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Abstract

We report on a measurement of the C'P violating angle ¢35 with B® — DK*Y(892)
decays following K*°(892) — K7~ and D — K9r 7. In this mode, B flavor is tagged
uniquely by K*°(892) decay, and angle ¢3 can be extracted from Dalitz plot analysis with
model independent way. We use the full data sample of 772 x 10° BB pairs collected at
the Upsilon(4S) resonance with the Belle detector at KEKB accelerator.

We report study of the ratio of amplitude of B® — D°K*? and B® — D°K*° rg. The
decay BY — D°K*? has b — u transition, so it has ¢ information. ¢s precision can be
scaled as 1/rg. This study set upper limit on rg.

re < 087 (at 68 % C.L.). (1)

A new method, model-independent Dalitz analysis which enable us to avoid the modeling
uncertainty on Dalitz plane is performed. This is first measurement of rg on neutral B
with model-independent Dalitz analysis.
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Chapter 1

Introduction

In early universe, antimatter should have been produced in the same quantity as matter.
However, in the current universe, almost everything is constructed from matter rather than
antimatter. There is few antimatter than matter. We cannot explain this asymmetry,
despite the standard model (SM) has been verified by many experiments. With CP-
violation (CPV), we can explain the asymmetry of matter and antimatter. CPV will be
one of the answer for disappearance of antimatter. Cabibbo-Kobayashi-Maskawa (CKM)
mechanism was proposed by Cabibbo, Kobayashi and Maskawa. It suggests that CPV is
possible if quarks have three generations.

In SM, there are many parameters that should be measured by experiments, for ex-
ample particle mass, mixing angle and so on. Flavor physics aspires to measurements
of those parameters and searching new physics. Measurements of flavor mixing parame-
ters it’s origin in particle mass, are important step toward answer for essential question
including CPV. If we obtain result inconsistent with SM, it is a clue about the beyond
SM.

In this chapter, we introduce the CKM mechanism and the methods for measuring ¢3.
In Chapter 2, we describe the experimental apparatus and analysis tools. In Chapter 3, we
show the analytical procedure, the event selection and the signal extraction, measurements
of observables relative to ¢3, control sample study, pseudo experiments toy MC study and
so on. In Chapter 4, we summarize the result of this study. In Chapter 5, we discuss
about this study.

1.1 KM Mechanism

1.1.1 CKM Matrix

CPV is derived from mixing of three generation quarks in a spontaneous way [1,2]. In
SM, weak interference mediated by W boson is described by following Lagrangian.

£int(x) = _%(UL%LDLW: +EL'Y;LULWM_); (1.1)



where g is a coupling constant, Uy, Dy, are status of quark flavor as

U d
U=|c |.D=1| s |. (1.2)
t b

Subscript L means left handed. Mass eigenstates of quarks U] and D’ are obtained from
(1.2) with conversion of unitary matrix S* and S%.

U, = S"'U; (1.3)
D, = S'D) (1.4)
(1.1) can be written as
Lin(z) = —%(msumsdmwj + DS, UL S W)
_ —%(WLVCKM%D’LWJ + DV en U W), (1.5)
Where
Vorm = S*157 (1.6)

Ve is called CKM matrix, and its components represents coupling constant for quark
transition.

Vud Vus Vub
Vervr = Vea Vs Vo (1.7)
Vie Vis Vi

From (1.6) and unitarity of S* and S? Vig s is unitary.

We confirm appearance of CPV phase in CKM matrix if quarks have 3 generations.
In general, degree of freedom of n x n complex matrix are 2n?. The unitarity of Vogas
reduces n? of those, and we also have to consider the phases of the quarks. Since the
phases of quarks do not have effects on the physics, we can suppress some degrees of
freedom using the phase transitions. However, the same phase changes for all quarks do
not vary the matrix Vogp. So we reject 2n — 1 at total by phase transitions of quarks.
Therefore, we get the number of degrees of freedom as

2n —n? — (2n—1) = (n — 1) (1.8)

In additional, possible complex phases in Vo is then obtained as follows: Considering
the case without complex components, the unitary condition of Vi is equivalent to the
orthogonal conditions,

Z VermiVexrmgy = 0 (1 < k) (1.9)
J
(n+1)n B n(n —1)

The number of degrees of freedom of real components are then n* — 5 = 5

Finally, n generation CKM matrix Vog s have

(n—1)? - n(n2— 1) _ (n— 1)2(n —2) (1.10)




degree of freedom. If n < 2, all CKM matrix components can be described by real number.
To appear the complex component in CKM matrix violating C'P phase, larger than three
generation quark is needed.

1.1.2 Unitarity Triangle

CKM matrix is described as follows with quark mixing angles ¢;; and a complex phase 9.

0

C12C13 S12C13 S13€
_ i§ i5
Voerm = | —S12C23 — c12523513€"° €123 — S12523513€" S23C13 (1.11)
is is
512C23 — C12523513€ —C12C23 — S12523513€" C23C13

Where s;; = sinb;;, ¢;; = cos ;5. Vory should be unitary.
Ve Vexn =1 (1.12)
In (1.12) b row and d row, with leads to
VudVy + VeaVy + ViaVy, = 0. (1.13)

(1.13) can be written as a triangle on complex plain since CKM matrix has complex phase,
as shown in Figure 1.1.

(0,0) (1,0)
Figure 1.1: Unitarity triangle

To occur CPV, CKM matrix has non zero complex phase, in other wards, this unitarity
triangle area is not zero. In Wolfenstein parametrization [3], CKM matrix is written by

1% A ] AN3(p —in)
Vorm = Y -2 AN? +O0(\Y). (1.14)
AN(1—p—in) —AN? 1

The relation of (1.11) and (1.14) is

S12 = A, S93 = AN, s13 = AN (p — ). (1.15)
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Where A, A, p, n are real number, and A = sinf. ~ 0.22, 6. is Cabibbo angle, |A|, |p|, |n]
are all ~ 1. Here, we define

P o= 17 (1.16)
)\2
7= - (117)
V,q can be written
Via = AN’(1 — p — in)). (1.18)
The lengths of each side of the triangle are described as follow
VudVir e p—
Rb = | d u*b‘ — ﬁZ +ﬁ2
"/;d‘/;b‘
A2 (1%
_ 7 1.19
A 19
ViVl =
R _— - - 2 + 2
1Vl
= ——. 1.20
X[V 20
The angles of triangle are defined,
%dVZ)
=arg | — <, 1.21
o = g (24 (121)
ViaViy
= - 1.22
) a2
VuaV)y
= — ). 1.23
o =arg (L) (1.23)

In this thesis, CPV angles are described as ¢ 23, however sometimes they are written
conventionally ¢; = 3, ¢2 = o and ¢35 = v. The R;, R; and ¢; 23 can be measured by
B meson decay. The confirmation with many phenomena are equivalent to validation of
SM. The current result of ¢; 5 3 measurements in CKMfitter [4] are.

o ¢ = (21.507073)°
o ¢y = (85.4759)°
o (3= (70-031(7))0

@3 is the most difficult parameter to measure among the CPV angles.



1.2 (CP Asymmetry

1.2.1 B’ - BY Mixing

Consider the CP asymmetry for B meson with mixing of B® — B°. When we write the
arbitrary linear-combination of flavor eigenstate of B as

a|B°) + b|B°), (1.24)

zh% (2‘) =M <‘;> = (M —1T) <Z> . (1.25)

Where M and I' are 2 x 2 Hermitian matrix. Mass eigenstates |By) and |By) are written
as

the time revolution is

|Br) =p|B%) +q|B° (1.26)
|BL) =p|B% —q|BY, (1.27)

and those eigenvalues are given

7

1
)\L =my — §7L (129)

Where p and ¢ are complex numbers, and mpg,;, and g 1 are real numbers. The time
revolution for mass eigenstate is written as

L d
Zh% |Bar(t)) = Am.r|BrL(t)) - (1.30)

And A
|Br () = e MLt | By (1)) . (1.31)

From Eq. 1.26 - 1.31, B°, BY time revolution are written as

q

[B(t)) = f+(t)[B°(0)) + 5ff(t) |B°) (1.32)
[B(t)) = f+(t)[B°(0)) + gf(t) |B°) (1.33)
where
filt) = %(eAH M) = e 53 cos ATmt (1.34)
fo(t) = %(e)‘H — M) = —ie 3t 3 sin ATmt (1.35)
Am =my —myp, m = mKTJFmL 1.36)
Y~y =L, Ay =0 — 7 =0, (1.37)

and this equations show B°-B° mixing.



1.2.2 Branching Fraction B" and B’

Decay widths A; and A; of B® and BY to final state f are written as

Ay = (f1H|B) (1.38)
Ay = (f|H|B°). (1.39)
Decay width of B and B° at time ¢ decay to f in minute time are written as
q ., _
Ar(t) = (IHIB'0) = A;(F-+ L1y (1.40)
7 5 D
Ap(t) = (fIH|B (1)) = A(feps + gf—), (1.41)
where i
_ Ay 1
pr=—=—. (1.42)
TTA T

From Eq. 1.40 and Eq. 1.41, the branching ratios of B® and B° to f at time ¢ are written
as

F@%%+ﬁ=MN(mﬁ+%ﬂmﬂmﬂﬂ&%$hﬁ0 (1.43)

D(B(t) — f) = Al <|ﬁf|!f+|2 + I§|2|f—|2 + 2R6<§ﬁff+f_—)) : (1.44)

1.2.3 Direct C'P Violation

Consider processes B — f and B — f to consider the C'P violation in B meson decay.
Using strong phase § and weak phase ¢ which comes from complex component of CKM
matrix, those decay widths Ay and A are written as

Ap =) ApelCito) (1.45)
Ap =) A0, (1.46)

Sign of ¢ does not flip with C'P conversion because § is the phase coming from strong
interaction. However, sign of ¢ flip due to complex of Vok.
C'P asymmetry is written as

B f)-TB=)

A = ['(B— f)+T(B— f) (147)

1= JAf/AsP L8

EZTE (148)

That is | 3 N -,
A, '
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le. if

[Ag? = [Af]> = =2 " sin(¢; — ¢;) sin(5; — 6;) (1.50)
1,7

is not zero, C'P violation is occurred. This is called direct C'P violation. To occur the
C'P violation, it needs up to two processes to same final state, almost same decay widths,
non zero strong phase difference, and non zero weak phase deference.

1.3 ¢3 Measurements

¢3 ~ arg(V,p) (1.51)

B — DK which include b — wu process is used. We explain three methods (GLW,
ADS and GGSZ method) to measure ¢3 hereinafter. Currently, ¢3 is measured by charged
B* — DK* studies. However motivation in this study is the measurement of C'P viola-
tion from ¢3 effect in neutral B® — DK*Y decay.

1.3.1 GLW Method

In GLW (Gronau-London-Wyler) method [5, 6], decay process B — DK is used to
measure the ¢3. D is the C'P eigenstate of neutral D meson. Hereinafter D, D, are
C P-even, C'P-odd eigenstate, and

1 0 0
Diz= (D' + D) (1.52)

respectively. For example, D; corresponds to l:? — KYK~,ntn, Dyis D — K2 Kw, K2¢
and so on. Figure 1.2 shows B° — D'K*°, D% — K+*K~ diagrams. From Eq. 1.46 am-

b > > C D” 7+ u Ry—f—
B[] " ! \ ;

K K~
d < d i
b = > i D” > U Ry—f—
B[] W= C < < S
5 w- R
K

A

Figure 1.2: B — D°K*0, D* — K*K~ diagrams.



Figure 1.3: Relation the amplitudes fo (1.53) and (1.54)

plitudes of B — D, 2K are written in

AB® - DiK*) = iz (A(B° — DY K™0)e'@st0) + A(BY — DYK*0))

(1.53)
AB® = DiE™) = —= (A(B® = DOR)e'#49) + A(B® = DK-))

(1.54)
A(B® = DyK™) = iz (A(B° — DK*0)e'@st02) — A(BY — DK*?))

(1.55)
ABY = DR™) = o (ZA(B = DUR™)Co) 4 A(BY = DUR™))

(1.56)

Due to the phase flip of ¢3 on CP conversion, C'P asymmetry is occurred. 0;9 are
difference of strong phase between B® — D°K*? and B — D°K*°, and §, = 6; + m. The
relation with Eq. 1.53 and 1.54 can be written on complex plane as shown Fig. 1.3. The
appearance of ¢3 effect can be seen.

From Eq. 1.53-1.56, C'P asymmetry A; 5 and ratios of branching ratios B — D o K*
and B — DVK* R{g{* are written in

[(B° — Dy, K*°) —T'(B° — Dy ,K*)
[(B° — Dy K*0) + T(B° — D, 5 K*0)

_ 2rp sin @3 sin d; o (157)
1 + 7% + 2rp cos ¢3 oS 1 o '
D(B® — Dy,K*0) + T(B® — Dy ,K*0)

[(B° = DOK*0) 1 [(B® — DOK*0)
= 1+ 7%+ 2rpcos ¢z cosdy o, (1.58)

Ao

DK*
Rl,Q



where, - o
|A(B® — DYK*)|
= = = i 1.59
"B = A(BY — DOK0),| (1.59)
Once B° — D172[~( *0 decays are observed, 7, A 5 and Rff* can be obtained. There-
fore two unknown parameters ¢3 and ;2 can be obtained, from the two equations A -

.
and RPE".

1.3.2 ADS Method

In ADS (Atwood-Donietz-Soni) method, decay process B — DK is used to measure the
¢3 [7,8]. Here D does not decay to C'P eigenstate, but decays modes are K*7¥, K*n¥n°,
3K 7 and so on. Figure 1.4 shows BY — D°K* D° — K*7n¥ diagrams.

r
y
\

b —>» > ¢ Do u Kt
B[] W= i W S

‘-_ R’*[} d. ﬂ'_
d < d i

h » o m D” o i R“"
A0 W c < « 5
5 w- d

A
=l

Figure 1.4: B — D°K*0 D° — K*7¥ diagrams.

Representing final state of D as f, amplitudes of B and D decay as

Ap = A(B° = D°K*) = A(B° — D°K*") (1.60)
Ap = A(B° — D°K*) = A(B° — D°K*") (1.61)
Ap = AD° = f) (1.62)
Ap = AD° = f), (1.63)

and a branching fraction of B® — DK* — fK*0 can be written as

DB = [[IoK™) = 1A(B" = [flpoK") + AB® = [f]pnKO)P
|AB|*|Ap[® (r}; + 1] + 2rprp cos(—¢s + 0 + 0p,)) , (1.64)

and one of B — DK** — fK*0 ag

D(B" = [floK™) = [A(B® = [flpeK™) + A(B" = [f]po K)|*
= |Ag|*|Ap|? (15 + ] + 2rprp cos(+¢s + 65 + 0p,)) . (1.65)
Where - ~
rp = T = (1.66)



and dp is difference of strong phase between B® — D°K*® and B° — DK™, 4p, is
difference of strong phase between D° — f and D° — f. dp ; 1s dependent on final state
of D which in f. Hereinafter C P asymmetry .A; and ratios of branching ratios B — fK*
and B — fK* are written as

L(B° = [flpK*) = T(B° — [f]pK*)

D(B® = [flpK*0) + T(B® — [f]pK*")

Ayg

_ 2rprp Sin ¢g sin 0y

144712 4 2rprp cos ¢z cos(dp + Sp,) (1.67)
(B = [flpK*) + T(B® — [f]pK*°)
[(BY = [flpK*0) + T(B® — [f]pK*)

= rh+7] + 2rprpcos gz cos(dp + dp,). (1.68)

Ry

Assuming we have known ¢ kinds of f;, replacing d;, = dp+6y,, Ay, and Ry, can be written
as

2
.

- fl(TB7¢375fl) (
Ry = Rplre, —¢s,9y) (1.70
£2(TB, $3,05,) (
£ (T8, =93, 075,) (

DN

Thus if we measure n modes f in B — DK, 2n equation and n+2 unknowns are obtained.
To extract ¢3, we should measure two or more f modes. And also it is possible to combine
the A and R from GLW measurements.

1.3.3 GGSZ Method

In GGSZ (Giri-Grossman-Soffer-Zupan) method, decay process B — DK is used to
measure the ¢s, here D has three body decay such as Kgntn~. We measure the effect
of interference on the D — Kgm" 7~ plane called Dalitz plane defined by two dimension
m3 = m{f;(gﬂ . and m?2 = mﬁ(gﬂ,. Assuming no C'P asymmetry in neutral D decays, the
amplitude for BT — [K3r "7 ]pK* decay as a function of Dalitz plot variables m?2 and
m? is

Ap+ = Ap(m2,m%) + rpe® 8 Ap(m?,m2) (1.73)

where fp(m2, m?) is the amplitude of the D° — K§n "7~ decay. Similarly, the amplitude
for B~ — [Kgntn|pK~ decay is

Ap- = Ap(m2,m%) + rge "8 Ap(m?%,m?) (1.74)

With large sample of flavor-tagged D° — K¢n*7~ decays produced in the continuum
eTe annihilation, the D — K{r"n~ decay amplitude fp can be determined. Once fp
is known, a simultaneous fit to B° and B° data allows the contributions of 5, and J5 to be
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separated. This method has only two-fold ambiguity: (¢3, d5) and (¢3 + 180°, d5 + 180°)
solutions can not be distinguished. Due to the fact that rg is bound to be positive, the
direct extraction of rg, dp and ¢3 can be biased. To avoid these biases, the Cartesian
coordinates have been introduced, x4 = rpcos(dp + ¢3) and y. = rpsin(dp £ ¢3).

1.3.4 Dalitz Analysis

Dalitz plot analysis of three-body decays of neutral D mesons is a useful tool in various
measurements where coherent admixtures of D and D' are observed. This technique
was initially proposed for the measurement of the unitarity triangle angle ¢3 in B — DK
decays [9,10]. Later it was applied to the measurement of charm mixing [11,12] and
to the resolution of the quadratic ambiguity in the measurement of the angle ¢, using a
time-dependent analysis of the decay B® — Dn® [13,14]. Most of these measurements
are based on the D — K{r "7~ decay which offers the best precision in among three-body
D° decays.

The technique is model-dependent — it depends on the complex amplitude of the
D decay which is obtained from the D** — Dr* sample using model assumptions.
The result of the measurement contains therefore model uncertainties. In the case of ¢3
measurement, this uncertainty (~ 10°) is already comparable to the statistical accuracy
[15,16].

However, a modification of the Dalitz analysis is possible so as to perform a completely
model-independent measurement [9]. It requires the phase space of the three-body D
decay to be divided into bins as shown in Fig 1.5. Information about the complex phase in

Phase bins

S

15

w

=
N

=y

0.5

Figure 1.5: One of example of binning on Dalitz plane, eight binning. Binning index sign
is flipped m2 = m? reflection.

each bin can be extracted from the quantum-correlated D decays from ¢ (3770) — DD
process. The measurement of the strong phase in bins of the D — K277~ phase space
was recently performed by the CLEO collaboration [17]. This measurement should allow
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to reduce the error of ¢3 related to the uncertainty in the D — Kor ™7~ amplitude to
1—3°

The binned approach allows not only to get rid of the model error, but also to reduce
the systematic uncertainties. In our analysis, we try to develop the analysis procedure
that minimizes the systematic uncertainties, in view of the future high-precision analyses
at the super-B factory where systematics can become a limiting factor.

1.3.5 Model-independent Binned Analysis of Three-body D° De-
cays

In B* — DK* decay

To introduce the notation we briefly recap the technique of model-independent binned
Dalitz plot analysis of B¥ — DK*, D — KorTn~ decays used to extract the angle ¢3.
As usually presented, this does not take charm mixing effects into account.

The amplitude of the BT — DK™, D — K?r"n~ decay can be written as

AB = Z + TBGi(¢3+5B)A (175)

where A = Z(m%@ﬁ M n) = A(m?%,m?%) is the amplitude of the D’ - KgW:W* decay,
A = A(m%,m?) is the amplitude of the D* — K3ntn~ decay (A(m?,m?) = A(m2,m?%)
in the case of C'P conservation in D decay), rp is the ratio of the absolute values of

the interfering BT — D'K* and B+ — DK+ amplitudes, and dp is the strong phase
difference between these amplitudes. The density of the D decay Dalitz plot from B —
DK™ decay is given by the absolute value squared of the amplitude

Pp = |Ag|? = [A4 rpe'® 49 A2 = P 4 12 P 4 2V PP(2,C + 4..5) (1.76)
where

1 =rpcos(dp + ¢3); Yy =rpsin(dp + ¢3) (1.77)

The functions C' = C(m?%,m?) and S = S(m3,m?) are the cosine and sine of the strong

phase difference 6, = arg A — arg A between the D’ = Klm +7— and D° — K2ntn
amplitudes :

C = cosép(m?>,m*); S =sindp(m?>,m*) (1.78)

The equations for the charge-conjugate mode B~ — DK™ are obtained with the substi-
tution ¢3 — —@3. Using both B charges, one can obtain ¢3 and dg separately. Figure 1.6
shows the picture of how to observe the effect of ¢3.

In the binned model-independent approach, the Dalitz plot is divided into 2N bins
symmetrically to the exchange m? <+ m3. The expected number of events in the bin “1”
(B of the Dalitz plot of D from BT — DK™ is

Ni+ = hB[Kz + T2BK—i + 2\/ KiK_i(JI+Ci + y+8i)] (179)
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Figure 1.6: Image of ¢3 effect on (x4, y1) Dalitz analysis observables.

where K; is the number of events in the corresponding bin of the Dalitz plot of the D meson
in a flavor eigenstate (obtained using D** — Dz samples) and hg is a normalization
constant which is proportional to total signal number. The bin index” ¢” ranges from
—N to N (excluding 0); the exchange m? <> m? corresponds to the exchange i <> —i.
The terms ¢; and s; include information about the cosine and sine of the phase difference

averaged over the bin region:

I, |A||A] cos 6 pdD
C; = < —
\ Jo, |APdD [, [A]2dD

Here D represents the Dalitz plot phase space and D; is the bin region over which the
integration is performed. The terms s; are defined similarly with cosine substituted by
sine.

According to i ¢+ —i exchanging (reflection on m% = m? line), the symmetry under
7t < 7 requires ¢; = c_; and s; = —s_;. The values of ¢; and s; terms can be provided
by charm-factory experiments operated at the threshold of DD pair production [17]. The
wave function of the two mesons is antisymmetric, thus the four-dimensional density of
two correlated D — K2n "7~ Dalitz plots is

|Aco7‘7‘<m3_7 mz_, ml_f, m/_2)|2 = |A1Z2 — ZlA2|2
= Plﬁg + ?1P2 -V P1P2P1P2(C102 + 5152) (181)

where the indices “1” and “2” correspond to the two decaying D mesons. In the case
of a binned analysis, the number of events in the region of the (K277 ~)? phase space

e

described by the indices “i” and “j” is
Mz‘j = KiK_j + K_in + 2\/ KiK_inK_j<CiCj + SiSj) (182)

13
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Once the values of the terms ¢; and s; are known from charm-factory data, the system
of equations (1.79) contains only three free parameters (z, y, and hg) for each B charge,
and can be solved using maximum likelihood method to extract the value of ¢s.

Note that technically the system (1.79) can be solved without external constraints on
¢; and s; for N > 2. However, due to the small value of g, there is very little sensitivity
to the ¢; and s; parameters in B¥ — DK® decays, which results in a reduction in the
precision on ¢3 that can be obtained [18].

In B - DK** decay

In this study we present the first measurement of the angle ¢3 using neutral B meson
decays. We reconstruct B® — DK*? with K** — K7~ (charge conjugate processes are
assumed throughout the paper and K*° refers to K*(892)?), where the flavor of the B
meson is identified by the kaon electric charge. Neutral D mesons are reconstructed in
the K37~ decay mode and are analyzed with the model independent Dalitz technique
which is written above.

In analyzing B® — DK*? decays, the natural width of the K** (~ 50MeV /c?) has to be
considered. In the K*° mass region, amplitudes for decays to higher-mass K resonances
interfere with the signal decay amplitude and width each other. For this analysis we
use effective variables, introduced in Ref. [19], obtained by integrating amplitude over a
region of the B — DK*x~ Dalitz plot corresponding to the K*°. For this purpose we
introduce the quantities rg, k, and dg defined as

I'(B°— D'K+r-) [ dpAZ(p)

J Ac(p)Au(p)e”®
VS dpA2(p) [ dpA2(p)

where 0 < k < 1 and g € [0, 27]. The amplitudes for the b — ¢ and b — u transitions,
A.(p) and A,(p), are real and positive and §(p) is the relative strong phase. The variable
p indicates the position in the DK 7~ Dalitz plot. In case of a two-body B decay, rs and
ds become rp =| A, | / | A. | and dp (the strong phase difference between A, and A,)
and k£ = 1. Because of CKM factors and the fact that both diagrams, for the neutral B
decays we consider, are color suppressed, the average amplitude ratio rg in B° — DK*°
is expected to be in the range [0.3, 0.5], larger than the analogous ratio for charged
B* — DK® decays (which is of the order of 10% [4,20]). An earlier measurement sets
an upper limit rg < 0.4 at 90% probability [21]. A phenomenological approach from
Bt — D°K* and B — DK [22] proposed to evaluate rg in the B — DK system
gives rg = 0.27 + 0.18.
Finally, we consider the signal number of ¢ bin on Dalitz plot is

ke's = (1.84)

Ni = hB[Kz —+ T%K,i -+ Qk\/KiK,i(l’Ci + ySz)] (on BO)
Ni = EB[K—i + T’%KZ + Qk?\/KiK_i<EC_Z‘ + yS_Z')] (OIl EO) (185)
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Here, x = rgsin(ds + ¢3), y = rgcos(ds + ¢3), T = rgsin(dg — ¢3), y = rscos(ds — ¢3).
Where, this z(Z) is correspond to the z, (x_) in charged B Dalitz, and y(y) is the y, (y_).
Only differences are rg = rg and dg = dg.

Note that the effects of the C'P violation to the observables are limited by value of
rps. DBriefly, ¢3 precision scales as 1/rpg. rg¢ will be lager than rp because of color
suppression on favored decay. ¢3 measurement with neutral B — DK*? is hopeful.
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Chapter 2

Experimental Apparatus and
Analysis Tools

In this chapter, we describe the experimental apparatus and analysis tools. The data set
we use is collected with the Belle detector at the KEKB accelerator located at High Energy
Accelerator Research Organization (KEK) in Tsukuba-city, Japan. All the developments
and the constructions shown in this chapter have been done by the collaborators.

2.1 KEKB Accelerator

KEKB [23] is tow-ring energy-asymmetric eTe™ collider intended for large number of B
and B meson pairs production. Figure 2.1 shows schematic view of KEKB accelerator.
The electrons emitted from the thermionic gun are collected to make electron bunch. And
to produce positron bunch, parts of thermionic gun electron are injected into tungsten
target. A linear accelerator (Linac) accelerates electron and positron up to the required
energy and injects then to each storage ring.The tow ring in KEKB accelerator to store
beam bunch, are the one for 8 GeV electron named High Energy Ring (HER), and the
other for 3.5 GeV positron named Low Energy Ring (LER) respectively. In both ring,
radio-frequency cavities accelerate particles, while the dipole (quadruple) magnets bend
(focus) them. The beams are collided at the interaction point (IP) with crossing angle of
+11 mrad.
The KEKB center-of-mass energy is designed to be

\/g =2 EHER . ELER = 10.58 GeV, (21)

which corresponds to the Y(45) resonance mass, i.e. BB pare production threshold. In
this situation, the cross-section for various processes in e*e™ collision are summarized in
Table 2.1.

The bb pair production cross-section is about 1.1 nb. The Y(4S) stand on top of
large qq, (¢ = u,d, s, c) continuum backgrounds. KEKB is called B-factory because it is
operated at T(4S) resonance and Y(45) dominantly decay to B°B° and B*B~. In this
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Figure 2.1: KEKB accelerator

Process o [nb]
bb 1.1
cc 1.3
qq(q=u,d,s) 2.1
TT 0.93
QCD (25.551° < 0 < 159.94°)  37.8
04 11.1

Table 2.1: Various etTe™ process at /s = 10.58 GeV cross-section.
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situation, the Lorentz boost is

By = Eyrr — ELer
2v/ Ener ELER

due to the energy asymmetry. The integrated luminosity of 711 fb~! is recorded at the
Y (4S5) resonance, where 772 x 107% BB pairs are produced.

For B® — DK™ signal in this study branching ratio is less than charged B* — DK™+
as.

— (.425, (2.2)

[(B" — D°K*) = (3.65+0.33) x 1074,
I'(B° - D°K*) = (4.240.6) x 107°.

Thanks to KEKB largest BB dataset in the world of lepton colliders, we can do this
analysis.

2.2 Belle Detector

Covering KEKB interaction point, Belle detector [24] is installed. Belle detector is a
general-purpose detector consist of a many sub-detectors. Figure 2.2 shows the configura-
tion of the Belle detector. From inner to outer, There are silicon vertex detector (SVD),
central drift chamber (CDC), aerogel Cherenkov counter (ACC), time-of-flight counter
(TOF), electro-magnetic calorimeter (ECL), and outermost coverage K and muon de-
tector (KLM). SVD and CDC provide charged particle tracking and vertex measurement.
Energy loss dE/dz from CDC, ACC hit, and TOF information are used by the operation
of the identification of charged pion and kaon (PID). ECL are CsI(T1) crystal scintillation
calorimeters. KLM, layers of resistive plate counters instrumented on the iron flex return,
identify K or muon.

A major detector upgrad in the summer of 2003. A 3-layer SVD with a 2 cm radius
beam-pipe was used until the summer of 2003 for the 152 x 10 BB paris. In the summer
of 2003, a 4-layer SVD, a 1.5 cm radius beam-pipe, and small-cell inner drift chamber
were installed. The following sub-chapters provide a more detailed description of every
sub-detector.

2.2.1 Silicon Vertex Detector (SVD)

The Silicon Vertex Detector (SVD) [25,26] provides the information of interaction point
position and finds the charged particle tracks together with CDC mentioned after. To
provide precise B decay vertex, SVD is required that have high precision for z axis. And
due to close by beam-pipe, SVD is made highly radiative resistant. SVD is composed
of Silicon detectors based on the p — n junction diodes operated at reverse bias. The
ionization currents caused by particle passing through the depleted region are detected
and measured.

SVD has upgraded at summer of 2003, SVD1 [25] to SVD2 [26]. SVD1 configuration is
shown at Fig 2.3. SVD1 has 3-layer structure and radius of each layer is 30, 45.5, 60.5 mm.

18



Electromagnetic Calorimeter (ECL)

Central Drift Chamber (CDC)

b=
—
= Superconducting Solenoid

Time-of-Flight Counter (TOF)

K, and u Detector (KLM) Silicon Vertex Detector (SVD)

Figure 2.2: Belle Detector

It consists of three layers in barrel-only designed and covers a solid angle 23° < 6 < 139°
where 6 is the angle from the beam axis. Each layer is composed by independent 8, 10,
14 ladder. One ladder has double-sided silicon strip detectors (DSSDs). In SVD1 total,
102 DSSDs are used.

The impact parameter resolution 0,4 and o, measure using cosmic rays are Fig 2.4,
and well represented by the following formula:

0rp = 19® 50/ (pBsin®?0) pm, o, = 36 @ 42/ (pfsin®? @) pm. (2.3)

The upgraded SVD2 (configuration is shown as Fig 2.5)has four layers, where 6, 12,
18 ladders. It has larger coverage of 17° < 6 < 150°, which corresponds to 92% of the full
solid angle. VA1TA integrated circuits are used in SVD2 readout electronics, which have
excellent radiation tolerance of more than 20 Mrad. The impact parameter resolutions
are

0 = 21.9@® 35.5/(pBsin®?0) ym, o, = 27.8 ® 31.9/(pBsin®? ) pm. (2.4)

The SVD upgrade significantly improved the impact parameter resolution in both the
r — ¢ and z coordinates.

Information of vertex is needed, especially charged particle track selection in this study.
And also effective for backgrounds rejection of the reconstruction of K¢ — 777~ because
of non-zero flight length of Kg.
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Figure 2.5: SVD2

2.2.2 Central Drift Chamber (CDC)

The Central Drift Chamber [27] measures the charged particles tracking. To obtain the
momentum, CDC determines their curvature in the magnetic field of 1.5 T provided by
the superconducting solenoid. Additional important information is the energy deposit
dE /dz usable for the particle identification.

Figure 2.6 shows CDC configuration. CDC coverage is 17° < 6 < 150° with asymmet-
ric structure in z direction. CDC has 50 cylindrical layers of anode wires and 8400 drift
cells. Their is composed in 32 parallel to z axis layers (”axial wires”) and 18 slanted off
the z axis layers ("stereo wires”) for the improvement of measurements z direction reso-
lution. In summer of 2003, the inner three layers are replaced by two small-cell layers for
making a space of SVD2, maintaining the performance of the trigger. The total number
of drift cell is change 8400 — 8464.

The position resolution for track of charged particles near the center of drift space is
~ 100 pm. The transverse momentum resolution measures using the cosmic ray as

%(%) — 0.19p; © 0.30/5, (2.5)
t
and shown as Fig. 2.7. The charged particle momentum is obtained from

p|GeV/c| = 0.3 - B[T] - p[m], (2.6)

here B is magnetic field. p is radius of track of one. Figure 2.8 shows a scatter plot on
dE/dx and particle momentum. dF/dx is expected

e? )247rNA gi(ln<2mec2fy252
Ared” mec? A [3? I?
here p, A, Z and N, are material density, atomic mass, atomic number and Avogadro’s

number. Clear separation between pions and kaons are obtained on a momentum range
up to ~ 1 GeV.

dE/dz = ( ) =82 =2), (2.7)
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In this study, momentum of charged particles are obtained from CDC information.
CDC permit us to perform analysis using charged track kinematics. One of the most
important observable, Dalitz parameters m KOn* are calculated from momentum of parti-
cles. Also identification of particle use dE'/ dz from CDC in low (< 1 GeV) and very high
(> 3 geV) momentum region, (this detail is described below Sec.2.3).

2.2.3 Aerogel Cherenkov Counter (ACC)

Aerogel Cherenkov Counter (ACC) provides the information to identification of charged
particle pions or kaons at high momentum range (1.2 GeV/c < p < 3.5 GeV/c). ACC is
silica aerogel threshold Cherenkov counter, which detect Cherenkov light a particle emit
or not, and distinguishes it particle speed is faster or not than the velocity of light in that
medium. The condition to emit Cherenkov light is given as
1 m.,

n>6 l—i-(p), (2.8)
where, m, p and f are particle mass, momentum and velocity, n is the refractive index of
the matter.

The identification of charged Kaons and pions (PID) are very important for studying
B meson decay. ACC particle identification are applied momentum range of 1.2 < p <
3.5 GeV/cand 17° < 0 < 127° solid angle. Figure 2.9 shows ACC configuration. Aerogels
with the refractive indices from 1.01 to 1.03 depending on # angle are used. The choice
of the refractive index for the barrel ACC is optimized for separation of high momentum
pions and kaons from the two-body B decay, such as B — nw and Kn. For and-cap
ACC aerogel, due to absent of TOF, n = 1.030 for low momentum aerogel is used. The
fine-mesh photomultiplier tubes (FM PMTs) are attached to the aerogels, for operating
in 1.5 T magnetic field. ACC is composed 960 counter modules segmented into 60 cells for
the barrel part and 228 modules arranged for end-cap part. Five aerogel tiles are stacked
in thin (0.2 mm thick) aluminum box of 12 x 12 x 12 cm?.

The performance of the ACC [28] is checked by using D*~ — D7~ followed by D° —
K*7~ decay. The slow 7 from D* allows to identify the K and 7 from D decay. Figure 2.10
shows the distribution of the number of photoelectron, where the K/m separation is good
and consistent with MC.

2.2.4 Time-of-Flight Counter (TOF)

The Time-of-Flight Counter (TOF) [29] provides particle identification for charged kaons
and pions in momentum range < 1.2 GeV/c to measure the flight time. TOF is plastic
scintillator with FM PMTs. The time of flight ¢ and particle mass m are given by

t = Cﬁ 1/1 ,/Ct (2.9)

where [ is flight length here [ ~ 1.2 m, 3, p and m is particle velocity, momentum and
mass.
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Figure 2.11: TOF configuration

Figure 2.11 shows TOF configuration. TOF is composed 128 TOF counters and 64 thin
trigger scintillation counters (TSCs). TSC is used for keeping the fast trigger rate below
70 kHz. There are located at a 1.2 m from IP, covering the barrel part 34° < 6 < 120°.

By the measurements with weighted on forward and backward FM PMTs, the TOF
time resolution is ~ 100ps. Figure 2.12 shows the mass distribution obtained by TOF for
particle p < 1.2 GeV,. Clear peaks corresponding to pions, kaons and protons are seen.
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Figure 2.12: TOF resolution and mass distribution

Thanks to PID, in this study we can distinguish B® — DK*? signal from other back-
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Figure 2.13: ECL configuration

ground decay modes. For example, possible backgrounds due to PID are B® — Dp°,
BY — Dntn~ and so on. In those decays, D can be reconstructed from real D. So those
background modes has some distribution on Dalitz plane.

2.2.5 Electromagnetic Calorimeter (ECL)

ECL [30] provides the information of energy and position of photon and electron. When
electrons and photons enter in material, electromagnetic shower is occurred. ECL mea-
sures that shower energy deposition. A comparison with the momentum provides the
identification of electrons.

Figure 2.13 shows ECL configuration. ECL is composed 8736 thallium dopes Csl
crystal counters. Figure 2.14 shows one counter configuration. ECL consists three parts,
one is barrel part composed 6624 crystal, radius 12.5 — 3.0 m and 32.2° < § < 128.7° solid
angle, two is forward part composed 1152 crystal, 2.0 m forward from IP and 12.4° < 0 <
31.4° solid angle, last is backward part composed 960 crystal, 1.0 m backward from IP
and 130.7° < 6 < 155.1° solid angle.

The energy resolution obtained from beam test is

0.066  0.81

OF _ J.Ubo V.ol
T ="F ROV Toh

(E in GeV), (2.10)

where the value is affected by the electronic noise (1st term), the shower leakage fluctuation
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Figure 2.14: ECL counter configuration

(2nd and 3rd terms) and the systematic effect such as the uncertainty of calibration (3rd
term). The spacial resolution is approximately found to be 0.5 cm/vE (E in GeV).

2.2.6 K and Muon Detector (KLM)

K7, and Muon Detector [31] provide the identification of K and p with high efficiency over
a broad momentum range greater than 600 MeV/c. The KLM is composed alternately
4.7 cm thick 15(14) iron plates and charged particle detectors (resistive plate counters,
RPCs) for barrel (end-cap) part. K can be identified by a product of shower in iron
plate or ECL. Because pu is more penetrating, it go through out of all detector and hits
in RPC. Other particles, such as pions and kaons are stopped in the inner detectors and
can be easily separated from pu.

KLM covers 45° < 6 < 125° in barrel part only and 20° < 6 < 155° in total. Fig-
ure 2.15 shows KLM configuration. Resistive plate counters have two parallel plate elec-
trodes separated with resistivity (> 10'° Qcm) separated by a gas-filled gap. An ionizing
particle induces a streamer in the gas that results in a local discharge. The discharge
generates a signal on external pickup strips, and the location and the time are recorded.
The number of KL clusters per event is in good agreement with the prediction. Typical
muon identification efficiency is 90% with a fake rate around 2%.

2.2.7 Extreme Forward Calorimeter (EFC)

Extreme Forward Calorimeter (EFC) [32] provide the information for luminosity in order
to measure the energy of electron or photon in extreme forward and backward, no ECL
coverage. EFC are located in 60 cm forward and 43.5 cm backward, and compose radiation
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Figure 2.15: KLM configuration

resistant BGO (BiyGez0,2) crystal. EFC coverage is 6.4° < 6 < 11.5° for forward, and
163.3° < 0 < 171.2° for backward. EFC energy resolution is 7.3% at 8 GeV and 5.8% at
3.5 GeV.

2.2.8 Trigger and Data Acquisition

The cross-section of events of interest B meson are smaller than background events,
for example ete™ — ¢7 (¢ = u,d,s,c), Bhabha scattering and so on. The trigger for
probable signal events are needed. Belle trigger system is composed of hardware trigger
and software trigger. Belle trigger schematic view is shown at Fig 2.17. Each CDC, TOF,
ECL, KLM and EFC detector provide the trigger information based on tracks and energy.
The trigger signal is delivered Global Decision Logic (GDL) [33]. GDL make a judgement
to storage event or not, within 2.2 usec from trigger informations.

Data acquisition (DAQ) is constructed as parallel system as shown in Fig 2.18 to reduce
dead-time even if high trigger rate. Each detector deliver measured information to event
builder, when it receives trigger signal. The event builder summarize those information
from detectors as one event data. That event data is filtered by online computer farm
and delivered to high speed magnetic tape device.
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Figure 2.17: Trigger configuration

2.3 Particle Identification (PID) for K*/z*

In this section, particle identification (PID) for K* /7% [34,35] which is very important
for our study is described. The K*/7* PID are performed using the informations of
ACC, TOF and dFE/dzx from CDC. Figure 2.19 shows the region of what detector is used
for PID. The likelihood function for K*(7*) obtained from the three detectors (as shown
in 2.8, 2.10 and 2.12) are combined to obtain the kaon (pion) likelihood Lx(L,). The
likelihood ratio P(K/m) is calculated as

Lk

PO = 7

(2.11)

The PID performance is checked by using the decay D*t — D" followed by D° —
K~7nt. Figure 2.20 shows the relation of P(K/7) and particle momentum. The clear
separation up to 4 GeV can be seen.
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Chapter 3

Analysis

3.1 Analysis Procedure

From this chapter, we explain the analysis procedures in order. This study uses /N; which
is the event number of B — DK*® decay in ”i”th binning on Dalitz plane (as shown in
Fig 1.5 mg g+ and mg .- ) to obtain the observables (x4, y+) which can be describe (¢,
rs, 0g) physical parameters. At first, Table 3.1 shows the flowchart on this analysis.

3.2 Event Selection

We search for the signal B decay in the mode B — [K3n 7~ p[K 7 |g-0. The results
are based on a 711 fb™! reprocessed data sample.

3.2.1 Reconstruction of Kg Meson

K candidates are reconstructed from a pair of two oppositely-charged pions. Kg has
some characteristic kinematics due to its comparative long life time. Also reconstructed
K has background contribution from A — pr decay. We use 20 kinematics and detector
information for neural network inputs to find Kg like events.

e For finding K like event

— K¢ momentum in lab. frame.

— Zgist . distance between two helices in z parallel of beam direction. Kg can
have non-zero flight length because of its long life time.

— flight length in vertical distance from beam z-y plane. Kg can have non-zero
flight length because of its long life time.

— angle between Kg momentum and Kg direction. If true Ky is reconstructed,
this value should be near zero.

— driow : shorter distance between IP and helix. Kg can have non-zero flight
length because of its long life time.
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We select the signal decay events B° —
K27t 7~ p [KT7 | 0. Simultaneously, signal B
is reconstructed. Here, some distinguishing back-
grounds are vetoed.

In reconstructed events, there is certainly large
contribution from ¢g¢ backgrounds. In this sec-
tion, we explain how to discriminate signal and
this backgrounds.

From obtained events, we use signal distribu-
tion on some parameters which is independent of
Dalitz parameters. In this section, we explain
how to obtain signal and other backgrounds dis-
tributions.

We can check the total signal number.

We check validation on (z, y) fitter with the real
data. We use Bt — Dn" decay mode which has
almost common kinematics as the signal.

We check validation on (z, y) fitter with the total
signal number which is estimated on above.

In this chapter, way to estimate statistical un-
certainty is explained. Statistical uncertainty on
(x, y) is estimated by scanning on true values
(2, Y)true With pseudo-experiments. In this study,
before data fit, we consolidate way to estimate
systematic uncertainty.

(Chapter 4) In this chapter, we obtain (x4, y+)
values.

In this chapter, we describe about systematic
uncertainty on (z4, y+).

In this chapter, we perform the transformation
($i7 y:t)_>(¢3a rs, 65)

Table 3.1: The flowchart of this study.
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— dryign : longer distance between IP and helix. Kg can have non-zero flight
length because of its long life time.

angle between pg,(lab.) and p,(Kg). If true Kg is reconstructed, daughter
pion decays to isotropic because of zero spin of Kg.

SVD information of positive child.

SVD information of negative child.

— CDC axial wire hit number of positive child.

— CDC stereo wire hit number of positive child.
— CDC axial wire hit number of negative child.

— CDC stereo wire hit number of negative child.
e For veto A event

— particle identification (PID) (m, p) of positive child (21 bin).
— PID (m, p) of negative child (21 bin).

— Ma.

— momentum of positive child.

— momentum of negative child.

— sinf (mom. direction) of positive child.

— sin @ of negative child.

As performance of this finder, reconstructed Kg purity is 92.2 %, and Kg reconstructed
efficiency is 75.1 %.

3.2.2 Reconstruction of D Meson

The D meson is reconstructed by combining two oppositely-charged pion tracks and one
Kg trajectory. We require LR(K/m) = Li/(Lr + Lk) < 0.6 for m, here Lx (L,) is
kaon (pion) likelihood based on ionization energy loss dE/dx (measured by CDC), time
of flight (TOF) and Cherenkov light yield (ACC). And also its charged track required to
have a point of closest approach to the beam line within £+ 5 mm of the interaction point
in the direction perpendicular to the beam axis (dr) and £+ 5 cm in the direction parallel
to the beam axis (dz), which requirement means that track used reconstruction comes
from origin of beam collision. The D candidate is required to have an invariant mass to
be within 0.015 GeV/c? of the nominal D mass as shown in Figure 3.1. The fake events
mean that reconstructed D is not real D, random combination of Kgrt7~ accidentally
comes in the mass of D. To improve the momentum determination of B meson, tracks
from D candidates are refitted constraining the invariant mass to the nominal D mass.

We check D mass selection significance as a function of © = |[mpo — M| as shown
Fig. 3.2.

Nsig.

__e (3.1)
Nsig. + NBG

Significance =
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We check D selection in signal region varying x of selection. Signal region is defined by
|AE| < 0.03, |mpo — My.| < 0.008, NB™ANS > 5 those parameters are defined below.
Significance has a maximum at x ~ 10 MeV, however significance at 15 MeV agrees
within error. In this analysis, poor signal number raises instability in (x, y) fit. I employ

|mpo — Mg rr| < 15MeV /c?* selection.
Ak

01 821.831.841.851.861. 87]2881 89 1.9 1.91
b (Gevic?)

10000

8000

6000

4000

2000

Figure 3.1: The distributions of M (K) for signal MC. The lines correspond to the
requirement. Blue filled histogram is fake D events.
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Figure 3.2: Significance of x of D mass selection for MC in signal region. Here signal region
is defined by |AE| < 0.03, |mpo — M| < 0.008, NBTRANS ~ 5 (AE, my., NBTRANS)
are described below, and they are parameters to distinguish signal and backgrounds.

3.2.3 Reconstruction of K*' Meson

The K*° meson is reconstructed by combining two oppositely-charged kaon and pion
tracks. We require LR(K /) > 0.7 for K and LR(K /) < 0.6 for 7. And also its charged
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track required to have a point of closest approach to the beam line within + 5 mm of
the interaction point in the direction perpendicular to the beam axis (dr) and + 5 cm
in the direction parallel to the beam axis (dz). The K** candidate is also required to
have an invariant mass to be within 0.050 GeV/c? of the nominal K** mass as shown in
Figure 3.3, which corresponds to = ~ 1I" with I' denoting the full width at half maximum
of mass width. To use K* higher resonance interference term k from Ref. [36], we decide
K*0 mass selection as |[mg+0 — Mg,| < 0.050 GeV/c?.
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Figure 3.3: The distributions of M(K7) for signal MC. The lines correspond to the
requirement. Blue filled histogram is fake K** events.

3.2.4 Reconstruction of B Meson

We reconstruct the B? candidate by combining a D candidate and a K*° candidate. In
addition, we use two kinematic variables, the energy difference AE = Fp + Ex+0 — Epeam
and the beam-energy-constrained mass my,. = \/ Egeam — (Pp + Pi+0)? here Ep g+ is the
energy of the D, K*° candidate and Ejeuy is the beam energy, all are evaluated in the
ete” center-of-mass (cm) frame. Figure 3.4 shows the distributions of AE and my,.. The
fake signal, self cross-feeds define that the reconstructed events which decays to signal
mode but is reconstructed with combinatorial swapping 7 from D and K*, or tag-side B,
and so on.

Self cross-feed events can have wrong Dalitz parameter information. And also detector
resolution and radiative correction from charged tracks cause migration on binning of
Dalitz plane. We evaluate those cross-feed between bin of Dalitz plane with MC sample,
detail of it is described at Section 3.6.2.

Due to combination of tracks, we may reconstruct multiple B in one event. For those
multiple candidates, we choose the best candidate on the minimum value of difference
between measured and nominal values of my,.. The reduction of the detection efficiency
due to the best candidate selection is 7.0%.
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Figure 3.4: The distribution of my,. and AFE for signal MC. Blue filled histogram is fake
B self cross-feed events.

3.2.5 Rejection of Backgrounds

We have a background contribution from [K "7~ 77| p- [K%7"|g«+ in reconstructed signal
events, which has the same final state and can peak in the signal window. In order to
reject this background, we veto the events that satisfy | Mo, — 1.870| > 0.004 GeV /2.
In Figures 3.5, the distributions of Mg~ for signal and background are shown. We
will estimate the number of remaining background events by fitting the MC sample. The
relative loss of signal efficiency by this requirement is 0.6%.

There is large contribution from the decay D** — Dr* in ete™ — cé. For remov-
ing this, we use a variable AM defined as the mass difference between the D** and D
candidates, here the D** meson is reconstructed from the D candidate used in the B
reconstruction and the 7% not used in the B reconstruction. Those real D backgrounds
have strong tendency to be mis-reconstructed as signal B. They can cause some bias due
to structures on AE. To avoid this bias, we apply AM veto. We try all the pions to
be combined, and select one for which the value of AM is closest to 0.142 GeV/c?. For
7%, we apply no particle-identification requirement because of the characteristic low mo-
mentum of 7 from D** decay. By requiring AM > 0.15 GeV /%, 14% of qg background
(19% of cé background) and 11% of BB backgrounds are removed according to MC. The
relative loss of signal efficiency is 5.5%. Figure 3.6 shows the AM distributions for signal
and gq background.

To distinguish between the signal and the background from e*e™ — ¢q (¢ = u,d, s, ¢)
continuum process, we use a neural network method based on 12 variables. For the
output of neural network, named N B, we apply a loose requirement AN'B > —0.6, which
retains 93.7% of the signal and removes 28.1% of the ¢¢ background remaining after the

39



0.3

. 120+
0.25j [
B 100~
0.2 I
i 80
0.15F i
[ 60j
0.05- II 20-
O: O: i1 T P | PR P B B n
1 15 2 25 3 35 4 45 1.821.831.841.851.861.871.§81.89 1.9 1.91
Mo (GeVic?) Mo (GeVic?)
(a) The distributions of Mpo,— for the back- (b) The distributions of My«o,- for the back-
ground Dy, K;5 . (blue) and the signal ground Dy, K& . (the same as blue his-
(white). togram of left plots). We veto inside of blue

line.

Figure 3.5: The lines correspond to the requirement.

0.07;
0.06 -
0.05-
0.04-

0.03;

Probability

0.02F

0.01;

O’wammwu L
0.12 0.13 0.14 0.15 0.16 0.17 0.18
AM
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is yellow dashed and ¢ = u, d, s is magenta dashed) and the BB background (black). The
histograms are obtained from MC.

requirement on AM, according to MC. The variable N'B will be fitted for extracting
the signal after a transformation described in Section 3.3.4. For details about N'B, see
Chapter 3.3, here the distribution can be seen in Figure 3.8 (a).
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3.3 Discrimination of ¢qg Background

There is large contribution of the continuum background from the process ete™ — ¢q
(¢ = u,d, s, c). In this section, we describe a approach to discriminate between the signal
and the background using a neural network method.

3.3.1 Introduction of Variables

Since the background e*e~ — ¢q plays a critical role to decrease the significance of our
mode, we employ 12 variables to improve qq events suppression. In the following, we list
these variables. These distributions on signal and background components are shown in
Figure 3.7.

LR(KSFW): the likelihood ratio obtained from the Fisher discriminants based on
modified Super-Fox-Wolfram moments [37]. Standard KSFW package is used; thus
such as the effect of the correlation to missing mass is included. The coefficients of
Fisher discriminants are optimized using the signal and qqg MC.

| cos by, |: the absolute value of the cosine of the angle in CM frame between the
thrust axis of the B decay and the one of the detected remainders. For the detected
remainders, we use all the charged particles, for which the pion mass is assigned,
and the gammas which have the energies larger than 0.1 GeV.

Az: the distance of the reconstructed and tag-side B vertices. For the signal event,
the absolute value can be larger because of the longer life time of the B meson.

Distance of D and K*°: the distance of closest approach between the trajectory of
the K* candidate and the trajectory of the D candidate. The value is close to zero
for the signal, while the value can be larger for the c¢ background, for which the
K*% meson can be secondary from the particle having longer life time.

| gr |: the absolute value of the flavor tagging information gr [38], here ¢ indicates
the b-flavor and r indicates the quality of the tagging. We use the multi-dimensional-
likelihood method (the standard method) for the tagging.

| cosfp |: the absolute value of the cosine of the angle between the B-flight and the
beam axes. The B meson tends to have perpendicular direction to the beam axis,
while the qq background has random direction which makes the distribution about
flat.

cos 0E: the cosine of the angle between the daughter D direction and the opposite
direction to Y(4S5) in the B-rest frame.

Z of Va1 : 2z component of sphericity vector of largest eigen-value.

Cosine of Vg1 Votn,1 © cosine of sphericity vector from signal and tag side of largest
eigen-value.
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e Cosine of Vg9 Vo 2 1 cosine of sphericity vector from signal and tag side of second
largest eigen-value.

e Cosine of Vg3 Voun. 3 1 cosine of sphericity vector from signal and tag side of smallest
eigen-value.

e Magnitude of Thrusty, : magnitude of thrust from tag side.

3.3.2 NeuroBayes Method

For combining the parameters, we employ the NeuroBayes neural network package [39],
which is a highly sophisticated tool for multivariate analysis of correlated data. We show
the result of the output (N'B) of the training in Figure 3.8 (a). Figure 3.8 (b) shows the
N B performance of cut-based analysis. We show the performance of cut-based analysis
for the comparison. We do not use the cut-based but the fit for N'B. For details about
the training, see Appendix A.

3.3.3 Contribution of Each Variable

As a check, we obtain the powers for individual variables as in Table 3.2, here the expla-
nations of contents are the following.

e Only this: the significance for single parameter. The quantity is obtained as the
correlation of a variable to the output multiplied by y/n, here n is the sample size.
The computation does not take into account other parameters.

e Without this: the significance loss when a parameter is removed. This is the loss of
correlation multiplied by /n when only one parameter is removed from the input
set and the total correlation to the output is recomputed.

e Corr. to others: the linear-correlation factor of a parameter to all the others, com-
puted with the complete correlation matrix.

On higher “Only this” for the parameters, for example LR(KSFW) has the highest value
among 12 parameters, we can see distribution which have clearly-separated as shown
in Fig 3.7 left-top. The values of “Only this” are higher for the variables which have
the distributions clearly different between the signal and the background. The value of
“Without this” is related to the value of “Only this”, becoming lower if the value of “Corr.
to others” is higher. For “Only this” and “Without this”, the relative magnitudes have
meanings. All values are the standard outputs from the NeuroBayes package obtained
from the correlations of the variables. The Values in Table 3.2 make sense according to
the distributions in Figure 3.7 and the definitions.
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Figure 3.7: The distributions of the variables used for the discrimination. We use red curve
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components shown with yellow (¢ = ¢) and magenta (¢ = u,d,s). All the requirements
except for the one on N'B are applied before showing the plots.
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Figure 3.8: The output and the performance of the NeuroBayes based on 12 parameters.

’ Variable ‘ Only this (o) ‘ Without this (o) ‘ Corr. to others ‘
LR(KSEFW) 290 62 0.85
Cosine of Vyg1 Vo1 280 35 0.87
Az 145 68 0.29
Distance of D and K*Y 105 49 0.23
| qr | 126 51 0.31
| cos b | 102 42 0.21
| cos Oy | 246 14 0.81
Magnitude of Thrust_oth. 58 12 0.23
7 of Vall,l 42 9 0.18
Cosine of Vg3 Vo3 84 7 0.64
Cosine of Vg2 Votn. 2 80 6 0.66
cos 05 10 4 0.12

Table 3.2: The power of individual parameters.
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3.3.4 NBTRANS

NB has too peaky distribution to be used to fit parameter. NB is transformed to
NBTRANS " The definition of N/BTRANS ig

o NB —NBMIN
& N Buax — NB

Here we set N Byy = —0.6 and N Byax = 0.9992. The distribution of the NBTRANS ig
Gaussian-like as shown in Figure 3.9 which is easy to fitted (; strictly speaking, it is not
Gaussian). Events whose NB < N Byn are discarded, and we confirm that there is no
event which satisfy NB > N Byax.

NBTRANS - — (3.2)

0.1¢
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0.05F
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Figure 3.9: The distribution of NB™ANS for signal MC (red) and ¢g MC (blue).

3.4 Probability Density Function (PDF)

The number of signal events is obtained by the three-dimensional fitting to AE, N BTRANS

and my.. There are three groups of components in the fitting. We prepare a three-
dimensional function for each component to be combined for making a probability density
function (PDF).

3.4.1 PDF

The strategy to make a PDF is to obtain three-dimensional function by taking a product
of one-dimensional functions for AE, NBT*N5 and my,.. This method is supported by
very small correlation between AE, NBTRANS and my,. as shown in Figure 3.10. We fit
in the region indicated by —0.1 GeV < AE < 0.3 GeV, —10 < NBTRANS < 10 and
5.21 GeV/c < mpe.
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mye) (lower) for signal (left), ¢g background (center) and BB background (right). The
correlation factors are listed at Table 3.3.

Correlation factor (%)

AE vs NB NB vs my,

Signal -4 6
BB -2 -2
qq 1 10

Table 3.3: Correlation factor.
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Functions for each component

We perform the 3D-fit assuming six components ; one is B® — DK*%signal, and others
are backgrounds. I list these components at Table 3.4.

e Signal : This component is B® — DK*? signal. Signal PDF shape is obtained from
the 2 x 10° events generated signal MC fit. Figure 3.11 shows projection for each
parameter on fit range and signal range.

e BB real D : BB background is split into BB real D and BB fake D. BB real
D is BB background which is reconstructed [Kgm7~]p is true D. PDF shape is
obtained from MC sample six times larger than real data. One MC dataset as large
as real data (corresponding to 772 x 106 BB) is counted “stream” unit, each steam
is independent. Figure 3.12 shows projection for each parameter on fit range and
signal range. In this fit, D°p° like one miss-PID backgrounds yield is floated.

e BB fake D : BB fake D is BB background other than BB real D. PDF shape is
obtained from six streams MC fit. Figure 3.13 shows projection for each parameter
on fit range and signal range.

e q7: ete” = qq, qis (u, d, s and ¢), events. PDF shape is obtained from six streams
MC fit. Figure 3.14 shows projection for each parameter on fit range and signal
range.

o D0 : We defined D°p° like one miss-PID events are called it. So, this component
describes not only D°p°. PDF shape is obtained from 1 x 10° events (corresponding
to ~ 300 times larger than expected one) generated D°p? MC. Figure 3.15 shows
projection for each parameter on fit range and signal range.

e D% : We defined D% like one miss-PID and 1 7% missing events are called it.
So, this component describes not only D% . PDF shape is obtained from 5 x 10°
(corresponding to ~ 60 times larger than expected one) events generated D% MC.
Figure 3.16 shows projection for each parameter on fit range and signal range.

’ ‘ AL ‘ N BTRANS ‘ . ‘
Signal Double Gaussian | Gaussian + BifurcatedGaussian | Gaussian + Argus
BB real D Exponential Gaussian + BifurcatedGaussian Crystal Ball
BB fake D Exponential Gaussian + Bifurcated Gaussian Argus
qq 15" order Chebychev BifurcatedGaussian Argus
DYpY Double Gaussian | Gaussian + BifurcatedGaussian | Gaussian + Argus
D Double Gaussian Gaussian Gaussian

Table 3.4: PDF.
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(b) The 3D-distributions in signal region on the signal MC sample. Signal region is
defined |AE| < 0.03, NBT™ANS > 9 and |[mpo — my,.| < 0.008.

Figure 3.11: Signal PDF, projected for each parameter on fit region and signal region.

3.5 Signal Extraction Projected for All Dalitz Region

Using the method of configuring PDF described in the previous section, we fit the MC
and data samples. We use all the Y (4S5) samples that contain 772 million BB pairs in
reprocessed data.

I obtain the result of signal yield >°.(N; + N;) = 44.2%139 with unbinned all Dalitz
region. Fig. 3.17 shows that projections for each of 3D parameter, and Table. 3.5 show
summarized each component yield.

I can obtain the branching fraction of B — DOK*? as I'(B® — DVK*0) = (2.9 +
0.9) x 10™° with assumption there is no contribution B® — D°K*? interference. This
error includes only statistical uncertainty. In PDG value, I'(B® — DOK*0) = (4.240.6) x
107°. A difference between obtained branching fraction and world average’s one is 1.2 o.
Possible causes for this difference are assumption of no B® — D°K*Y (suppressed decay)
contribution, existence of B — DK non resonant or K* higher resonant, and so on.
For the first, in neutral B decay, suppressed decay B° — DK*? contribution is larger
than charged B one. The amplitude ratio (= rg) is expected to be [0.2, 0.4]. For the
second, to check existence of B® — DK non resonant or K* higher resonant, (k factor
is affected or not) we have to study on B — DK+~ three body decay Dalitz. Here, I
assume this difference comes from only suppressed decay. The statistical significances are
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(b) The 3D-distributions in signal region on the BB real D MC sample. Peaking at
AE ~ 0.05 GeV is Dp events, its shape is fixed by fit for Dp. Signal region is defined
|AE| < 0.03, NBTRANS 5 9 and |mpo — mpe| < 0.008.

Figure 3.12: BB real D PDF, projected for each parameter on fit region and signal region.

estimated as \/ —21In(Ly/Lmax) = 2.80 o, here L.« is the maximum likelihood and Ly is
the likelihood when the signal yield is constrained to be zero.

Signal 44.27 153
BB real D | 695.8+1776
Dp° 16.67 156
Do} 59.3750%
BB fake D | 1963.2+221
4G 11075.7- 128

Table 3.5: The list of values of component yield for the fit on data.
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(b) The 3D-distributions in signal region on the BB fake D MC sample. Signal region is
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Figure 3.13: BB fake D PDF, projected for each parameter on fit region and signal region.

3.6 (z,y) Fit on Dm Mode

3.6.1 Fit Procedure to Obtain (24, y)

In this analysis, we obtain x4 and y., which in tern are used to obtain ¢3 as well as rg
and dg. The procedure to obtain the x., y is as follows:

e Parametrize the distributions of signal and background events in the variables that
will be used to extract the number of events — in our case, my., AF, and ¢g sup-
pression parameter A/BTRANS,

e Fit the data distribution in each bin of Dalitz plane separately, with the number of
events for signal and backgrounds as free parameters.

e Once the numbers of events in “-th” bin /N; have been found, put them into Eq. 1.85
to obtain the parameters x4, y+. Technically it can be done by minimizing the
negative logarithmic likelihood of the form

—2log L(z,y) = —2 Zlog p((N;)(2,9), Ni, on.), (3.3)
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Figure 3.14: qq PDF, projected for each parameter on fit region and signal region.

here (N;)(x,y) is the expected number of events in the bin i obtained from Eq. 1.85,
N; and oy, are the observed number of events and its error obtained from the data
fit. If the distribution p is Gaussian, this likelihood translates to the x? fit. Here, I
assume this likelihood method as normally x? method.

Note that the procedure described above does not make any assumptions on the Dalitz
distribution of the background events, since the fits in each bin are independent. Thus
there is no associated systematic uncertainty. However, in the case of small number of
events and many background components this can be a limiting factor. The solution would
be to use the Combined Fit with a common likelihood in all bins. Relative numbers of
background events in bins in such a fit can be constrained externally from e.g. MC sample.
In addition, in the case of the Combined Fit, the two-step procedure of first extracting
the numbers of signal events, and then using them to obtain (x, y) is not needed anymore
— we can plug the expected numbers of events (N;) as functions of (z, y) directly into the
likelihood. Thus the variables (x, y) become free parameters of the combined likelihood
fit, and the assumption of the Gaussian distribution of the number of signal events is not
needed. Both approaches (Separate Fit in bins, and the Combined Fit) are tested in the
MC sample fits, and the results are compared. Generally speaking, Combined Fit has
advantage on small statistic and large background contribution.
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(a) The 3D-distribution projected for each parameter (AFE lest, N BYRANS middle, mp.
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(b) The 3D-distributions in signal region on the D°p® MC sample. Signal region is defined
IAE| < 0.03, NBTRANS = 9 and |mpo — mpe| < 0.008.

Figure 3.15: D°p PDF, projected for each parameter on fit region and signal region.

3.6.2 Correction on N;

In this section, we review the procedure of the analysis taking into account various ex-
perimental effects: efficiency variations across the decay phase space, background, finite
momentum resolution, radiative corrections, and flavor flip. Corrections on N; taken into
account are

1). Difference in efficiency between bins
2). Cross-feed between each bin
3). Flavor flip due to K** — K7~ double miss PID.

Details of those are below. However, the effect of flavor flip can not affect on D control
sample study. Also in DK™, it is neglected, because flavor flip event rate is very small.
Effects of efficiency and cross-feed are estimated with DK*? signal mode MC sample.
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Figure 3.16: D% PDF, projected for each parameter on fit region and signal region.
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Figure 3.17: 3D-fit all dalitz region for real data, projected for each parameter (AFE left,
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Difference in efficiency between bins

With the detection efficiency taken into account (that is in general non-uniform across
the bin region), the number of events detected is:

N = / p(D)e(D)dD (3.4)




Here D is position of Dalitz plane, p(D) is density of signal number at D, ¢(D) is the
signal efficiency at D. Clearly, the efficiency does not factorize. One can use an efficiency
averaged over the bin, and to correct for it in the analysis:

& = N//Ni = [ p(D)e(D)aD/ [ p(D)aD (3.5)

The averaged efficiency €; can be determined from MC, but it depends on p(D), i. e. it
is weakly model-dependent. Figure 3.18 show €; the efficiency averaged on each bin.
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Figure 3.18: Efficiency for each bin €. Blue line means average of all Dalitz region.
Vertical error bars mean statistical uncertainty of CM sample.

Cross-feed between each bin

Finite momentum resolution leads to the migration on the events between the bins. In
the binned approach, this effect can be easily described and corrected for. The migration
can be described by the linear transformation of the number of events in bins:

N =) i (3.6)

here N is the number of events the bin k& would contain without the crossfeed, and N/
is the reconstructed number of events in the bin 7. The crossfeed matrix ;. is nearly
unit: ayr < 1 for @ # k. This matrix can be obtained from the signal MC simulation.
The matrix ay, depends on the density over the Dalitz plot. Therefore, the reasonably
realistic model has to be used in the simulation.
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Measured bin

8 7 6 5 4 -3 -2 -1 1 2 3 4 5 6 7 8

80 o o0 O o o o o0 2 1 0 1T 0 0 2 93
770 1 0 O O O O O 2 2 0 0 1 0 949 0

6/ 0 0 0 O O O O O O 4 0 0 2 93 0 0
540 0 O O o0 0O O o0 o0 0 0 1 9% 2 1 0
410 0 O O O O O O 1 O 097 1 0 0 O

g@ 310 o 0 O O O O O 3 4 92 0 0 0 o0 o0
@ 2|0 O O O o o0 O o0 1 9% 4 0 o0 2 1 0
?g 110 0 o o O O O 092 1 3 2 0 0 1 O0
;_}‘ -1{ 0 1 0 O 2 3 1 9 0 o 0 o0 o0 0 0 o0
E 210 1 3 0 0O 49 1 0 O O O O 0 0 O
310 0 O O 09 4 3 0 O 0 O 0 o0 o0 o0
41 0 o0 O 199 o0 O 1 O O O O o0 o0 o0 o0
510 1 2 9 1 o0 O 1 O O 0 O O 0 0 0
-6/ 0 0 9 2 0 0 4 O O O 0 O o0 o0 o0 o0
710 94 o0 1 0O O 2 2 O O 0 O 0 o0 1 o0
8192 2 1 o0 1 o 1 3 O O O O O o0 o0 o0

Table 3.6: Cross-feed matrix ay; (values in per cent).

Note also that in the case of D — K2n"7m~ decay from B, the crossfeed depends on

the parameters (x, y). We assume that this effect is small. T listed cross-feed matrix in
Table. 3.6.

Flavor flip due to K*° - K*7~ double miss PID

In K*Y reconstruction from K7, if we take a double miss particle identification, recon-
structed B flavor is taken flip from true B flavor. We obtain the ratio of double miss PID
[, and the number of events is writen in:

N! = N; + BN;. (3.7)

f can be obtained by signal MC, to be § ~ (0.119 4 0.007)%. This value is too small to
be able to neglected.

3.6.3 (z, y) Fit on Dr Real Data

To check validity of my (x, y) fitter, we analyze B* — Dz* and check the consistency
with Belle charged B 605 fb~' model-independent result [18]. Decay B* — Dz has
almost similar dynamics as the corresponding signal modes B° — DK*?, but with an
order of magnitude larger branching ratio. Small amplitude ratio of B~ — D%~ and
B~ — D%, r ~ 0.01 (which can be ¢3 limited factor) is expected in those decays
due to small ratio of the weak coefficients |V, V5 |/|Va Vi | ~ 0.02 and additional color
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suppression factor as in the case of B¥ — DK®*. These decays are used as control samples
to test the procedures of the background extraction and Dalitz plot fit.

As to event selection, the same criteria on D selection as B® — DK™ is required.
Primary pion is required LR(K/m) < 0.6. B selection (best candidate selection) is the

same as BY — DK™V,

For rejection of backgrounds, AM < 0.15 GeV/c* veto and qg

events reduction: NBTRANS ~ 0.6 are required. We obtain NBTRANS from the same
parameters as B — DK*? ones with optimization for separation of B* — Dn* signal

and ¢gq events.

Extraction of the number of signal events is performed by the same way as B® — DK*?,

fitting the 3D distribution of variables AE, my. and gg suppression parameter N,

BTRAN S

The fit to B* — D7t sample uses four background components in addition to the signal

PDF. These are:

e ¢q backgrounds, it is from eTe™ — g process, here ¢ = (u, d, s, ¢).

e D*O7% background, it has peak on AE lower than signal. The its PDF shape is

fixed from MC.

e D**7T background, it has peak on AE lower than signal. The its PDF shape is

fixed from MC.

e Other BB backgrounds. The its PDF shape is fixed from MC.

The PDF for the signal parametrization (as well as for each of the background com-
ponents) is a product of (AE, my., NBT™ANS) PDFs. The signal PDF is obtained from
the same way as B® — DK*?. However, AE and my,. peak position and width are floated
at the data fit. 3D-fit without Dalitz binning are shown in Fig. 3.19
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Figure 3.19: D7 3D-fit all dalitz region for real data, projected for each parameter (AE
left, N'BTRANS middle, mi, right) in signal region.

To obtain (z, y), we perform binned 3D-fit on real data. We show the legend of bin
region on Dalitz plane at Fig 3.20. Combined fit is used. Fit result on each production
of 3D in signal region (|AE| < 0.03, mye > 5.27, NBT™ANS > 0) for each bin are shown

in Fig. 3.21-3.26.
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(x, y) result are summarized at Table 3.7, here error of my result



Phase bins
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Figure 3.20: Legend of Dalitz binning. We use almost the same manner on Dm and DK *0
modes except for B <+ Bt and B° «++ B~.
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are obtained from the likelihood distribution with assumption of no correlation x and v,
however previous result first errors are corresponding to the statistical uncertainty from
Feldman-Cousin method, and second errors are systematic uncertainty.
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Figure 3.21: D 3D-fit each Dalitz bin region, projection for AE' in signal region on B~.
Red is signal. Magenta is ¢g. Yellow is D*°7*. Green is D**7T. Blue is BB.

(x4, y+) we obtained and previous one are shown in Table 3.7, and we added my D
result on Belle previous result (z, y) 2D plot at Fig. 3.28. The value for (z,, y.) are good
agreement for previous result, however those for (z_, y_) are 2-3 o apart. The possible
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Figure 3.22: D 3D-fit each Dalitz bin region, projection for AE in signal region on BT,
Red is signal. Magenta is ¢g. Yellow is D*%7*. Green is D**7T. Blue is BB.
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Figure 3.24: Dr 3D-fit each Dalitz bin region, projection for my, in signal region on BT,
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D result Belle charged B 605 fb~' model-independent result [18]
x_ | —0.0142 £+ 0.0077 —0.0045 £ 0.0087 £ 0.0056
y— | +0.0010 £ 0.0076 —0.0231 £ 0.0107 £ 0.0077
x4+ | —0.0169 £ 0.0083 —0.0172 £ 0.0089 +£ 0.0065
y+ | +0.0225 £+ 0.0076 +0.0129 £ 0.0103 £ 0.0088

Table 3.7: Comparison of (z, y) of D result

origin of this difference are

e Kgselection : we employ new K finder based on 20 kinematic and detector variables
Neurobayes method, previous study used flight length in plane of vertical from beam
axis, angle between K¢ momentum and direction and Kg invariant mass with cut

based.

e (¢ suppression : we employ 12 kinematic variables summarized by neurobayes
method, previous study used Fisher discriminant composed of 11 parameters and
cos Oy -

Other possibility of difference between my and previous study are
e D mass selection
e Backgrounds distribution in Dalitz plane

Cross-feed between bins

Efficiency correction.

However those effect can not explain (z_, y_) difference. Total signal number is different,
our total signal number is ) . N; = 18571.1+141.3, previous one is 19106.24147.3 events.

We check Dm (z, y) fit validity with 10000 pseudo-experiments which is generated
by binned 3D-PDF with random number according to statistical uncertainty. Pseudo-
experiments generated as (x_, y_, =, y+) = (0, 0, 0, 0). We check two distributions.
One is mean distribution of (z, y) which is distribution of obtained (Zops., Yobt.) from fit,
if fit has no bias, it will have a peak at (Zirue, Ytrue). Other is pull distribution, it is
distribution of

Ltrue — Lobt. (38)
O Tobt.

here oz, means uncertainty obtained from fit. If fit has no bias, it will be normal

standard distribution. For (x_, y_, ., y, ) each mean and pull distribution are shown in

Fig. 3.27. The pull distributions are almost normal standard distribution, so we take the
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error of (x, y) as one dimension from likelihood distribution. It seems to be seen small
biases on z_ and y_. In addition that, our D7 result (statistical uncertainty only) is

z_ = —0.0130 + 0.0077 (3.9)
y_ = +0.0018 + 0.0076 (3.10)
zy = —0.0169 + 0.0083 (3.11)
vy = +0.0225 £ 0.0076. (3.12)

We obtained (x, y) mean value and statistical uncertainty only (did not obtained system-
atic uncertainty). We have checked the evaluation of this (x, y) fitter.

3.7 (z, y) Fit on DK*’ Pseudo-Experiments Sample

To obtain (x4, y+), binned fit on Dalitz plane is needed. I check two fit strategies, Com-
bined Fit and Separate Fit with pseudo-experiments, generated by PDF with a random
number. We check validation of this fitter with toy MC study using pseudo-experiments,
from Separate and Combined Fit respectively. Both fit approaches described in Sec. 3.6.1
are used. We check the evaluation, comparison of (z, y) fits and fitter bias.

We generate the events (@3, s, ds) = (68°, 0.4, 111°) and >, (N;+ N;) = 44.2 situation
pesudo-experiments 500 times. Here, (z_, y_, x4, y+) = (0.293, 0.273, -0.400, 0.007).

3.7.1 Separate Fit

Fig. 3.29 shows mean and pull distribution on x4 and y4 on ) (NN; + N;) = 44.2 statistics
situation. Fig. 3.30 shows mean and pull distribution on x4 and y+ on > ,(N; + N;) =
1176.5 (the same as Belle charged B* — DK®* 605 fb™' model-independent result [18])
statistics situation.

3.7.2 Combined Fit

Fig. 3.31 shows mean and pull distribution on 24 and y1 on (NN, + N;) = 44.2 statistics
situation. Fig. 3.32 shows mean and pull distribution on x4 and yy on > ,(N; + N;) =
1176.5 statistics situation. We’'ll adopt the Combined Fit to obtain (z., y+) on DK*"
data, because it has statistical advantage in small number of signals and many background
components than Separate Fit.

3.8 Statistical Uncertainty

We’ll adopt the Combine Fit to obtain (x, y+) on DK*® data. However Figure 3.31 show
that (x4, y4) error obtained from likelihood fit can not represent statistical uncertainty. If
(x, y) fitter can return error which can represent statistical uncertainty, pull distribution
should be standard normal distribution. To evaluate statistical uncertainty in (x, y)
plane, we make confidence level surface on (z, y) plane with Feldman-Cousins frequentist
method. In next section, strategy of this method is described.
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Figure 3.27: (x, y) fit on D7 10000 pesudo-experiments mean and pull distributions. Left
column are mean and right is pull distributions. Up to down, ., y,, z_ and y_.
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Figure 3.28: (x, y) result (mean value only). error region are previous (z, y) statistical
errors (1, 2, 3 o).
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Figure 3.29: Separate Fit on pseudo-experiments results at > ,(N; + N;) = 44.2. Left
column is mean distributions. Right is pull distributions. Up to down are ., y,, x_ and

Y_.

3.8.1 Feldman-Cousin Method

To obtain statistical uncertainty on (z, y), Feldman-Cousins method is applied. If (z, y)
has some biases, it can be also evaluated by this method. We adopt the Feldman-Cousins
frequentist approach which is based on the likelihood-ratio ordering principle to obtain
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Figure 3.30: Separate Fit on pseudo-experiments results at >_.(N; + N;) = 1176.5. Left
column is mean distributions. Right is pull distributions. Up to down are x, y,, x_ and

Y.

the confidence regions z[-2., 2.], y[-2., 2.]. Detail explanation is below.

The method, used for the determination of the two-dimensional confidence regions x
and g, is an extension of that for the one-dimensional case. Therefore we first explain
how we obtain the confidence intervals for x; the intervals for y are obtained in a similar
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Figure 3.31: Combine fit on pseudo-experiments results at > ,(N; + N;) = 44.2. Left
column is mean distributions. Right is pull distributions. Up to down are x, y,, x_ and

Y.

way.

We generate > 20000 pseudo-experiments generated from binned-3D-PDF using ran-
dom number according to statistical uncertainty, for 1681 sets of (Zirue, Ytrue) values that
cover the entire regions Tie[-2-, 2.], Yirue[-2-, 2.]. The fit to each set of experiments distri-

70



X+,Obs , Mean Distrib t|9n (X”’ue “Xoon) 1O X+,om.’ Pull Distribution
@ X2 7 ndf 4.087 /22 @ X2 7 ndf 26.76 22
2220 Constant 211.7+121 € s Constant 43.02+2.52
gzoo E Mean -0.3874 0.0032 g E Mean 0.1616 + 0.0483
3 Sigma___0.06874% 0.00228 11 40~ Sigma 1.012+ 0.036
180 E
160~ 35 E_
140~ S0E-
120~ 25F-
100~ 20F-
80 E
o 15
60 E
%0 E 10
20F °E
0 E 1 1 1 1 1 1 0 E.
- -0.8 -0.6 -0.4 -0.2 [ 0.2 0.4 0.6 0.8 = -2 1 0 1 2
X, ont. o
Y+I0b5_, Mean D|str|but|70n (Y+.True - Y+,om.) /o Y+.om.’ Pull Dzlstnbutlon
P X7 I'ndf 36.37/22 o F X2/ ndf 16722
2kr Constant 137.1£ 7.9 < bk Constant 42.14+2.47
Q>J F Mean -0.005439 + 0.004971 g E Mean -0.02911 + 0.04930
o Sigma 0.1062+ 0.0035 o 40 = Sigma 1.031+ 0.037
o s
100~ E
E 30
80— E
. 25
sof- 2f-
b 15
F 10F-
20— E
o SE
oL L L Il L L L oE
- -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.6 0.8 = -2 1 0 1 2
Y. ont o
Xr,ons.’ Mean Distribution (X-,Tme “Xom) !0 Xﬂom.' Pull DIZStI'IbLJtIOFI
180 X° / ndf 1.934/22 " X/ ndf 1813722
€ F Constant 184.5+ 10.6 € 0 Constant 42,99+ 2,51
gmo - Mean 0.2933 £ 0.0037 g o Mean -0.002179 + 0.048318
F Sigma 0.07888+ 0.00261 o F Sigma 1014 0.036
140 40—
120 o
100~ 30~
80f~ r
E 20k
60— F
40 :— 10 r
of g
0 E 1 1 1 1 L 1 0 =
- -0.8 -0.6 -0.4 0.2 [ 0.2 0.4 0.6 0.8 = -2 1 0 1 2
X obt. o
Y_ obs Mean Distribution (Y e~ Yoon) /0 Yo Pl Distribution
@ X Indf 2814/ 22 @ X2 7 ndf 39.57/22
gl Constant 161.9+9.3 e %F Constant 4326+ 2.52
e, o Mean 0.263 + 0.004 g r Mean  -0.04228:+ 0.04811
oHE Sigma____0.08986+ 0.00298 o F Sigma 1.012+ 0.036
F 40—
1201~ r
100 sof-
80f~ L
60 :_ 20 -
a0 [
F 10—
20— F
0 E L L L L L 1 L L ok
- -0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 = 2 1 0 1 2
Y ont. o

Figure 3.32: Combine fit on pseudo-experiments results at > ,(N; + N;) = 1176.5. Left
column is mean distributions. Right is pull distributions. Up to down are ., y,, x_ and

Y.

bution an x.. that depends on input ., value. To account for this dependence, we use
a smoothed histogram PDF for z.,. by Kernel estimation [40] which is way of evaluation
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of distribution from n sets obtained observables,

1 = Lobt. — Lobt.i
PDF(x, = — K(——), 3.13
(Topt.) — ;:1 ( ; ) (3.13)
here
1
K(z) = ——e 2%, (3.14)

V2r
p is called scaled kernel, the parameter of smoothing. Figure 3.33 show the distributions
and the zop,, PDF for the cases (Zire, Yirue) = (—0.4,0.0) and (Zirue, Yirue) = (0.3,0.3),
respectively. When (z, y)one, are smoothed, the parameters p is selected by (z, y)on.. RMS.
The PDFs are in good agreement with the distribution of the pseudo-experiments in both
case.
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Figure 3.33: (x,y)ont. distributions (dot) and smoothed histogram PDF(solid lines (red,
orange, green, blue, magenta : p = 1,0.5,0.25,0.01,0.001)) projected for = (left) and y
(right). However p < 0.5 lines are overlapping because in those distributions p value is
enough small at 0.5. In this study, smoothing parameter is selected by (x,y)obt. RMS.
Upper(lower) are (z,y)uue = (0.4, 0.0)(0.3, 0.3).

The acceptance region [Zopt 1, Tobt 2] for a given = and a confidence level a(z) is defined
by:

Tobt.2
O{(,I) :/ dxobt.PDF(xobt,|$true) (315)

Tobt.1
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Upon performing an experiment to measure x and obtaining a value zy, we can determine
the region in which the condition x; < x¢ < x5 is satisfied

PDF(z|xye) > PDF (x| Ztrue) (3.16)

in e space. The region is confidence interval that has a confidence level equal to
a. Figure 3.34 shows the confidence interval surface when (z,y)o = (0.,0.),(—0.4,0.) is
obtained from data fit. From this method, we can obtain the statistical uncertainty of
(x,y) including fit bias which include (z, y) data fit.
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Figure 3.34: Confidence level surface at (z,y)data = (0., 0.)(left), (-0.4, 0.)(right).

For upper surface figures,

white region shows C.L. < 11.8 % (< 0.5 ¢, 0 means 2D-standard-deviation),
blue region shows C.L. < 39.3 % (< 1.0 o),

green region shows C.L. < 67.5 % (< 1.5 o),

yellow region shows C.L. < 86.5 % (< 2.0 o),

red region shows C.L. > 86.5 % (> 2.0 o).

For lower lines figures,

dot shows most probably (z, ),

dark blue line shows C.L. = 11.8 % (0.5 o),
green line shows C.L. = 39.3 % (1.0 o),
yellow line shows C.L. = 67.5 % (1.5 o),

red line shows C.L. = 86.5 % (2.0 o).
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Chapter 4

Result

4.1 (wz,y) Fit on DK*’ Real Data

We performed (z, y) fit on real data DK*°. The fit strategy is same as on D7 control
samples one. We obtained (z, y) as

- = +0.29%3%5 (4.1)
y. = —0.33753 (4.2)
corr.(x_,y_) = +7.0% (4.3)
ry = +0.0755%° (4.4)
yy = +0.05505" (4.5)
corr.(zy,yy) = —7.5% (4.6)

however we use Feldman-Cousin method to obtain statistical uncertainty, instead of this
uncertainty as described in Sec.3.8. Projection for each parameter of binned-3D-fit are
shown as Fig. 4.2 - 4.7.  We obtain statistical uncertainty as shown Fig. 4.8.

4.2 Systematic Uncertainty

Systematic errors in the (z, y) on BY — DK real data are obtained for the default
procedure of the Combined Fit with fluctuation according to uncertainty. The systematic
uncertainties are summarized in Table 4.1.

1) The uncertainty due to the efficiency variations are treated by smearing the numbers
of events in the flavor sample K; by 1.5 % [18] (the amount of difference between
the Bt — Dz and flavor samples) and preforming the (x, y) fits. The uncertainty
is obtained from the maximum of two quantities:

— RMS of x and y from smearing the numbers of events in the flavor sample K;

by 1.5%.

— Bias of z and y between the fits with and without efficiency correction for K;
obtained from signal MC,
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Source of uncertainty Arx_ Ay Az, Ay,
1) Dalitz plots efficiency +0.00 900 £0.01 0
2) Crossfeed between bins +0.00 005 oo £0.00
3) PDF shpe g B Al e
Signal shape +0.00 +£0.00 =£0.00 =+0.00
BB shape w0 e oo oo
qq +0.00 +0.00 =+£0.00 5%
D°p° shape 4+0.00 +0.00 =+0.00 0%
D shape +0.00 99 £0.00 40.00

4) Fit bias +0.00 +£0.00 =+0.00 =0.00
5) Flavor-tagged statistics +0.00 40.00 +0.00 559
6) c;, s; precision +0.03 0 +0.05 U
7) k precision +0.00 +£0.01 =+0.00 =0.00
Total without ¢;, s; precision | 95 T007  To¥5  Foo¢
Total F0.03  F0.12  F0.05  F0.09
—0.08  —0.08  —0.11 __ —0.I2

Table 4.1: Systematic uncertainties in the (z, y) measurement for B® — DK*? mode.

and obtained (40.00, T35, +0.01, T30 for (x_, y_, x4, y4).

The uncertainty due to cross-feed between bins is estimated by the bias of x and y
between the fits with and without cross-feed correction. We obtain the uncertainty
due to it as (£0.00, 7905, T0-65, £0.00).

The uncertainties due to fixed parametrization of the signal and background PDF's
are estimated by varying them by +lo. The uncertainty of NBTRANS PDF (dis-
tributions for BB are estimated by replacing signal NBTRNS PDF. It is largest
uncertainty except for ¢; and s;. The uncertainty due to real D and fake D BB
fraction is estimated by varying then from 0 to 1. Obtained uncertainties due to
signal, BB, qq, D°p° and D°a] PDFs are (£0.00, 4-0.00, £0.00, 40.00), (*508, 007,
FOOLH0.04) (40,00, ££0.00, £0.00, F999), (£0.00, £0.00, £0.00, ¥39%) and (+£0.00,
+0.00°40.00, £0.00) respectively.

The uncertainty due to errors of K; from tagged D — Kgmm statistics is obtained
by smearing the K; value within their errors. For now, we do not take correlations
into account. Obtained uncertainty due to Kj; is (£0.00, 40.00, 4-0.00, T00%).

The uncertainty due to errors of ¢; and s; parameters is obtained by smearing the
¢; and s; values within their total errors. For now, we do not take correlations into
account. Obtained uncertainty due to ¢; and s; is (£0.03, 003, £0.05, 70 9%).

The uncertainty due to errors of k from BaBar MC study is obtained by smearing
the k value within their errors. BaBar reported in [19], k& should be 0.95 %+ 0.03.
Obtained uncertainty due to k is (£0.00, £0.01, +0.00, 4+0.00).
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misc.) The uncertainty due to the bias of (z, y) fit are zero in this analysis. Those detail
are in Sec. 3.8.1. statistical uncertainty of (x, y) are included fit bias.

We obtain the systematic uncertainty for (x4, y+) as shown as Table 4.2. Fig. 4.9

Mean value Stat. Syst. w/o ¢, s;  ¢;,8;

T +0.4 e ol 40.0
Y- —0.6 R 00 +0.1
T +0.1 e ol +0.1
yr  +0.3 o o1 +0.1

Table 4.2: Result of (x4, y+).

show C.L. surface uncertainty combined statistic and systematics. Here we assume that
statistical uncertainties are 2D Gaussian that width is according to statistical uncertainty
values.

4.3 Physical Parameter Extraction

We obtain the confidence level projected for rg direction with frequentist method. It
is almost similar to one dimensional Feldman-Cousin method. We assume the (2ops.,
Yobt. | Ttrue, Ytrue) distribution as the probability distribution p(zebt.|zture). Here z = (z_,
Yy_, T4, Y1), the observed parameters. We can obtain the confidence level a(u) as,

R
Joo p(2lp)dz
here p(z|u) is the probability density to obtain the measurement result z given the set

of physics parameters u. The integration domain D(u) is given by the Feldman-Cousins
ordering;:

a(p) (4.7)

plelw)  plzolw)
p(z|ubest(z)) p(zo|ubest(20))

here fipest(2) is p that maximizes p(z|u) for the given z, and zq is the result of the data
fit. As a result of this procedure, we obtain the C.L. for the physical parameter rg as
shown in Fig. 4.10.

Systematic uncertainties are included with convolution to p(z) distribution as Gaussian
(its width are according to systematic uncertainty). In this calculation we assume that
the systematic uncertainties are uncorrelated. The final results are:

(4.8)

r¢ < 0.87 (at 68% C.L.). (4.9)
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Figure 4.8: Confidence level surface at (z, y)_ (B, left) and (z, y), (BY, right).
For upper surface figures,

white region shows C.L. < 11.8 % (< 0.5 ¢, 0 means 2D-standard-deviation),
blue region shows C.L. < 39.3 % (< 1.0 o),

green region shows C.L. < 67.5 % (< 1.5 o),

yellow region shows C.L. < 86.5 % (< 2.0 o),

red region shows C.L. > 86.5 % (> 2.0 o).

For lower lines figures,

dot shows most probably (z, ),

dark blue line shows C.L. = 11.8 % (0.5 o),
green line shows C.L. = 39.3 % (1.0 o),
yellow line shows C.L. = 67.5 % (1.5 o),
red line shows C.L. = 86.5 % (2.0 o).
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Figure 4.9: Confidence level surface including statistic and systematic uncertainty at (z,
y)_ (BY, left) and (z, y), (BC, right).
For upper surface figures,

white region shows C.L. < 11.8 % (< 0.5 0, 0 means 2D-standard-deviation),
blue region shows C.L. < 39.3 % (< 1.0 o),

green region shows C.L. < 67.5 % (< 1.5 0),

yellow region shows C.L. < 86.5 % (< 2.0 o),

red region shows C.L. > 86.5 % (> 2.0 o).

For lower lines figures,

dot shows most probably (z, y),

dark blue line shows C.L. = 11.8 % (0.5 o),
green line shows C.L. = 39.3 % (1.0 o),
yellow line shows C.L. = 67.5 % (1.5 o),
red line shows C.L. = 86.5 % (2.0 o).
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Chapter 5

Discussion

This study is performed for the purpose of the measurement of ¢3. There is no ¢3
measurement from neutral B only. When the ¢3 is extracted, we simultaneously extract rg
and dg, here rg is the ratio of amplitudes B® — D°K*? suppressed decay and B® — D°K*°
favored decay. B — D°K*? suppressed mode decays through b — wu transition. So
suppressed decay has ¢3 information. Neutral B decay modes are expected to have larger
rs value than rp in charged B. ¢3 precision capped as 1/r (ris rp or rg). rg value has not
been measured non-zero value due to B® — DK*? small statistics and large background
contribution, including this study. (Hoever B° mode indicates non-zero rg.) One of its
causes is small statistics of B — DK*Y decay. In this study, B — DK*? statistical
significance is 2.8 o as 44.2713% events are observed. It is less than expectation from
BaBar 371 x 105 BB result [41] (39 4 9) or world average, we expect that signal number
from BaBar and W.A. are

e (From BaBar) 78 events )
(This value includs interference effect B — DYK*" and BY — D°K*°.
Backgrounds events are expected larger than BaBar due to PID.)

e (From W.A.) 64 events
(This value does not include interference.).

However those signal numbers are consistent within statistical uncertainty. Especially
largest systematic uncertainty (except for ¢; and s;) come from BB backgrounds PDF
shape. It is almost caused as a result of miss-particle-identification.

In future next Super-B-Factory era, ¢35 measurements with neutral B will be possible.
For example, Belle II experiment has planned 50 times large BB as Belle’s one. And
also, particle identification will be improved. It will allow us to distinguish signal and
backgrounds more clearly. My study showed large uncertainties come from statistics,
BB backgrounds and D decay strong phase c;, s;. Adding one more assumption of next
Super-D-Factory, also uncertainty from c¢;, s; can be decreased.

In summary, this study indicates possibility of ¢3 measurement with neutral B in
not-so-distant future.
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Chapter 6

Conclusion

In summary, we report study of the ratio of amplitude B® — D°K** and B° — DY K0
rg, as shown in Fig. 4.10, using 772 x 10° BB pairs collected with the Belle detector.

rs < 0.87 (at 68 % C.L.). (6.1)

A new model-independent Dalitz analysis method is used to observe (z., y4) which enable
us to avoid the modeling uncertainty on Dalitz plane. This is first rs measurement on
neutral B with model-independent Dalitz analysis.
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Appendix A

Details on NeuroBayes Training

This appendix presents the details about the training result. Table A.1 shows the sum-
mary table for input variables. The rank in importance for network output (rank), the
identification number of the input (node), the name of variable (name), and the prepro-
cessing flag (preprocess) are listed. The preprocessing flags correspond to the explanations
below.

e 12: transform to Gaussian with no delta-function

e 14: regularized spline fit with no delta-function

e 15: regularized monotonous spline fit with no delta-function
e 34: regularized spline fit with delta-function

In the following pages, we put important figures related to the training. For the
explanations, see the captions.
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Input node 2 : kOIrksfw - Phi-T

1st most important PrePro: NeuroBayes " Teacher
added signi. 272.42 only this 272.42
signi. loss 60.42 corr. to others 83.80%

rej

Aind

leul

Figure A.3: The equalized distributions for the input variable (1st), the signal purity
(2nd), the distributions after the preprocessing (3rd), and the purity curve on the efficiency
(4th) for LR(KSFW). In the 1st and 3rd figures, the red corresponds to the signal while
the black corresponds to the background. In the 4th figure, the red corresponds to the
result after the training using all variables and the black corresponds to the one for single
parameter.



Input node 10 : vl vl

m| Phi-T

2nd most important PrePro: NeuroBayes " Teacher
added signi. 76.32 only this 264.16
signi. loss 54.27 corr. to others 86.30%
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Figure A.4: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for Cosine of Vg,1 and Vi, 1. In the 1st and 3rd figures,
the red corresponds to the signal while the black corresponds to the background. In the
4th figure, the red corresponds to the result after the training using all variables and the
black corresponds to the one for single parameter.
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Input node 4 : dz ! Phi-T

3rd most important PrePro: NeuroBayes " Teacher
added signi. 66.52 only this 138.90
signi. loss 69.78 corr. to others 28.90%
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Figure A.5: The equalized distributions for the input variable (1st), the signal purity with
a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity curve on
the efficiency (4th) for Az. In the 1st and 3rd figures, the red corresponds to the signal
while the black corresponds to the background. In the 4th figure, the red corresponds to
the result after the training using all variables and the black corresponds to the one for
single parameter. We use a delta-function for the case that the tag-side vertex cannot be
obtained. A-6



Input node 5 : dist_d_h - Phi-T

4th most important PrePro: NeuroBayes " Teacher
added signi. 61.23 only this 107.62
signi. loss 57.41 corr. to others 22.50%
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Figure A.6: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for Distance of D and K*°. In the 1st and 3rd figures, the
red corresponds to the signal while the black corresponds to the background. In the 4th
figure, the red corresponds to the result after the training using all variables and the black
corresponds to the one for single parameter.
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Input node 6 : abs(qr) - Phi-T

5th most important PrePro: NeuroBayes " Teacher
added signi. 52.96 only this 121.83
signi. loss 52.57 corr. to others 29.20%
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Figure A.7: The equalized distributions for the input variable (1st), the signal purity with
a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity curve on
the efficiency (4th) for |gr|. In the 1st and 3rd figures, the red corresponds to the signal
while the black corresponds to the background. In the 4th figure, the red corresponds to
the result after the training using all variables and the black corresponds to the one for
single parameter.
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Input node 7 : abs(cosb)
6th most important

added signi. 44.01

PrePro:
only this 93.62

signi. loss 44.94 corr. to others 21.60%
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Figure A.8: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for | cosfp|. In the 1st and 3rd figures, the red corresponds
to the signal while the black corresponds to the background. In the 4th figure, the red
corresponds to the result after the training using all variables and the black corresponds

to the one for single parameter.
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Input node 3 : cos_thr

m| Phi-T

7th most important PrePro: NeuroBayes " Teacher
added signi. 17.23 only this 232.63
signi. loss 16.19 corr. to others 79.90%
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Figure A.9: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for cosfy,,. In the 1st and 3rd figures, the red corresponds
to the signal while the black corresponds to the background. In the 4th figure, the red
corresponds to the result after the training using all variables and the black corresponds
to the one for single parameter.
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Input node 8 : cosd_b - Phi-T

8th most important PrePro: NeuroBayes " Teacher
added signi. 15.50 only this 30.43
signi. loss 15.62 corr. to others 15.20%
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Figure A.10: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for cos@5. In the 1st and 3rd figures, the red corresponds
to the signal while the black corresponds to the background. In the 4th figure, the red
corresponds to the result after the training using all variables and the black corresponds
to the one for single parameter.
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Input node 12 : v3 v3
9th most important

added signi. 5.97
signi. loss 9.76

|
PrePro:

only this 82.24
corr. to others 66.50%
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Figure A.11: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for Cosine of Ve 3 and Vi, 3. In the 1st and 3rd figures,
the red corresponds to the signal while the black corresponds to the background. In the
4th figure, the red corresponds to the result after the training using all variables and the
black corresponds to the one for single parameter.
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Input node 11 : v2_v2
10th most important

added signi. 7.90
signi. loss 8.10

PrePro:
only this 76.92
corr. to others 68.00%
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Figure A.12: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for Cosine of Vg2 and Vi, 2. In the 1st and 3rd figures,
the red corresponds to the signal while the black corresponds to the background. In the
4th figure, the red corresponds to the result after the training using all variables and the
black corresponds to the one for single parameter.
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Input node 9 : v1_z ! Phi-T

11th most important PrePro: NeuroBayes " Teacher
added signi. 6.96 only this 39.27
signi. loss 7.13 corr. to others 20.20%
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Figure A.13: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for Z of V1. In the 1st and 3rd figures, the red corresponds
to the signal while the black corresponds to the background. In the 4th figure, the red
corresponds to the result after the training using all variables and the black corresponds
to the one for single parameter.
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Input node 13 : thru_oth

m| Phi-T

12th most important PrePro: NeuroBayes " Teacher
added signi. 6.74 only this 49.65
signi. loss 6.74 corr. to others 19.60%
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Figure A.14: The equalized distributions for the input variable (1st), the signal purity
with a spline fit (2nd), the distributions after the preprocessing (3rd), and the purity
curve on the efficiency (4th) for Magnitude of Thrust_oth. In the 1st and 3rd figures,
the red corresponds to the signal while the black corresponds to the background. In the
4th figure, the red corresponds to the result after the training using all variables and the
black corresponds to the one for single parameter.
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’ rank \ node \ name \ preprocess

1 2 LR(KSFW) 12
2 10 | Cosine of Vi1 and Vo 1 14
3 4 Az 34
4 5 distance of D and K*Y 15
5 6 lqr| 14
6 7 | cos g 15
7 3 | cos Oy | 14
8 8 cos 91,3 14
9 12 | Cosine of Vg3 and Vo 3 14
10 11 | Cosine of Vg0 and Vg, 2 14
11 9 7 of ‘/31171 14
12 13 Magnitude of Thrustyg,. 14

Table A.1: The rank in importance for network output (rank), the identification number
of the input (node), the name of variable (name), and the preprocessing flag (preprocess)
are listed.
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