Measurement of the cross section of W-boson pair production at LEP

2011/05/27

D2 佐藤 優太郎

LEP

歴史的背景

- 1983 年にSPS(Super Proton Synchrotron) @CERN でW, Zを発見。
- W, Z の精密測定 → LEP(Large Electron-Positron Collider)

- **LEP1**(1989-1995) : **Z physics** (18,000,000 million Z bosons?)
- **LEP2**(1996-2000) : **W physics** (80,000 W pair?)
- → 12 年間の運転を終えて、現在はLHC(Large Hadron Collider) に!

Four Detector of LEP

ALEPH (Apparatus for LEP PHysics at CERN)

L3 (?)

Magnet Pole

Magnet Coil

Muon Chambers

Support Tube

BGO

Luminosity Monitor

Luminosity Monitor

Vertex Chamber

DELPHI(DEtector with Lepton, Photon and Hadron Identification)

OPAL (Omni-Purpose Apparatus for LEP)

$LEP \rightarrow LHC$

Layout of the LEP tunnel including future LHC infrastructures.

Motivation

ee → WW のダイヤグラムは3 つ。

• ゲージボソンの3 点結合はSU(2) ゲージの性質(非可換)から生じる

それぞれのダイヤグラムは√s で発散。

それぞれのダイヤグラムが干渉で、

発散しなくなる。

→ ゲージキャンセレーション

Data and MC

Data

- L3 で収集した全てのデータ(LEP2) を使用。
 - ルミノシティ: 629.4 pb-1
 - 重心系エネルギー: 189-209 GeV
 - 重心系エネルギーの精度: ±50 MeV

Table 1 Average centre-of-mass energies and integrated luminosities $\frac{\langle \sqrt{s} \rangle \text{ [GeV]} \quad 188.6 \quad 191.6 \quad 195.5 \quad 199.6 \quad 201.8 \quad 204.8 \quad 206.5 \quad 208.0}{\mathcal{L} \text{ [pb}^{-1}]} \quad 176.8 \quad 29.8 \quad 84.1 \quad 83.3 \quad 37.1 \quad 79.0 \quad 130.5 \quad 8.6}$

→ 9834 four-fermion events

Signal simulator

- **KandY**: Four-fermion generator KORALW with the $O(\alpha)$ correction
- **RacoonWW**: Used for the estimation of systematic uncertainties.

B.G. simulator

- **KK2f, PYTHIA, BHAGENE3** and **BHWIDE** for fermion-pair production(ee \rightarrow ff(γ))
- **TEEGG** for radiative ee \rightarrow ee $\gamma(\gamma)$ events
- **DIAG36** and **LEP4F** for two-photon collisions with lepton-pair final states
- **PHOJET** for two-photon collisions with hadronic final states.
- **PYTHIA** for quark fragmentation and hadronisation processes.
- **LUBOEI BE**₃₂ **model**: Bose-Einstein correlations between hadrons from W decays

Detector simulation

- The response of the L3 detector is modelled with the **GEANT** detector simulation program.
- Hadronic showers are simulated with **GHEISHA** program

W decay

W decay modes

W ⁺ DECAY MODES	Fraction (Γ_i/Γ) Confidence level	<i>p</i> (MeV/ <i>c</i>)
$\ell^+ \nu$	[b] (10.80± 0.09) %	_
$e^+ \nu$	$(10.75 \pm 0.13) \%$	40199
$\mu^+ \nu$	$(10.57 \pm \ 0.15) \%$	40199
$\tau^+ \nu$	$(11.25 \pm 0.20) \%$	40179
hadrons	(67.60 ± 0.27) %	_

• W pair decay modes

Four-fermion event election

- それぞれのモードの反応断面積の不定性を最小にするようにイベントを選択。
- ダブルカウントを防ぐために、相補的なカットをしている。

電子

• 電磁カロリーメータ(BGO) 中のシャワー形状、Central tracking chamber のトラック

ミューオン

- ・ ミューオンチェンバー
- カロリーメータの信号でMIPを示す粒子

(ハドロニック) タウジェット

jet-clustering algorithm in a cone of 15° half opening angle

ニュートリノ

• ニュートリノの運動量= 欠損運動量 in qqlv events

クォークジェット

- Durham jet algorithm を用いて、再構成している。
- qqlv モードではレプトンの再構成に使われていない飛跡、クラスターから、ジェットを再構成

lvlv selection

- 2個のレプトンと欠損エネルギー(ニュートリノ)を要求。
- ID された電子・ミューオンの数で3 つに分類される。
 - 1. Jet-jet class(e,mu が0)
 - 2. Lepton-jet class(e,mu が1)
 - 3. Lepton-lepton class(e,mu が2)

• Lepton-jet or jet-jet では最もエネルギーの高いジェットをtau とする(???)。

方向に関するカット

e,μ,τ jet from hadronic tau decay direction : $|\cos \theta| < 0.96$ を要求

- 電子が2個IDされた時は、少なくとも1つのleptonが、|cosθ|<0.92を要求
 - To suppress Bhabha scattering.
- Jet-jet class では、エネルギーの高い2 つのジェットは $|\cos\theta| < 0.92$
- Acoplanarity angle
 - > 8 degrees (lepton-lepton, lepton-jet)
 - > 14 degree (jet-jet)
 - To suppress lepton-pair production and cosmicray

<u>タイミングに関するカット</u>

Lepton はビーム衝突のタイミングでscintillator TOF に信号があることを要求。

極端に前方or後方に 飛んだトラックは除外。

レプトン・レプトンがback-toback ではないことを要求

lvlv selection(cont'd)

運動量・エネルギーに関するカット

- ・ 横運動量が大きいことを要求。 $\sum |P_t| > 8 {
 m GeV}$
- レプトン・ジェットのエネルギーが大きいことを要求。
 - $-E_{lepton1} > 25 \text{GeV}, E_{lepton2} > 5 \text{GeV}$ for lepton-lepton class
 - $E_{lepton} > 20 \text{GeV}, E_{jet} > 8 \text{GeV}$ for lepton-jet class
 - $E_{jet1} > 20 \text{GeV}, E_{jet2} > 6 \text{GeV}$ for jet-jet class

選択されたサンプル

- Purity ~ 72 % @ $\sqrt{s} = 206.5 \text{ GeV}$
- ・ 残っているB.G. は
 - Lepton production in two-photon collisions(50%)
 - Lepton-pair production(24%)

lyly distribution

Number of Events / 4 GeV

• Fig.2 (a),(b)

Excess is due to cosmic-ray B.G.

Acoplanarity angle(lepton-lepton)

qqev selection

• 20 GeV 以上の電子とhigh particle-multiplicityと大きい欠損運動量を要求

再構成した質量

- $M_{ij} > 45 \text{ GeV}$
- M_{ev} > 63 GeV(ee→qqτv と区別)

方向に関するカット

- 欠損運動量の方向: | cosθ_{mis} | < 0.95
- The directions of the electron and of the two jets are required to subtend a solid angle of less than < 5.3sr (???????)

選択されたサンプル

- Purity ~ 98 % @ $\sqrt{s} = 206.5 \text{ GeV}$
- W-boson pair production 以外からのB.G.
 - $\text{ ee} \rightarrow \text{qqev}(71\%) -$
 - $\text{ ee } \rightarrow \text{qq}(\gamma) (29 \%)$

qqev distribution

• Fig2.(c),(d)

qquv selection

• High particle-multiplicity とミューオン(もしくはMIPs) と大きい欠損運動量を要求。

再構成した質量

- $25~\text{GeV} < M_{ii} < 125~\text{GeV}$ for events with μ
- $50 \text{ GeV} < M_{ii} < 98 \text{ GeV}$ for events with MIPs.
- M_{μν} > 53 GeV (ee→qqτν と区別)

<u>方向に関するカット</u>

- ee→qqτvと区別するため、変数 P* = |p_u| 10 GeV (cosθ* + 1) を使う。
 - θ* はW の静止系でのμ のdecay angle(???)
 - P* > 18.5 GeV を要求(MIPs イベントの場合は、P* > 15 GeV)
- ee→qq(γ)と区別する。
 - $-\psi_{\mu i} \times \sin\theta_{mis} > 5.5$ degrees (20 degrees for events with MIPs)
- ・ W のrelativistic velocity > 0.34~0.49 (ee→ZZ→qqμμ と区別)

選択されたサンプル

- Purity = 98 % @ \sqrt{s} = 206.5 GeV
- W boson pair production 以外からのB.G.
 - Z boson pair production (52%)
 - $\text{ ee } \rightarrow \text{qq}(\gamma) (31\%)$

qquv distribution

Jet-Jet Mass (GeV)

 $\psi_{\mu i} \times \sin \theta_{miss}$ (deg)

100 120 140

qqtv selection

• 孤立した低運動量の電子・ミューオンもしくはnarrow jet in a hadronic environment と大きい欠損エネルギーを要求

運動量カット

• $P_t > 10 \text{ GeV}$

<u>Jet</u>

- $30 \text{ GeV} < M_{jj} < 110 \text{ GeV}$
- 2 ジェット(qq) の反跳質量: M_{miss-ii} > 35 GeV

Tau candidate

- 5 GeV 以上の電子・ミューオンがある場合は、 M_{ev} と $M_{\mu\nu}$ によって(相補的に)選択
 - MIPs はtau candidate には、ならない。
- 電子・ミューオンが無い場合は、ニューラルネットワークを使って、tau-jetを探す。
 - Hadronic tau decay の特徴
 - Low multiplicity, small jet opening angle, low jet mass, high electromagnetic fraction of the jet energy
 - ニューラルネットワークの出力の一番高いものをタウとする。

qqτν selection(cont'd)

Tau jet

- Tau jet イベントに対しては以下のカットもかける。(ee→qq(γ) の低減)
 - P, < 20 GeV ならば、ニューラルネットの出力が期待値に近いことを要求。
 - タウジェットを構成している荷電トラックは多くても3つ。
 - $|\cos\theta_{\text{miss}}| < 0.91$
 - The solid angle subtended by the directions of the tau-jet candidate and the other two jets must be less than 6sr. (???)

選択されたサンプル

- ee \rightarrow WW \rightarrow qq τ v (62 %)
- ee \rightarrow WW \rightarrow others (21 %)
- W-boson pair production 以外からのB.G.
 - ee \rightarrow qq(γ) (54%)
 - ee **→**qqeν (46%)

qqtv distribution

30 GeV < M_{ii} < 110 GeV を要求

qqqq selection

- 小さい欠損エネルギー、High multiplicity、four-jet topology を要求。
- Durham jet-resolution parameter $Y_{34} > 0.0015$
- キネマティックフィット(運動量保存)を使用して、エネルギー、角分解能を改善。
- ニューラルネットを使って、イベント選択。
 - ee→qq(γ) を区別するようにトレーニング。
 - 変数は10個使用(→ 次のページで説明)。
- Dominant B.G. はee→qq(γ)、主にqqgg
- MC では $ee \rightarrow qq(\gamma)$ が4 jet になる確率がうまく記述できていないので、 Z decay (@ $\sqrt{s} = 91$ GeV) からMC とData の違い(比) を測定し、補正。

選択されたサンプル

- ニューラルネットの出力0.6 以上を要求すると、purity = 80 % @ √s = 206.5 GeV
- B.G.
 - $\text{ ee} \rightarrow \text{qq}(\gamma) (59\%)$
 - Z boson pair production(41%)

qqqq selection(cont'd)

ニューラルネットに使用した10個の変数。

- イベント形状
 - $-y_{34}$
 - Probability of the kinematic fit
 - Sum of the cosines of the six angles between the four jets.
- ジェット密度: Lowest jet-multiplicity
- ジェットエネルギー
 - Energies of the most and of the least energetic jets.
 - Difference between the energies of the second and the third most energetic jets
- ・ ジェット形状
 - Spherocity [ref.34]

$$S' = \left(rac{4}{\pi}
ight)^2 \left(rac{\sum |p_{\perp}|}{\sum |p|}
ight)^2$$

Broadenings[ref.35] of the most and of the least energetic jets

$$K^{c}(m, n, Q^{2}) \equiv \left\langle \sum_{\{c\}} \left| \underline{p}_{T} \right|^{m} z^{n} \right\rangle$$
,

qqqq distribution

- Efficiency は10 (modes) × 10(energy) で求めている(→ Table.2)。
- 選択されたイベント数と予想されるB.G. 数、測定された反応断面積とSM の理論値(→ Table.3)。

$e^+e^- \rightarrow$	$N_{\rm data}$	$N_{ m bg}$	σ (CC03) [pb]	σ_{SM} [pb]	$N_{\rm data}$	$N_{ m bg}$	σ (CC03) [pb]	$\sigma_{\rm SM}$ [pb]
	$\langle \sqrt{s} \rangle = 188.6 \text{ GeV}$			$\langle \sqrt{s} \rangle = 201.8 \text{ GeV}$				
$\ell \nu \ell \nu$	235	57.2	$1.87 \pm 0.17 \pm 0.06$	1.72	40	12.3	$1.47 \pm 0.35 \pm 0.07$	1.81
qqev	347	22.9	$2.29 \pm 0.14 \pm 0.03$	2.38	70	5.3	$2.26 \pm 0.30 \pm 0.03$	2.49
$qq\mu\nu$	341	14.9	$2.25 \pm 0.14 \pm 0.04$	2.38	79	3.4	$2.62 \pm 0.33 \pm 0.05$	2.49
$qq\tau v$	413	69.7	$2.82 \pm 0.22 \pm 0.07$	2.38	77	13.9	$2.45 \pm 0.47 \pm 0.06$	2.49
qqqq	1477	328.7	$7.17 \pm 0.24 \pm 0.12$	7.42	301	64.6	$7.10 \pm 0.52 \pm 0.12$	7.79
$\langle \sqrt{s} \rangle = 191.6 \text{ GeV}$			$\langle \sqrt{s} \rangle = 204.8 \text{ GeV}$					
$\ell \nu \ell \nu$	35	10.4	$1.67 \pm 0.41 \pm 0.07$	1.76	85	25.9	$1.58 \pm 0.26 \pm 0.05$	1.82
qqev	73	4.1	$2.95 \pm 0.37 \pm 0.04$	2.42	176	11.0	$2.78 \pm 0.23 \pm 0.04$	2.50
$qq\mu\nu$	63	2.4	$2.61 \pm 0.36 \pm 0.04$	2.42	142	6.5	$2.30 \pm 0.22 \pm 0.04$	2.50
qqτν	57	11.9	$1.87 \pm 0.48 \pm 0.05$	2.42	164	26.4	$2.63 \pm 0.33 \pm 0.07$	2.50
qqqq	236	57.5	$6.79 \pm 0.56 \pm 0.15$	7.56	656	137.2	$7.66 \pm 0.37 \pm 0.13$	7.81
	$\langle \sqrt{s} \rangle = 195.5 \text{ GeV}$			$\langle \sqrt{s} \rangle = 206.5 \text{ GeV}$				
$\ell \nu \ell \nu$	105	30.2	$1.76 \pm 0.25 \pm 0.06$	1.79	128	42.6	$1.42 \pm 0.19 \pm 0.06$	1.82
qqev	168	10.9	$2.36 \pm 0.20 \pm 0.03$	2.46	269	16.9	$2.56 \pm 0.17 \pm 0.03$	2.50
$qq\mu\nu$	157	8.2	$2.14 \pm 0.20 \pm 0.03$	2.46	240	11.8	$2.28 \pm 0.17 \pm 0.04$	2.50
$qq\tau \nu$	222	33.8	$3.44 \pm 0.34 \pm 0.08$	2.46	287	45.1	$2.92 \pm 0.27 \pm 0.07$	2.50
qqqq	665	153.5	$6.92 \pm 0.34 \pm 0.11$	7.68	1108	220.1	$8.07 \pm 0.29 \pm 0.13$	7.82
$\langle \sqrt{s} \rangle = 199.6 \text{ GeV}$				$\langle \sqrt{s} \rangle = 208.0 \text{ GeV}$				
$\ell \nu \ell \nu$	87	26.0	$1.68 \pm 0.27 \pm 0.06$	1.80	11	2.4	$2.23 \pm 0.86 \pm 0.06$	1.82
qqev	152	11.4	$2.21 \pm 0.20 \pm 0.03$	2.48	14	1.1	$2.02 \pm 0.61 \pm 0.03$	2.50
$qq\mu\nu$	142	7.3	$2.05 \pm 0.20 \pm 0.04$	2.48	23	0.7	$3.59 \pm 0.81 \pm 0.05$	2.50
$qq\tau\nu$	181	32.2	$2.75 \pm 0.32 \pm 0.07$	2.48	17	2.9	$2.43 \pm 1.03 \pm 0.06$	2.50
qqqq	726	151.1	$7.91 \pm 0.36 \pm 0.13$	7.76	65	14.1	$7.28 \pm 1.16 \pm 0.11$	7.82

Fit method

• 反応断面積をMaximum-Likelihood fit で求める。

Signal + cross-feed
$$\mu_{i} = \left(\sum_{j=1}^{10} \epsilon_{ij} \sigma_{j} + \sum_{k=1}^{N_{i}^{bg}} \epsilon_{ik}^{bg} \sigma_{k}^{bg}\right) \mathcal{L},$$

- lvlv は統計数が少ないので6 mode をまとめた反応断面積を求める。
- LikelihoodはPoissson P(N_i, μ_i) の積で表される。
- ただしee→qqqq の場合は、異なる。

0

- ニューラルネットの出力の分布をsignal とB.G のnoramlization をフロートにしてフィット。ee→qq(γ) B.G. の反応断面積を決める(→ Table.4)。
- ニューラルネットの分布から求める反応断面積の関数としてLikelihoodを作る

Systematic uncertainties

- Luminosity measurement
- MC statistics
- Detector modeling
- Modeling of the hadronisation processes.
- Bose-Einstein correlation
- Color reconnection
- B.G. cross section
- W mass, width
- ISR, FSR simulation

Results(Cross section σ_{WW})

- Cross-feed があるため、それぞれの反応断面積は相関がある。
- SM のW の崩壊分岐比を仮定して、σ_{ww} が求められる(→Table.6)。

$$\sigma_{4f} = Br[WW o 4f] imes \sigma_{WW}$$
 $\sigma_{
m Mpce}/\sigma_{
m The}$ $R = 0.992 \pm 0.011 \pm 0.009 \pm 0.005,$ (誤差) 統計 系統 理論

→ 理論的不定性0.5% の範囲内で良く一致している。

Other results

Branching fraction

- Br(Hadronic) + Br(leptonic) = 1 と固定して、崩壊分岐比を求めている(→ Table.7)。
- charged-lepton universality
 - Hypothesis test : $0.8 \% (2.6 \sigma)$

Branching fraction	Lepton non-universality	Lepton universality	Standard Model
$Br(W \to e\nu) [\%]$	$10.78 \pm 0.29 \pm 0.13$	-	
$Br(W \to \mu \nu)$ [%]	$10.03 \pm 0.29 \pm 0.12$	_	
$Br(W \to \tau \nu)$ [%]	$11.89 \pm 0.40 \pm 0.20$	_	
$Br(W \to \ell \nu)$ [%]	_	$10.83 \pm 0.14 \pm 0.10$	10.83
$Br(W \rightarrow qq)$ [%]	$67.30 \pm 0.42 \pm 0.30$	$67.50 \pm 0.42 \pm 0.30$	67.51

CKM

・ W の崩壊分岐比はtop 成分以外のCKM matrix が効いてくるので、 CKM 成分が求められる。

$$1/\text{Br}(W \to \ell \nu)$$

= $3 + 3[1 + \alpha_s(m_W)/\pi] \sum_{i=u,c; j=d,s,b} |V_{ij}|^2$,

$$\sum_{i=\text{u,c; } j=\text{d,s,b}} |V_{ij}|^2 = 2.002 \pm 0.038 \pm 0.027,$$

$$|V_{\rm cs}| = 0.977 \pm 0.020 \pm 0.014,$$

Other results(cont'd)

Differential cross section

- ee→qqev or qqµv を使って、W⁻の方向の関数として微分反応断面積を求めた。
 - レプトンの電荷の符号でW がタグできるので、この2 つのモードを使用。
 - $-\cos\theta_{\mathbf{W}_{-}}$ は、2ジェットから方向をレプトンで符号を決める。

MC とよく一致している。

Conclusion

L3 で収集した全てのデータ(LEP2) を使用。

- ルミノシティ: 629.4 pb-1
- 重心系エネルギー: 189~209 GeV

結果

- W-boson pair production の反応断面積 → SM と良く一致!
 - $-R = 0.992 \pm 0.011(stat) \pm 0.009(syst.) \pm 0.005(theo.)$
- W の崩壊分岐比
- W⁻ の方向の関数として微分反応断面積 → SM と良く一致!