Difference in direct charge-parity violation between charged and neutral *B* meson decays

Nature 452, 332-335 (20 March 2008)

11 June 2008, Horii Yasuyuki

Contents

- Motivation
- Decays $B \rightarrow K\pi$
- Belle Experiment
- Methods
- *CP* asymmetries
- Conclusion

Motivation

 Equal amounts of matter and antimatter are predicted to have been produced in the Big Bang.

> It is thought that the first basic particles emerged when a large concentration of energy coagulated into matter and antimatter.

- Sakharov conditions for matter dominance
 - Baryon number violation
 - C-symmetry and CP-symmetry violation
 - Interactions out of thermal equilibrium

First Observations

1964: Indirect CPV 1999: Direct CPV *(for neutral kaons)*

 – CPV in quark sector can be explained using Kobayashi-Maskawa mechanism.

- CPV in quark sector are too small to account for the large matter-antimatter asymmetry in the Universe.
- Other sources of CPV needed.
 - CPV in lepton sector (SM)
 - · CPV in new physics beyond the standard model

Decays $B \rightarrow K\pi$

• Dominant contributions (SM)

• *CP* violation via so-called $V_{ub} \rightarrow CP$ asymmetries: We observe.

$$\boldsymbol{V} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

We can choose the quark phases so that large complex phases appears only in V_{ub} and V_{td} .

- Phase δ_{strong} can be different for the charged and neutral *B* decays.
- Similar values of $\delta_{
 m strong}$ make the two asymmetries close to each other.

Belle Experiment

- Since the decays $B \rightarrow K\pi$ are strongly suppressed, we must produce many *B* mesons and detect them with high efficiency.
 - → KEKB accelerator and Belle detector are designed for such a purpose.

Methods

- K^{\pm} , π^{\pm} , and π^{0} are reconstructed using the information provided by the Belle detector.
 - $-\pi^0$: reconstructed from two photons.
- The dominant $e^+e^- \rightarrow q\bar{q}$ background is suppressed by employing
 - event shape variables and

- B flavor tagging information.
 - » Unambiguous flavor assignment \rightarrow Likely to be a BB event.
- *CP* asymmetries are extracted by fitting $M_{\rm bc}$ - ΔE distribution.

$$\mathcal{L} = e^{-\sum_{j} N_{j}} \times \prod_{i} \left(\sum_{j} N_{j} \wp_{j}^{i} \right)$$
$$\wp_{j}^{i} = \frac{1}{2} \left[1 - q^{i} \mathcal{A}_{j} \right] P_{j} \left(M_{\rm bc}^{i}, \Delta E^{i} \right)$$

$$M_{\rm bc} = \sqrt{E_{\rm beam}^2 - P_B^2}$$
$$\Delta E = E_B - E_{\rm beam}$$

Fit Result

535 Million BB pairs

M_{bc} Projection **∆***E* Projection $|\Delta E|$ < 0.06 GeV for $K\pi$ $M_{\rm bc}$ > 5.27 GeV/ c^2 -0.14< ΔE <0.06 GeV for others $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & &$ <mark>∂</mark>1000 (b)K⁺π⁻ $(d)K^{\dagger}\pi$ (c)K⁻π 20M 750 500 Entries/ 250 $(f)K^+\pi^0$ (g)K⁻π⁰ $(h)K^{+}\pi^{0}$ 200 200 100 iter title 100 0 0 $150 - (i)\pi^{-}\pi^{0}$ $(j)\pi^+\pi^0$ $(k)\pi^{-}\pi^{0}$ $(1)\pi^{+}\pi^{0}$ 100 J ٧h 100 50 նը որի 50 0L 5.2 0 5.2 5.25 M_{bc} (GeV/c²) 5.25 5.2 0.5 0.5 0 0 ΔE (GeV)

CP Asymmetries

$$\mathcal{A}_{K^{\pm}\pi^{\mp}} \equiv \frac{N(\bar{B}^{0} \to K^{-}\pi^{+}) - N(B^{0} - K^{+}\pi^{-})}{N(\bar{B}^{0} \to K^{-}\pi^{+}) + N(B^{0} \to K^{+}\pi^{-})} = -0.094 \pm 0.018 \pm 0.008 \quad \underline{4.8\sigma}$$
$$\mathcal{A}_{K^{\pm}\pi^{0}} = +0.07 \pm 0.03 \pm 0.01$$
$$\mathcal{A}_{\pi^{\pm}\pi^{0}} = +0.07 \pm 0.06 \pm 0.01$$

Systematic error comes from

- fitting and
 - \rightarrow Estimate by fitting after varying each parameters.
- bias due to detector response.
 (Detector is made from matter.)
 →K[±]π[∓]: Use decays whose asymmetry is negligible.
 →h[±]π⁰: Use BG asymmetries.

	$K^{\pm}\pi^{\mp}$	$K^{\pm}\pi^0$	$\pi^{\pm}\pi^{0}$
Signal PDF	$^{+0.0003}_{-0.0002}$	± 0.0004	± 0.0018
Charmless B fraction	± 0.0001	$+0.0006 \\ -0.0004$	$+0.0003 \\ -0.0004$
$\pi^+\pi^-$ amount	$+0.0003 \\ -0.0001$	—	—
Fake rate of $\pi^+\pi^-$ to $K^+\pi^-$	± 0.0013	_	_
Detector bias	± 0.0081	± 0.0056	± 0.0064
Total	± 0.0082	± 0.0056	± 0.0067

CP Asymmetry for $B \rightarrow \pi^{\pm} \pi^{0}$

$$\mathcal{A}_{\pi^{\pm}\pi^{0}} = +0.07 \pm 0.06 \pm 0.01$$

• For the decay $B \rightarrow \pi^{\pm} \pi^{0}$, the contribution from the penguin diagram vanishes by isospin symmetry.

• CP asymmetry is expected to be very small.

 \rightarrow Obtained result is consistent with this expectation.

Difference of CP Asymmetries for $B \rightarrow K\pi$ Decays

$$\Delta \mathcal{A} \equiv \mathcal{A}_{K^{\pm}\pi^{0}} - \mathcal{A}_{K^{\pm}\pi^{\mp}} = +0.164 \pm 0.037$$
4.4*o*

- Contributions from **a** and **b** $\rightarrow \Delta \mathcal{A} \doteq 0$.
- Enhancement of the color-suppressed tree **c**?
 - (Could exacerbate another puzzle: ΔS puzzle.)
- Enhancement of the electroweak penguin **d**?
 - Can pick up a CP-violating phase from new physics as a loop amplitude.

∆S Puzzle

- The rate for B^0 decays to charmless states which is expected to be dominated by penguin diagrams, such as $B^0 \rightarrow K^0 \pi^0$, are too small compared to the expectation: ΔS Puzzle.
- If color-suppressed tree diagram is enhanced, △S puzzle can be exacerbated.
- More data are needed to confirm ΔS problem.
 - One can measure direct *CP* asymmetry of $B^0 \rightarrow K^0 \pi^0$, and compare it with the asymmetries for $B^{\pm} \rightarrow K^{\pm} \pi^0$ and $B \rightarrow K^{\pm} \pi^{\mp}$.

Conclusion

- *CP* asymmetries for $B \rightarrow K^{\pm} \pi^{\mp}$, $K^{\pm} \pi^{0}$, and $\pi^{\pm} \pi^{0}$ are measured using 535 million *BB* pairs.
- Direct *CP* violation in $B^{\pm} \rightarrow K^{\pm} \pi^{\mp}$ and large deviation between $\mathcal{A}_{K^{\pm}\pi^{\mp}}$ and $\mathcal{A}_{K^{\pm}\pi^{0}}$ are observed.
- The deviation could be an indication of new sources of *CP* violation beyond the SM.