# Observed Event Excess in the MiniBooNE Search for $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$ Oscillations

2010年7月13日 中野浩至

# 目次

はじめに

予備知識

概要

この実験について

結果の詳細

#### はじめに

1995年、LSNDという、 $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$  を  $\bar{\nu_{e}}$  の観測で調べる実験において  $\Delta m^2 \sim 0.1 - 100 \text{ eV}^2$  領域での  $\bar{\nu_{e}}$  への振動を観測! との論文を出した。

この確認のためMiniBooNE実験が行われたが、

2009年7月の論文では、この領域で観測できなかったと報告

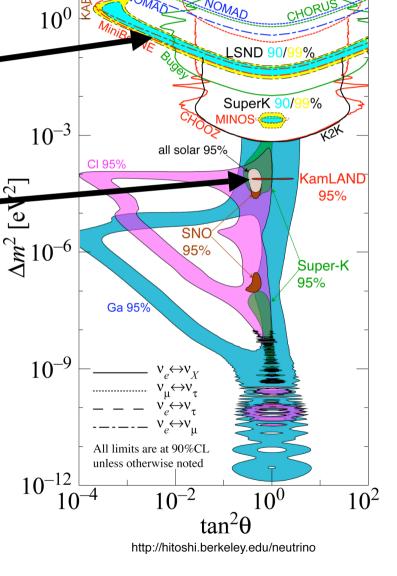
しかし!

再びMiniBooNE、2010年7月8日のこの報告では、

LSNDの結果を肯定する結果を報告

この論文

#### 何がおもしろいのか?


 $u_e$  と  $u_\mu$  の質量の二乗差  $\Delta m^2$ が異なる。

LSNDで主張 1 - 0.1 の領域

KamLAND、 Solar (SNO, SK, Ga, Cl, …etc) ∽10<sup>-4</sup>の領域

2つの領域が肯定されるのは変だ。

CP, CPTの破れや Sterile neutrino の可能性?



CDHSW

CHORUS

#### 予備知識

2世代振動の確率

$$sin^2(2\Theta)sin^2(1.27\frac{\Delta m^2L}{E})$$

Θ:混合角

Δm²: 質量の2乗差 L : 飛行距離

E:ニュートリノの

エネルギー

振動前のニュートリノの数を測って、 ニュートリノの減少を見るのが、disappearance実験

振動後のニュートリノの数を測って、 ニュートリノの増加を見るのが、appearance実験

#### ニュートリノ実験の方法

#### disappearance実験

 $u_{\alpha} \rightarrow \nu_{\beta}$  を見たい場合  $u_{\alpha}$  を飛ばして、 $u_{\alpha}$  を観測する。

あらかじめ、ニュートリノ振動が起こらなかった場合に 観測されるであろうシグナル量を見積もって、 その量からの減少分を調べる。

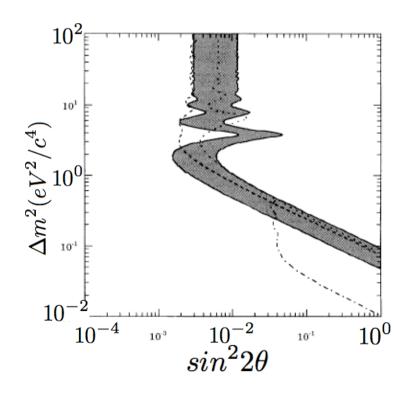
#### appearance実験

 $u_{\alpha} \rightarrow \nu_{\beta}$  を見たい場合  $u_{\alpha}$  を飛ばして、 $u_{\beta}$  を観測する。

あらかじめ、ニュートリノ振動が起こらなかった場合に 観測されるであろうシグナル量を見積もって、 その量からの増加分を調べる。

# 概要(1): LSND実験

Los Alamos Meson Physics Facilityにて、

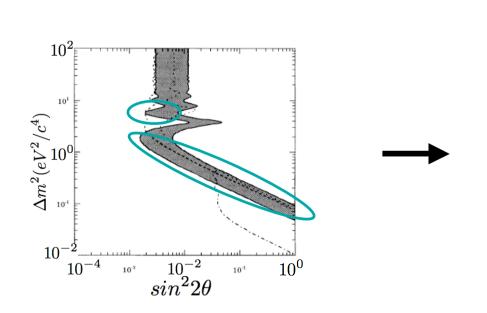

$$\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$$
 oappearance実験

ビームから作った  $\bar{\nu_{\mu}}$ をシンチレーターに打ち込む。 見積もられたBGよりも、  $\bar{\nu_{e}}$ の観測量が多ければ、  $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$ であると考えられる。

LSND実験が行われ、

 $3.8\sigma$  の  $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$  イベント観測に成功






## 概要(2): KARMEN実験

Rutherford Appleton Laboratory にて、 KARMEN実験が追実験 として行われた。

この実験では、 $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$  らしきイベントは**観測されなかった**。





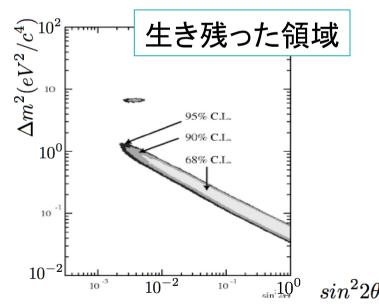



FIG. 9. Regions of various confidence for the combined analysis assuming statistical compatibility of KARMEN 2 and LSND.

## 概要(3):MiniBoone実験の目的

陰になっている部分が 生き残っている部分 (Limit線の左下が生き残る)

これをMiniBooNEが確認する。 (線はイベントが観測されなかった場合 ここまでexcludeできるという予想)

the results described here. Figure 10 shows the intended sensitivity of a new experiment, MiniBooNE at Fermilab [29], which is under construction and will independently cross-check the LSND evidence.

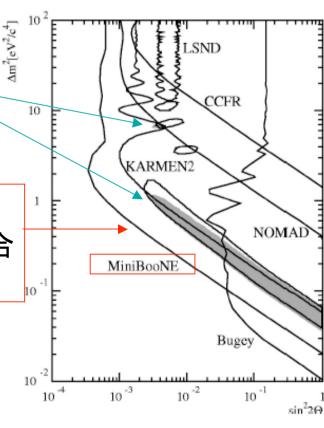
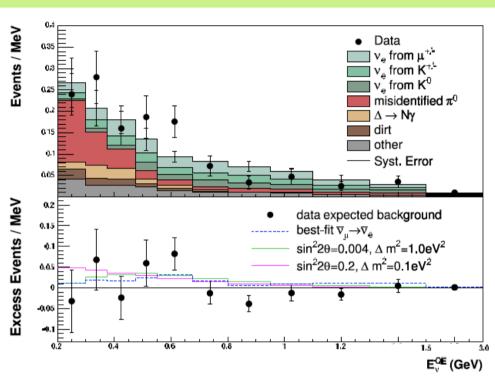


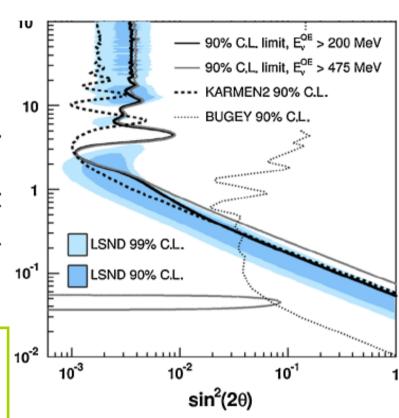

FIG. 10. Parameter regions deduced in this work (gray area) compared with existing limits of experiments (Bugey  $\bar{\nu}_e \rightarrow \bar{\nu}_x$  [26], CCFR  $\nu_{\mu} \rightarrow \nu_e$  [27] and NOMAD  $\nu_{\mu} \rightarrow \nu_e$  [28]) and the envisaged sensitivity of the MiniBooNE experiment (with final single hom design [29]).

# 概要(4):MiniBoone結果 2009年

#### シグナルは見られなかった。

| Event sample | $\bar{\nu}_e$ analysis (3.39 $	imes$ 10 <sup>20</sup> POT) |
|--------------|------------------------------------------------------------|
| 200–475 MeV  |                                                            |
| Data         | 61                                                         |
| Background   | $61.5 \pm 11.7$                                            |
| Excess       | $-0.5 \pm 11.7 \; (\; -0.04\sigma)$                        |
| 475-1250 MeV |                                                            |
| Data         | 61                                                         |
| Background   | $57.8 \pm 10.0$                                            |
| Excess       | $3.2 \pm 10.0 \; (0.3\sigma)$                              |





FIG. 1 (color online). Top: The  $E_{\nu}^{\rm QE}$  distribution for  $\bar{\nu}_e$  CCQE data (points with statistical errors) and background (histogram with unconstrained systematic errors). Bottom: The event excess as a function of  $E_{\nu}^{\rm QE}$ . Also shown are the expectations from the best oscillation fit and from neutrino oscillation parameters in the LSND allowed region. The error bars include both statistical and systematic errors.

# 概要(5):MiniBoone結果 2009年

実線がMiniBooNEで excludeした領域。

∆m²| (eV²/c⁴)

このままイベントは見つからず LSNDの領域が全てexclude されてしまうのか、 それともMiniBooNEでも イベントが観測されるのか?



2010年の結果へ ↓



# 概要(6):MiniBoone結果 2010年

再び、 1.7倍の陽子ビームに相当する データ量で解析した。

## シグナルが見られた!

TABLE II: The number of data, fitted background, and excess events in the  $\bar{\nu}_e$  analysis for different  $E^{QE}_{\nu}$  ranges. The uncertainties include both statistical and constrained systematic errors.

| $E_{\nu}^{QE}$ Range    | Data | Background                | Excess          |
|-------------------------|------|---------------------------|-----------------|
| 200 - 475  MeV          | 119  | $100.5 \pm 10.0 \pm 10.2$ | $18.5 \pm 14.3$ |
| 475 - 675  MeV          | 64   | $38.3 \pm 6.2 \pm 3.7$    | $25.7 \pm 7.2$  |
| 475 - 1250  MeV         | 120  | $99.1 \pm 10.0 \pm 9.8$   | $20.9 \pm 14.0$ |
| 475 - 3000  MeV         | 158  | $133.3 \pm 11.5 \pm 13.8$ | $24.7 \pm 18.0$ |
| $200-3000~\mathrm{MeV}$ | 277  | $233.8 \pm 15.3 \pm 16.5$ | $43.2 \pm 22.5$ |

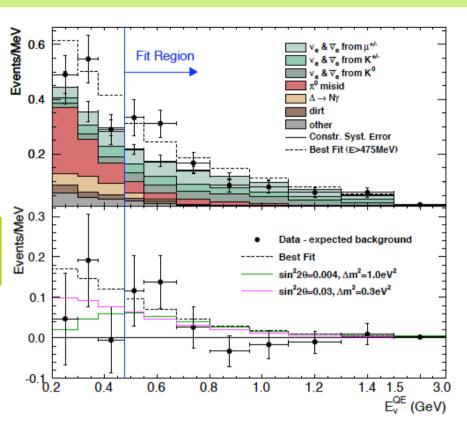
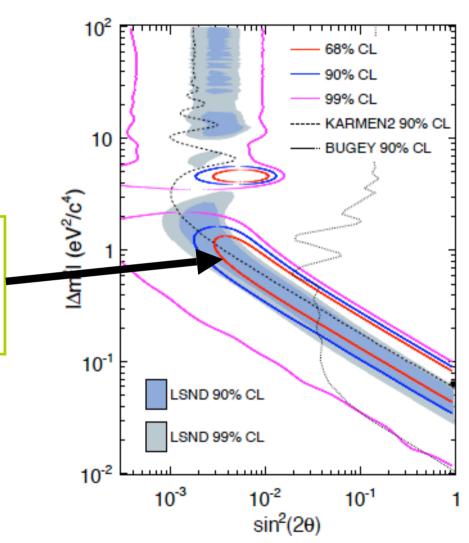




FIG. 1: Top: The  $E_{\nu}^{QE}$  distribution for  $\bar{\nu}_e$  CCQE data (points with statistical errors) and background (histogram with systematic errors). Bottom: The event excess as a function of  $E_{\nu}^{QE}$ . Also shown are the expectations from the best oscillation fit with  $E_{\nu}^{QE} > 475$  MeV,  $(\Delta m^2, \sin^2 2\theta) = (0.064 \text{ eV}^2, 0.96)$ , where the fit is extrapolated below 475 MeV, and from two other oscillation parameter sets in the allowed region. No correction has been made for the low-energy excess of events seen in neutrino mode below 475 MeV.

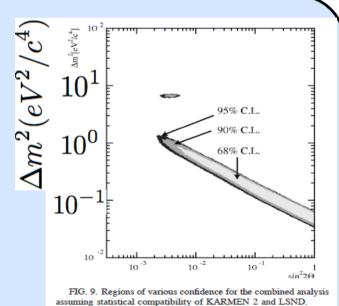
# 概要(7):MiniBoone結果 2010年

実線が今回のMiniBooNEで決めた領域。

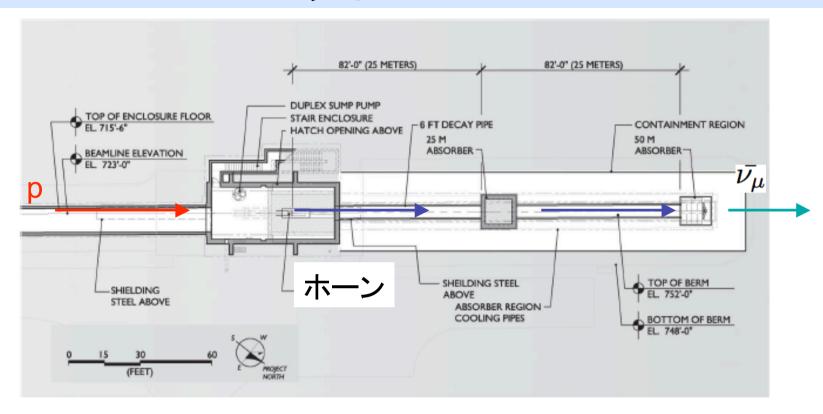
LSNDの結果を Δm²が 1 から 0.1 の範囲で 肯定!



#### MiniBooNEについて


Fermilabにある、 加速器を用いた、ニュートリノ実験。

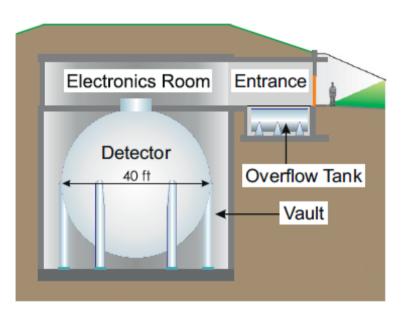


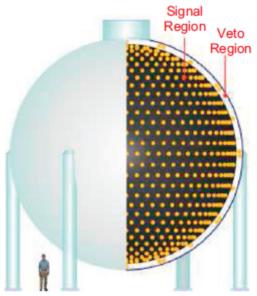

調べたい領域は Δm² が1~0.1 [eV²] の領域。

$$sin^2(2\Theta)sin^2(1.27\frac{\Delta m^2L}{E})$$

より、L [m] / E [MeV] ~ 1 となるように L,E を選択



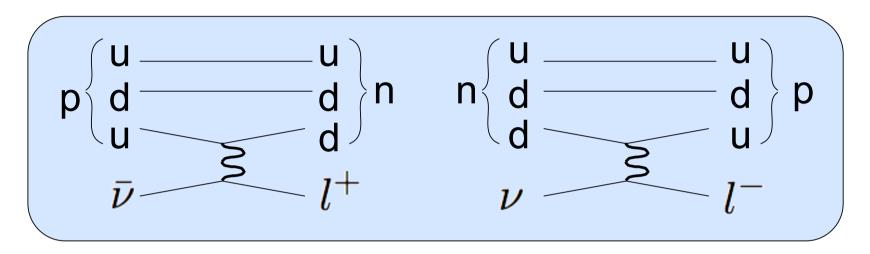

#### ビームラインについて




運動エネルギー 8GeV の p を Be ターゲットにぶつけ、 最終的に $\bar{\nu}_{\mu}$ を作る。(今回の結果は 5.66E20 pに相当)

平均エネルギー 600 MeV の  $\bar{\nu}_{\mu}$ を、およそ540m先の検出器に飛ばす

#### 検出器について






半径 6.1m (5m fiducial)
Target から 541m の位置
1520個のPMT (LSNDより+新品 330)
1280 が内向き。 240 が外向き(veto用)
無機油(CH<sub>2</sub>) 818ton

#### 検出方法

Charged-current quasi-elastic (CCQE) を用いる



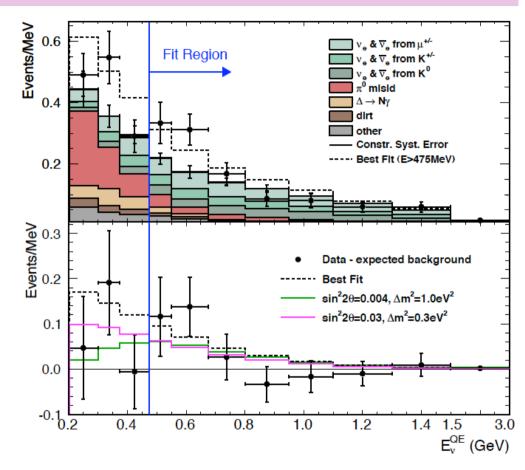
これによって生じたレプトンのチェレンコフ光を見る。

$$e^{\pm}$$
 →ぼやっとした輪っかの形  $\mu^{\pm}$  →きれいな輪っかの形

 $u_e$ と $ar
u_e$ 、 $u_\mu$ と $ar
u_\mu$ は区別ができない。

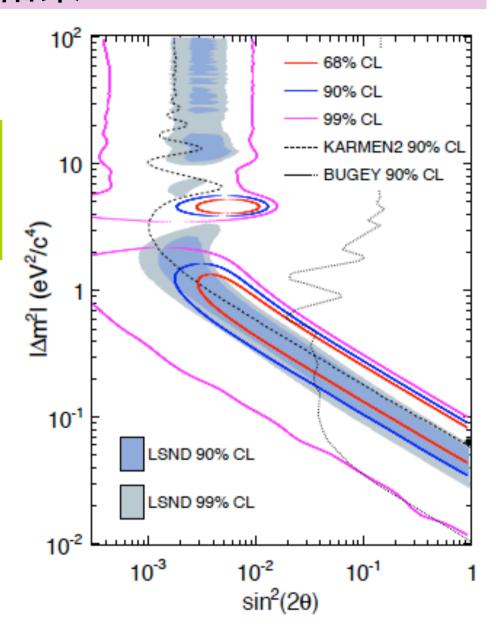
# Background の見積もり

各エネルギー領域で BGの量が見積もられた。


| Process                                              | $200-475~\mathrm{MeV}$ | 475 - 1250  MeV |
|------------------------------------------------------|------------------------|-----------------|
| $\nu_{\mu}^{(-)}$ CCQE                               | 4.3                    | 2.0             |
| $NC \pi^0$                                           | 41.6                   | 12.6            |
| NC $\Delta \to N\gamma$                              | 12.4                   | 3.4             |
| External Events                                      | 6.2                    | 2.6             |
| Other $\stackrel{(-)}{\nu_{\mu}}$                    | 7.1                    | 4.2             |
| $\stackrel{(-)}{\nu_e}$ from $\mu^{\pm}$ Decay       | 13.5                   | 31.4            |
| $\stackrel{(-)}{\nu_e}$ from $K^{\pm}$ Decay         | 8.2                    | 18.6            |
| $\stackrel{(-)}{\nu_e}$ from $K_L^0$ Decay           | 5.1                    | 21.2            |
| Other $\stackrel{(-)}{\nu_e}$                        | 1.3                    | 2.1             |
| Total Background                                     | 99.5                   | 98.1            |
| $0.26\% \ \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ | 9.1                    | 29.1            |

この値を超えれば、 → ニュートリノ振動を 観測したことになる。

# データとの比較


ニュートリノのエネルギー ごとのBG数の予想量 とデータの値の比較。

低エネルギー領域での 多い分に関しては Fitに含めていない。 (説明できていない。)



# 結果

LSNDの結果を Δm²が 1 から 0.1 の範囲で **肯定!** 

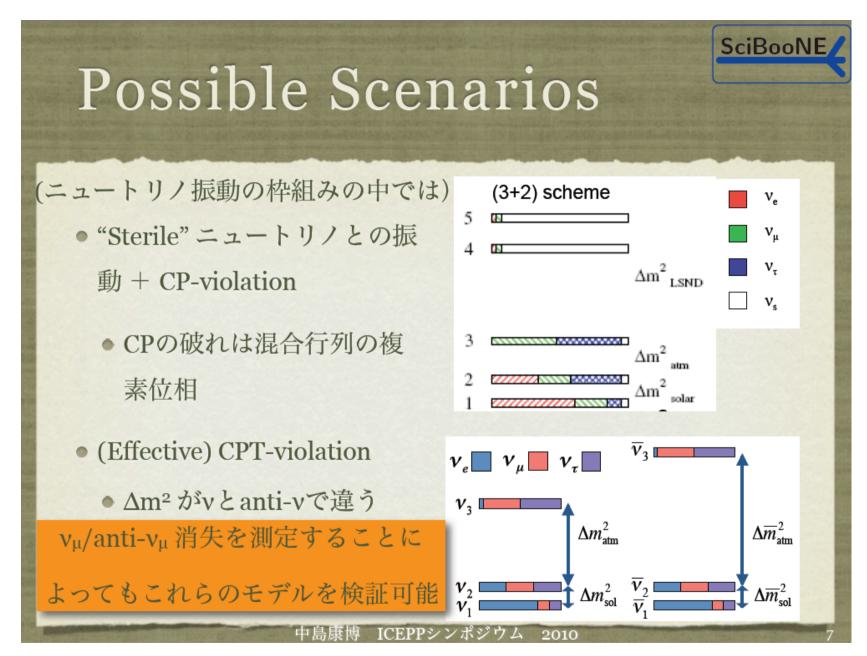


#### まとめ

KamLAND実験やSNO実験、SK等、多くの実験で  $\Delta m^2 \sim 10^{-4}$  [eV ]、大きな混合角の領域が支持されている中、

LSND実験に続き、MiniBooNE実験も、5.66E20 POTで、  $\Delta m^2$  が 1 から 0.1 [eV<sup>2</sup>]の領域を支持する事となった。

なぜ、2つの領域?


今回の結果での、低エネルギー領域の余剰分は説明できていない。

どのような理由で?



CP, CPTの破れや Sterile neutrino の可能性?

今後が気になる。



16回 ICEPPシンポジウム 中島康博さん のスライドより