Many figures come from slides for "Higgs Boson Searches at CDF" by Craig Group at LLWI 09.

27 April 2009 Y. Horii

Search for a Higgs Boson Decaying to Two W Bosons at CDF

published in PRL 102, 021802 (2009)

FNAL (Fermi National Accelerator Lab)

- Tevatron: the highest energy proton-antiproton collider.
- Two experiments, CDF and Do, are operated.

The CDF Experiment

- About 5 fb⁻¹ of integrated luminosity recorded by CDF.
- The results use up to 3 fb⁻¹.

General-purpose detector

- Luminosity measurement
- Silicon vertex detector
- Central tracking chamber
- EM Calorimeters: Jets, e, γ
- Hadronic Calorimeters: Jets
- Muon chambers

Pseudorapidity

 The (pseudo-)rapidity is preferred over the polar angle \(\theta\), because, loosely speaking, particle production is constant as a function of rapidity.

Standard Model Higgs

- EW symmetry breaking introduced via the Higgs mechanism.
 - Allow for fermion and boson mass terms in SM.
 - Predict a massive particle: the Higgs boson.

 Indirect EW constraints: *m_H* < 144 GeV (163 GeV in 2009) (assuming no significant contributions to the radiative corrections due to as-yet unobserved processes.)

LEP direct searches:

m_H > 114 GeV

Production and Decay of SM Higgs

- $gg \rightarrow H \rightarrow bb$: overwhelmed by background. (Search for associated W/Z production for low mass Higgs.)
- $gg \rightarrow H \rightarrow WW$: most sensitive Higgs search at Tevatron.

$gg \rightarrow H \rightarrow W^+W^-$

- f : dominated by top quark contribution.
- One of the final state W bosons is virtual (W^{*}) for m_H below two times the W mass.
- $l = e, \mu, \tau (\tau \rightarrow e \nu \nu, \mu \nu \nu).$

Method of the Analysis

- Triggers
 - Four selections including high p_T leptons and missing E_T .
 - Efficiencies are measured using leptonic W and Z data samples.
- Leptons
 - Lepton ID (to reject W+jets and W+γ): optimized on large W/Z samples for six mutually exclusive categories.
 - Requirements to be isolated (E_T and p_T in a cone of ΔR).
- Higgs
 - Selected from events with exactly two lepton candidates.
 - One lepton matching trigger: $E_T(p_T) > 20$ GeV for $e(\mu)$.
 - The other lepton: 10 GeV.
 - m_{ll} > 16 GeV to suppress misidentified multijet events.

SM Backgrounds and suppression

- Drell-Yan (DY), *tt*, *WW*, *WZ*, *ZZ*, *W*+jets, and *W*+ γ .
 - Drell-Yan process: a quark of a hadron and an antiquark of another (anti-)hadron annihilate, creating a virtual photon or Z boson which then decays into a pair of oppositely-charged *l*.

- DY suppression: sufficiently large missing E_{τ} .
- $tt(t \rightarrow W+jet)$ suppression: fewer than two jets with $E_{\tau} > 15$ GeV and $|\eta| < 2.5$.

Acceptances

- Generator
 - MC@NLO: WW (BG)
 - PYTHIA: WW^(*) (signal), DY, WZ, ZZ, tt
 - Another generator: $W\gamma$
- Detector simulation: GEANT-4-based.
 - Efficiency corrections for leptons by $Z \rightarrow l^+ l^-$ events.
 - Additional correction on the suppression of $W\gamma$ by data.
- W+jets contribution: estimated from data.
 - Extrapolate from a sample that contain a lepton and a jet.
 - Probability of the jet misidentification from a jet-based triggers.

After the selection,

- Expected background events: 768±91.
 - Check of the background estimation is performed using a similar method to the signal extraction for the events $qq \rightarrow WW$.
- Observed events: 779.
- To differentiate signal and background, two techniques are combined.
 - ME technique: use an event-by-event calculation of probability density for each process to produce the observed events.
 - NN (Neural Network): use the simulated data and W+jets model to improve approximation in the ME technique.

Parton level calculationMatrix ElementEfficiency $P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{LO}(\vec{y})}{d\vec{y}} \epsilon(\vec{y}) G(\vec{x}_{obs}, \vec{y}) d\vec{y}$

- Probability as a function of observed lepton momenta and missing E_{τ} .
- The likelihood ratio is defined as the signal probability divided by the sum of signal and background probabilities.

Neural Network

- NN discriminant using various kinematic variables as well as ME likelihood ratios: trained for each of m_H.
- Most discriminating variables: $LR_{H \rightarrow WW(*)}$, ΔR_{ll} , $E_{missing, T, rel}$.

Systematic uncertainties

- (Uncertainties due to MC affect all components except for W+jets.)
- Lepton selection and trigger efficiency: 1.4-2.0% (Sig), 2.1-7.1% (BG).
- PDF uncertainties for acceptance estimation: 1.9-4.0%.
- Luminosity uncertainty: 6%.
- Cross section uncertainties: 10% (*WW*, *WZ*, *ZZ*, *W* γ), 15% (*tt*).
- Higher order QCD effects: 5.5% (WW), 10% (others with LO Simu.).
- Misidentification rate of jet: 24% (W+jets).
- Resolution modeling of the missing E_{τ} : 20% (DY).
- Detector material description and γ -conversion veto efficiency: 20% ($W\gamma$).

95% C.L. limits

- A Bayesian credibility level (C.L.) is calculated.
- Median expect: for the background-only hypothesis (from many pseudoexperiments).

Combined Limits

- The figures show the results combined with the ones for several modes (*ZH*, *WH*) and for CDF and Do experiments.
- Exclusion has begun!

Prospects

 Tevatron exclude over the full mass range with 8-10/fb.

Collected with more 1.5-2.5 years.

- Limits on $gg \rightarrow H \rightarrow WW$ are obtained using 3/fb data sample recorded by the CDF detector.
- ME+NN technique is used to discriminate signal from BG.
- At most sensitive value of m_H=160 GeV, the limit is only 1.7 times the SM prediction.
 - Combined result (CDF+Do) excludes m_H around 160 GeV.
- Will be better to stay tuned.