A flavour-independent Higgs boson search in e+e- collisions at √s up to 209 GeV

11th, May, 2009 Kohei Yoshida

Introduction

- Search for the Higgsstrahlung process $(e^+e^- \rightarrow ZH)$
- ALEPH experiment @ LEP
 - year : 1998~2000
 - centre-of-mass energy : 189~209 GeV
 - luminosity : 630 pb⁻¹

Year	Luminosity (pb^{-1})	Energy range (GeV)	$\langle \sqrt{s} \rangle$ (GeV)
2000	11.2	207-209	208.0
	122.6	206-207	206.6
	80.0	204-206	205.2
1999	45.2	_	201.6
	86.3	_	199.5
	79.9	_	195.5
	28.9	-	191.6
1998	176.2	_	188.6

LEP(Large Electron Positron Collider)

- operated from 1989 to 2000
 - LEP1(1989~1995) : \sqrt{s} ~91GeV to search Z boson
 - LEP2(1996~2000) : up to \sqrt{s} ~209GeV

ALEPH detector

- The ALEPH Detector
- Particle identification (e,γ)
 - electromagnetic calorimeter
 - $\rightarrow \delta E/E = 0.18/\sqrt{E} + 0.009$ (E : GeV)

- Tracking
 - silicon vertex detector
 - drift chamber
 - time projection chamber
 - superconducting solenoidal coil (1.5T)
 - $\rightarrow \delta p_t/p_t = 6 \times 10^{-4} p_t \oplus 5 \times 10^{-3}$ (pt : GeV/c)
- Particle identification (μ)
 - hadron calorimeter
 - muon filter

 $\rightarrow \sigma(E) = 0.6\sqrt{E} + 0.6 (E : GeV)$

Events(observed, expected)

- The lepton pair final state
 - H \rightarrow qq, Z \rightarrow ll
- The missing energy final state
 - − H \rightarrow qq, Z \rightarrow vv
- The tau lepton final state
 - $H \rightarrow \tau \tau, Z \rightarrow qq$
- The four-jet final state
 - − $H \rightarrow qq, Z \rightarrow qq$

- Simulated event sample
 - signal
 - m_H from 40 to 115 GeV/ c^2 in steps of 5 GeV/ c^2
 - background
 - ZZ (including Zee, Zvv)
 - WW (including Wev)
 - ff (including $\gamma\gamma \rightarrow$ ff)

The lepton pair final state

 hl^+l^-

- $H \rightarrow qq, Z \rightarrow ll$
- cross section : 6.7% (Higgsstrahlung)
- invariant mass of two leptons close to Z boson mass
- recoil mass equal to Higgs boson mass
- Higgs boson mass can be reconstructed with good resolution

Preselection

- find lepton pairs
 - identified or isolated oppositely charged particles
 - e-e or μ - μ pair
 - invariant mass of leptons : Z boson mass

background rejection

 hl^+l^-

- WW \rightarrow qqlv
 - $\label{eq:mhadr} \ m^{\text{hadr}} + m^{\text{lept}} > 150 \ GeV \ \& \ m^{\text{hadr}} m^{\text{lept}} < 20 \ GeV$
 - $W \rightarrow lv$: identified lepton + missing four-momentum
 - $W \rightarrow qq$: the remaining energy flow particles
- $Z\gamma^*(\gamma^* \rightarrow ll)$
 - m^{ll} + m^{recoil} > 115 GeV
- llγγ
 - at least one charged particle in both jets
- ee→qq
 - $P_t^{ll} > 20 \text{ GeV}$
- reoptimise the requirement of Z mass ($m^{ll} > 77.0 \sim 82.75 \text{ GeV}$)

Result

 hl^+l^-

• 70 events are observed

- 73.4 events expected from the SM backgrounds

- The signal efficiencies
 - − H→bb,cc,gg : about 80%

- discriminant variable in C.L. calculation
 - the reconstructed Higgs mass (recoil mass)

The missing energy final state

- $H \rightarrow qq, Z \rightarrow vv$
- cross section : 20% (Higgsstrahlung)
- missing mass consistent with Z boson mass

Preselection

- hadronic events having 5 or more reconstructed charged particles
- E_{tot} from all charged particles > $10\%\sqrt{s}$
- rejection of $\gamma\gamma$ process
 - $E_{30^\circ} > 25\%$ vs or missing $P_T > 5\%$ vs
 - $|\text{missing } P_z| < 50 \text{ GeV}$ and missing mass > 50 GeV

 \rightarrow ee \rightarrow WW, ee \rightarrow qq become the main background

The three-neural-network analysis

- NN1 (output : anti-qq)
 - 7 input variables (missing mass, $\theta_{\text{missing p}}$, missing P_T, f_{30°}, f_{wedge}, $\Delta \phi$, s'/s)

hvv

- training : signal, qq
- NN2 (output : anti-WW)
 - 3 input variables (missing mass, A, missing p)
 - training : signal, WW
- NN3
 - 4? input variables (anti-qq, anti-WW, two b-tag NN outputs?)
 - training : qq, WW, Wev, Zee, ZZ

<u>Result</u>

• 177 events are selected

- 181 events expected from SM backgrounds

- The signal efficiencies
 - − H→bb,cc,gg : about 40%

- discriminant variable in C.L. calculation
 - the reconstructed Higgs boson mass

ττqq

The tau lepton final state

- $H \rightarrow \tau \tau, Z \rightarrow qq$
- cross section : 5.5% (Higgsstrahlung)
- 2 hadronic jets
- 2 oppositely charged, low multiplicity jets with missing E

Preselection

- select hadronic events
 - at least 8 charged tracks
 - E_{tot} from all charged particles > $20\%\sqrt{s}$
- suppress of WW and ZZ
 - $E_{lepton} < 25\% \sqrt{s}$
- reject radiative returns to the Z peak
 - $|missing p_z| + missing E < 1.8\gamma_{peak}$
 - $|\text{missing } p_z| < 60\%\gamma_{\text{peak}}$

selection criteria

τταα

- cluster into minijets
 - invariant mass < 2.7 GeV
 - select 2 τ candidates
- cluster into 2 jets
- kinematic consistency fit
 - $-\chi^2$ is calculated from
 - energy-momentum conservation
 - hadronic jet resolutions
 - the compatibility of the di-jet invariant masses
- select ττqq by 2 Neural Networks
- reduce the overlap with leptonic-final-state ($m_{\tau\tau} < 75 \text{ GeV}$)

discrimination between $\tau\tau qq$, $h\tau\tau$ and B.G.

- ττqq NN
 - 4 input variables (χ^2 , p_T, sum of 2 τ minijet isolation angles, sum of fitted p_T of τ with respect to nearest hadronic jet)
 - training : ττqq, qq, WW, ZZ
- hττ NN
 - 5 input variables (ττqq NN inputs, sum of NN b-tag outputs)
 - training : $h\tau\tau$, qq, WW, ZZ
- higher NN output determines if ττqq or hττ

ττqq

<u>Result</u>

- 27 events are selected
 - 27.2 events expected from SM backgrounds

- discriminant variable in C.L. calculation
 - the reconstructed Higgs boson mass

The four-jet final state

hqq

- $H \rightarrow qq, Z \rightarrow qq$
- cross section : 64.6% (Higgsstrahlung)
 - not including $H \rightarrow \tau \tau$
- main background
 - ee→qq(γ)
 - ee→WW
 - ee \rightarrow ZZ

Preselection 1

- at least 8 charged tracks
- E_{tot} of cahrged particles > $10\%\sqrt{s}$
- reject radiative returns to Z resonance
 - $p_z < 1.5(m_{vis} 90)$
- cluster into 4 jets
- $y_{34} > 0.008$
- reject radiative returns to Z with γ in detector
 - $^-$ less than 80% of E_{jet} is in the form of e and γ
- reject $WW(W \rightarrow lv)$
 - $E_{e \text{ or } \mu}(\text{most energetic}) < 20 \text{GeV}$

hqq

Preselection 2

- avoid overlap with leptonic selection
 - $m^{ll} < 40 \text{ GeV}$
- The signal efficiencies
 - − h→bb,cc,gg : order of 70%
- Agreement between data and the expectation from SM

\sqrt{s} (GeV)	Backg	Data			
	WW	qar q	ZZ	Total	
188.6	1002.1	261.5	63.8	1327.5	1242
191.6	165.2	41.9	11.8	218.9	221
195.5	459.8	108.1	35.7	603.4	614
199.5	492.3	108.0	40.0	640.1	624
201.6	238.9	51.2	19.7	309.7	261
204-209	1251.0	247.9	102.8	1601.6	1601
All \sqrt{s}	3609.3	818.6	273.8	4701.7	4563

Neural Network

- 6 variables (ε_{WW} , $S_{mH}(\varepsilon_{HZ})$, $B_{mH}(\varepsilon_{HZ})$, E_{jet}^{min} , E_{jet}^{max} , $E_{jet}^{min}\theta_{ij}$)
 - ε_{ww} : the significance of the distance to WW hypothesis
 - $S_{mH}(\epsilon_{HZ})$, $B_{mH}(\epsilon_{HZ})$: the probability density functions
 - $-\epsilon_{HZ}$: the significance of the distance to HZ hypothesis
- training : from m_H=40 GeV to 115 GeV in steps of 5 GeV
 : at E_{CM} = 189, 199.5, 206.7 GeV
- N₉₅ prescription is used to determine the appropriate cut

hqq

<u>Result</u>

- a deficit is observed in the 60 GeV and 90 GeV regions
 - statistical fluctuation
- di-jet mass information is not included as a discriminant variables in C.L. calculation

<u>Results</u>

- no departure from SM expectations consistent with the presence of a Higgs signal is observed
- Lower limits on the lightest scalar Higgs boson mass are derived as a function of ζ²_{had} and ζ²_τ (ζ² : branching fraction × ratio of production cross section to SM production cross section)

 $-\zeta^{2}_{had} = 1$

- Higgs boson masses below 110.6 GeV are excluded at 95% C.L.
- a limit of 110.5 GeV is expected in the absence of signal

 $-\zeta^2_{\tau}=1$

- Higgs boson mass below 112.4 GeV are excluded at 95% C.L.
- a limit of 113.9 GeV is expected in the absence of signal

$$-\zeta^{2}_{had}+\zeta^{2}_{\tau}=1$$

• a 109.1 GeV lower limit on $m_{\rm H}$ is obtained irrespective of ζ^2_{τ}

<u>Results</u>

• When parameters ζ^{2}_{had} and ζ^{2}_{τ} are allower to vary, the result is expressed as an excluded domain in the (m_H, ζ^{2}) plane

<u>Conslusions</u>

- Searches for higgs bosons produced via Higgsstrahlung decaying to hadrons and to tau leptons were performed in order to explore nonstandard Higgs scenarios.
- No evidence of Higgs boson production is observed in the search for either hadronic or tau decays in the data collected at energies between 189 and 209 GeV
- For a Standard Model Higgsstrahlung cross section and a 100% branching fraction to
 - hadrons
 - mass below 110.6 GeV are excluded at 95% C.L.
 - ττ
 - mass below 112.4 GeV are excluded at 95% C.L.