾値を変 化させてプロット

- NoLambdaを使わない場合
 - NoLambda閾値=0とし、V0like閾値を変化させてpurity vs efficiencyをプロット (黒い線)
- NoLambda閾値を次のように決めた場合
 - NoLambda閾値を変化させて、上のようにプロットしたとき、 purity=94%でefficiencyが最大になるNoLambda閾値。"94%"は旧 NisKsFinder (Belle)の標準閾値でのpurity (緑の線)
 - 94%の代わりに、goodKs (標準閾値)をBelle IIデータに適用したときの purity (93.76%) を使った場合 (橙の線)

NisKsFinderのpurity vs efficiency plot 30

▶ goodKsの1.24倍のefficiencyでK_sが得られた

ビームBGx1での選別パフォーマンス

31

● BGx1では検出効率の低下に よって選別パフォーマンスも 悪化すると考えられる

Nisの選別パフォーマンス

ビームBGによってK_sのefficiencyが低下する

purity 94% : 44.96%→31.46% (緑の線)

- Belleで使われているV0finderとNisKsFinderを導入 したことで、BGx0レベルではBelleと同程度の K_s efficiencyが期待できる
- Belleとの比較、あるいはBGx0とBGx1との比較を 行うために、Belleと同等の条件でB+→K_sπ+γを再構 成した。

- B→K*+γに対するefficiencyを比較
- BGx0はBelleと同じ程度のefficiencyを達成
- BGx1は2割近く低い値となった
- Belleの20倍のレベルで生じるビームBGがtracking と選別効率を悪くしている

Belle [Horiguchi 2016] でのefficiency = 7.96%

サンプル	$B o K^{*\pm}\gamma$ 生成数	(内 $B \to K_S \pi^\pm \gamma$)	再構成シグナル数	efficiency (%)
BGx0	1,884,877	600,280	146,961	7.796
BGx1	1,885,077	601,064	116,649	6.188

- Belle II実験においてV0finderとNisKsFinder (FastBDT) を使ったK_s→π⁺π⁻再構成を実装した
- K_sのpurity 94%でBelleの標準であったK_sFinder goodKsより1.24倍のefficiencyを達成 (ビームBGな しの場合)
- Belleにおいて、V0finderとNisKsFinder (NeuroBayes) を使ったときとほぼ同じefficiencyと なった (ビームBGなしの場合)
- Belle IIの高いビームBGによってK_sのefficiencyが 30.0%低下することが判明

V0like inputパラメーター : SVDPositive, Negative

SVDPositive(π⁺)/ SVDNegative(π⁻)

- π+/π-がVXDにヒットをもてば1,
 もたなければ0
- K_sはVXDの外で崩壊する確率がよ り高い

V⁰の選別:トラッカーへのヒット

π+/π-のCDCへのヒット数

38

VOfinderによる問題

本研究で用いているVOfinderIこK_s質量の計算が高くずれるバグがあった

K_sのefficiencyと多変量解析に影響 1/25(水)タ方に発見

