Measurement of the cross section of W-boson pair production at LEP

2011/05/27 D2 佐藤 優太郎

LEP

- 1983 年にSPS(Super Proton Synchrotron) @CERN でW, Zを発見。
- W, Z の精密測定 → LEP(Large Electron-Positron Collider)

- LEP1(1989-1995) : Z physics (18,000,000 million Z bosons?)
- LEP2(1996-2000) : W physics (80,000 W pair?)
- → 12 年間の運転を終えて、現在はLHC(Large Hadron Collider) に!

Four Detector of LEP

$LEP \rightarrow LHC$

Layout of the LEP tunnel including future LHC infrastructures.

CERN AC - HF267 - 04-07-1997

Motivation

ee → WW のダイヤグラムは3 つ。

• ゲージボソンの3 点結合はSU(2) ゲージの性質(非可換)から生じる

12

[10-⁸ mb]

- それぞれのダイヤグラムは√s で<mark>発散</mark>。
- それぞれのダイヤグラムが干渉で、
 発散しなくなる。

→ ゲージキャンセレーション

Data and MC

<u>Data</u>

- L3 で収集した全てのデータ(LEP2)を使用。
 - ルミノシティ: 629.4 pb-1
 - 重心系エネルギー:189-209 GeV
 - 重心系エネルギーの精度 : ±50 MeV

 Table 1

 Average centre-of-mass energies and integrated luminosities

$\langle \sqrt{s} \rangle [\text{GeV}]$	188.6	191.6	195.5	199.6	201.8	204.8	206.5	208.0
\mathcal{L} [pb ⁻¹]	176.8	29.8	84.1	83.3	37.1	79.0	130.5	8.6

 \rightarrow 9834 four-fermion events

- **Signal simulator**
- KandY : Four-fermion generator KORALW with the $O(\alpha)$ correction
- **RacoonWW** : Used for the estimation of systematic uncertainties.

B.G. simulator

- KK2f, PYTHIA, BHAGENE3 and BHWIDE for fermion-pair production(ee \rightarrow ff(γ))
- **TEEGG** for radiative $ee \rightarrow ee\gamma(\gamma)$ events
- DIAG36 and LEP4F for two-photon collisions with lepton-pair final states
- **PHOJET** for two-photon collisions with hadronic final states.
- **PYTHIA** for quark fragmentation and hadronisation processes.
- LUBOEI BE₃₂ model : Bose-Einstein correlations between hadrons from W decays Detector simulation
- The response of the L3 detector is modelled with the **GEANT** detector simulation program.
- Hadronic showers are simulated with GHEISHA program

W decay

• W decay modes

W ⁺ DECAY MODES	F	Fraction (Γ_i/Γ)	Confidence level	р (MeV/c)
$\ell^+ \nu$	[<i>b</i>]	$(10.80\pm~0.09)~\%$		_
$e^+ \nu$		$(10.75\pm~0.13)~\%$		40199
$\mu^+ \nu$		$(10.57\pm~0.15)~\%$		40199
$ au^+ u$		$(11.25\pm~0.20)~\%$		40179
hadrons		(67.60± 0.27) %		-

• W pair decay modes

WW $\rightarrow 1\nu l\nu$	 BR ~ 10%	(6 modes)
WW \rightarrow qqlv	BR ~ 44%	(3 modes)
$WW \rightarrow qqqq$	BR ~ 46%	(1 modes)

Four-fermion event election

それぞれのモードの反応断面積の不定性を最小にするようにイベントを選択。
ダブルカウントを防ぐために、相補的なカットをしている。

<u>電子</u>

- 電磁カロリーメータ(BGO) 中のシャワー形状、Central tracking chamber のトラック
 ミューオン
- ・ ミューオンチェンバー
- カロリーメータの信号でMIP を示す粒子

<u>(ハドロニック) タウジェット</u>

jet-clustering algorithm in a cone of 15° half opening angle

• ニュートリノの運動量= 欠損運動量 in qqlv events

<u>クォークジェット</u>

- Durham jet algorithm を用いて、再構成している。
- qqlv モードではレプトンの再構成に使われていない飛跡、クラスターから、ジェットを再構成

lvlv selection

- 2個のレプトンと欠損エネルギー(ニュートリノ)を要求。
- ID された電子・ミューオンの数で3 つに分類される。
 - 1. Jet-jet class(e,mu が0)
 - 2. Lepton-jet class(e,mu \mathfrak{M}^{1})
 - 3. Lepton-lepton class(e, mu \mathfrak{M}^2)
- Lepton-jet or jet-jet では最もエネルギーの高いジェットをtau とする(???)。 極端に前方or後方に 方向に関するカット 飛んだトラックは除外。
- e,μ,τ jet from hadronic tau decay direction : $|\cos\theta| < 0.96$ を要求
- 電子が2 個ID された時は、少なくとも1 つのlepton が、| cosθ | < 0.92 を要求
 - To suppress Bhabha scattering.
- Jet-jet class では、エネルギーの高い2 つのジェットは $|\cos\theta| < 0.92$ レプトン・レプトンがback-to-back ではないことを要求
- Acoplanarity angle
 - > 8 degrees (lepton-lepton, lepton-jet)
 - > 14 degree (jet-jet)
 - To suppress lepton-pair production and cosmicray

タイミングに関するカット

Lepton はビーム衝突のタイミングでscintillator TOF に信号があることを要求。

lvlv selection(cont'd)

<u>運動量・エネルギーに関するカット</u>

- 横運動量が大きいことを要求。 $\sum |P_t| > 8 \text{GeV}$
- レプトン・ジェットのエネルギーが大きいことを要求。
 - $E_{lepton1} > 25 \text{GeV}, E_{lepton2} > 5 \text{GeV}$ for lepton-lepton class
 - $E_{lepton} > 20 \text{GeV}, E_{jet} > 8 \text{GeV}$
- for lepton-jet class
- $E_{jet1} > 20 \text{GeV}, E_{jet2} > 6 \text{GeV}$ for jet-jet class

<u>選択されたサンプル</u>

- Purity ~ 72 % @ $\sqrt{s} = 206.5 \text{ GeV}$
- 残っているB.G. は
 - Lepton production in two-photon collisions(50%)
 - Lepton-pair production(24%)

lvlv distribution

qqev selection

- 20 GeV 以上の電子とhigh particle-multiplicity と大きい欠損運動量を要求
 再構成した質量
- $M_{jj} > 45 \text{ GeV}$
- $M_{ev} > 63 \text{ GeV}(ee \rightarrow qq\tau v と区別)$
- <u>方向に関するカット</u>
- ・ 欠損運動量の方向: | cosθ_{mis} | < 0.95

- The directions of the electron and of the two jets are required to subtend a solid angle of less than < 5.3sr (??????)

<u>選択されたサンプル</u>

• Purity ~ 98 % @ $\sqrt{s} = 206.5 \text{ GeV}$

qqev distribution

• Fig2.(c),(d)

qqµv selection

- High particle-multiplicity とミューオン(もしくはMIPs)と大きい欠損運動量を要求。
 再構成した質量
- 25 GeV < M_{jj} < 125 GeV for events with μ
- $50 \text{ GeV} < M_{ii} < 98 \text{ GeV}$ for events with MIPs.
- M_{µv} > 53 GeV (ee→qqτv と区別)

方向に関するカット

- ee→qqτvと区別するため、変数 P* = |p_µ| 10 GeV (cosθ* + 1) を使う。
 θ* はW の静止系でのµ のdecay angle(???)
 - P* > 18.5 GeV を要求(MIPs イベントの場合は、P* > 15 GeV)
- ee→qq(γ)と区別する。
 - $\psi_{\mu j}$ × sin θ_{mis} >5.5 degrees (20 degrees for events with MIPs)
- ・ W のrelativistic velocity > 0.34~0.49 (ee→ZZ→qqµµ と区別) <u>選択されたサンプル</u>
- Purity = 98 % @ \sqrt{s} = 206.5 GeV
- W boson pair production 以外からのB.G.
 - Z boson pair production (52%)
 - ee \rightarrow qq(γ) (31%)

qqµv distribution

qqtv selection

 孤立した低運動量の電子・ミューオンもしくはnarrow jet in a hadronic environment と大きい欠損エネルギーを要求

<u>運動量カット</u>

• $P_t > 10 \text{ GeV}$

<u>Jet</u>

- $30 \text{ GeV} < M_{jj} < 110 \text{ GeV}$
- 2 ジェット(qq)の反跳質量: M_{miss-jj} > 35 GeV

Tau candidate

- 5 GeV 以上の電子・ミューオンがある場合は、M_{ev}とM_{µv}によって(相補的に)選択
 MIPs はtau candidate には、ならない。
- 電子・ミューオンが無い場合は、ニューラルネットワークを使って、tau-jetを探す。
 - Hadronic tau decay の特徴
 - Low multiplicity, small jet opening angle, low jet mass, high electromagnetic fraction of the jet energy
 - ニューラルネットワークの出力の一番高いものをタウとする。

qqτv selection(cont'd)

<u>Tau jet</u>

- Tau jet イベントに対しては以下のカットもかける。(ee→qq(γ)の低減)
 - P_t < 20 GeV ならば、ニューラルネットの出力が期待値に近いことを要求。
 - タウジェットを構成している荷電トラックは多くても3つ。
 - $|\cos\theta_{miss}| < 0.91$
 - The solid angle subtended by the directions of the tau-jet candidate and the other two jets must be less than 6sr. (???)

<u>選択されたサンプル</u>

- ee \rightarrow WW \rightarrow qq τv (62 %)
- ee \rightarrow WW \rightarrow others (21 %)
- W-boson pair production 以外からのB.G.
 - ee→qq(γ) (54%)
 - ee→qqev (46%)

qqtv distribution

30 GeV < M_{ii} < 110 GeV を要求

qqqq selection

- 小さい欠損エネルギー、High multiplicity、four-jet topology を要求。
- Durham jet-resolution parameter $Y_{34} > 0.0015$
- キネマティックフィット(運動量保存)を使用して、エネルギー、角分解能を改善。
- ニューラルネットを使って、イベント選択。
 - ee→qq(γ)を区別するようにトレーニング。
 - 変数は10 個使用(→次のページで説明)。
- Dominant B.G. は $ee \rightarrow qq(\gamma)$ 、主にqqgg
- MC ではee→qq(γ) が4 jet になる確率がうまく記述できていないので、
 Z decay (@ √s = 91 GeV) からMC とData の違い(比)を測定し、補正。

<u>選択されたサンプル</u>

- ・ ニューラルネットの出力0.6 以上を要求すると、purity = 80 % @ √s = 206.5 GeV
- B.G.
 - ee→qq(γ) (59%)
 - Z boson pair production(41%)

qqqq selection(cont'd)

- ニューラルネットに使用した10個の変数。
- イベント形状
 - y₃₄
 - Probability of the kinematic fit
 - Sum of the cosines of the six angles between the four jets.
- ジェット密度 : Lowest jet-multiplicity
- ・ ジェットエネルギー
 - Energies of the most and of the least energetic jets.
 - Difference between the energies of the second and the third most energetic jets
- ・ ジェット形状

- Spherocity [ref.34]
$$S' = \left(\frac{4}{\pi}\right)^2 \left(\frac{\sum |p_{\perp}|}{\sum |p|}\right)$$

- Broadenings[ref.35] of the most and of the least energetic jets

$$K^{\mathrm{c}}(m, n, Q^2) \equiv \left\langle \sum_{\{\mathrm{c}\}} |\underline{p}_{\mathrm{T}}|^m z^n \right\rangle,$$

qqqq distribution

- Efficiency は10 (modes) × 10(energy) で求めている(→ Table.2)。
- ・ 選択されたイベント数と予想されるB.G. 数、測定された反応断面積 とSMの理論値(→ Table.3)。

$e^+e^- \rightarrow$	N _{data}	N _{bg}	σ(CC03) [pb]	$\sigma_{\rm SM}$ [pb]	N _{data}	N _{bg}	$\sigma(CC03)$ [pb]	$\sigma_{\rm SM}$ [pb]
	$\langle \sqrt{s} \rangle =$	188.6 GeV			$\langle \sqrt{s} \rangle =$	201.8 GeV		
$\ell \nu \ell \nu$	235	57.2	$1.87 \pm 0.17 \pm 0.06$	1.72	40	12.3	$1.47 \pm 0.35 \pm 0.07$	1.81
qqev	347	22.9	$2.29 \pm 0.14 \pm 0.03$	2.38	70	5.3	$2.26 \pm 0.30 \pm 0.03$	2.49
$qq\mu\nu$	341	14.9	$2.25 \pm 0.14 \pm 0.04$	2.38	79	3.4	$2.62 \pm 0.33 \pm 0.05$	2.49
$qq\tau v$	413	69.7	$2.82 \pm 0.22 \pm 0.07$	2.38	77	13.9	$2.45 \pm 0.47 \pm 0.06$	2.49
qqqq	1477	328.7	$7.17 \pm 0.24 \pm 0.12$	7.42	301	64.6	$7.10 \pm 0.52 \pm 0.12$	7.79
	$\langle \sqrt{s} \rangle =$	191.6 GeV			$\langle \sqrt{s} \rangle =$	204.8 GeV		
$\ell \nu \ell \nu$	35	10.4	$1.67 \pm 0.41 \pm 0.07$	1.76	85	25.9	$1.58 \pm 0.26 \pm 0.05$	1.82
qqev	73	4.1	$2.95 \pm 0.37 \pm 0.04$	2.42	176	11.0	$2.78 \pm 0.23 \pm 0.04$	2.50
$qq\mu\nu$	63	2.4	$2.61 \pm 0.36 \pm 0.04$	2.42	142	6.5	$2.30 \pm 0.22 \pm 0.04$	2.50
$qq\tau v$	57	11.9	$1.87 \pm 0.48 \pm 0.05$	2.42	164	26.4	$2.63 \pm 0.33 \pm 0.07$	2.50
qqqq	236	57.5	$6.79 \pm 0.56 \pm 0.15$	7.56	656	137.2	$7.66 \pm 0.37 \pm 0.13$	7.81
	$\langle \sqrt{s} \rangle =$	195.5 GeV			$\langle \sqrt{s} \rangle =$	206.5 GeV		
$\ell \nu \ell \nu$	105	30.2	$1.76 \pm 0.25 \pm 0.06$	1.79	128	42.6	$1.42 \pm 0.19 \pm 0.06$	1.82
qqev	168	10.9	$2.36 \pm 0.20 \pm 0.03$	2.46	269	16.9	$2.56 \pm 0.17 \pm 0.03$	2.50
$qq\mu\nu$	157	8.2	$2.14 \pm 0.20 \pm 0.03$	2.46	240	11.8	$2.28 \pm 0.17 \pm 0.04$	2.50
$qq\tau v$	222	33.8	$3.44 \pm 0.34 \pm 0.08$	2.46	287	45.1	$2.92 \pm 0.27 \pm 0.07$	2.50
qqqq	665	153.5	$6.92 \pm 0.34 \pm 0.11$	7.68	1108	220.1	$8.07 \pm 0.29 \pm 0.13$	7.82
	$\langle \sqrt{s} \rangle =$	199.6 GeV			$\langle \sqrt{s} \rangle =$	208.0 GeV		
$\ell \nu \ell \nu$	87	26.0	$1.68 \pm 0.27 \pm 0.06$	1.80	11	2.4	$2.23 \pm 0.86 \pm 0.06$	1.82
qqev	152	11.4	$2.21 \pm 0.20 \pm 0.03$	2.48	14	1.1	$2.02 \pm 0.61 \pm 0.03$	2.50
$qq\mu\nu$	142	7.3	$2.05 \pm 0.20 \pm 0.04$	2.48	23	0.7	$3.59 \pm 0.81 \pm 0.05$	2.50
qqtv	181	32.2	$2.75 \pm 0.32 \pm 0.07$	2.48	17	2.9	$2.43 \pm 1.03 \pm 0.06$	2.50
qqqq	726	151.1	$7.91 \pm 0.36 \pm 0.13$	7.76	65	14.1	$7.28 \pm 1.16 \pm 0.11$	7.82

Fit method

• 反応断面積をMaximum-Likelihood fit で求める。

- lvlv は統計数が少ないので6 mode をまとめた反応断面積を求める。
- LikelihoodはPoissson P(N_i, µ_i)の積で表される。
- ただLee→qqqqの場合は、異なる。
 - ニューラルネットの出力の分布をsignal とB.G のnoramlization をフロートにしてフィット。ee→qq(γ) B.G. の反応断面積を決める(→ Table.4)。
 - ニューラルネットの分布から求める反応断面積の関数としてLikelihoodを作る

Systematic uncertainties

- Luminosity measurement
- MC statistics
- Detector modeling
- Modeling of the hadronisation processes.
- Bose-Einstein correlation
- Color reconnection
- B.G. cross section
- W mass, width
- ISR, FSR simulation

Results(Cross section σ_{WW})

- Cross-feed があるため、それぞれの反応断面積は相関がある。
- SMのWの崩壊分岐比を仮定して、σ_{ww}が求められる(→Table.6)。

$$\sigma_{4f} = Br[WW \to 4f] \times \sigma_{WW}$$

→理論的不定性0.5%の範囲内で良く一致している。

Other results

Branching fraction

- Br(Hadronic) + Br(leptonic) = 1 と固定して、崩壊分岐比を求めている(→ Table.7)。
- charged-lepton universality
 - Hypothesis test : 0.8 % (2.6 σ)

Branching fraction	Lepton non-universality	Lepton universality	Standard Model
$Br(W \to e\nu) [\%]$	$10.78 \pm 0.29 \pm 0.13$	_	
$Br(W \rightarrow \mu \nu)$ [%]	$10.03 \pm 0.29 \pm 0.12$	_	
$Br(W \rightarrow \tau \nu)$ [%]	$11.89 \pm 0.40 \pm 0.20$	_	
$Br(W \rightarrow \ell \nu)$ [%]	_	$10.83 \pm 0.14 \pm 0.10$	10.83
$Br(W \rightarrow qq) [\%]$	$67.30 \pm 0.42 \pm 0.30$	$67.50 \pm 0.42 \pm 0.30$	67.51

<u>CKM</u>

 Wの崩壊分岐比はtop 成分以外のCKM matrix が効いてくるので、 CKM 成分が求められる。

$$\frac{1}{\text{Br}(W \to \ell \nu)} = 3 + 3 \left[1 + \alpha_{\text{s}}(m_{\text{W}}) / \pi \right] \sum_{i=u,c; \ j=d,s,b} |V_{ij}|^2,$$

 $\sum_{i=u,c; j=d,s,b} |V_{ij}|^2 = 2.002 \pm 0.038 \pm 0.027,$

 $|V_{\rm cs}| = 0.977 \pm 0.020 \pm 0.014,$

Other results(cont'd)

Differential cross section

- ee→qqev or qqµv を使って、W⁻の方向の関数として微分反応断面積を求めた。
 - レプトンの電荷の符号でW がタグできるので、この2 つのモードを使用。
 - cosθ_{w-}は、2ジェットから方向をレプトンで符号を決める。

• MC とよく一致している。

Conclusion

- L3 で収集した全てのデータ(LEP2)を使用。
- ルミノシティ: 629.4 pb-1
- 重心系エネルギー: 189~209 GeV

<u>結果</u>

- W-boson pair production の反応断面積 → SM と良く一致!
 - $-R = 0.992 \pm 0.011(stat) \pm 0.009(syst.) \pm 0.005(theo.)$
- W の崩壊分岐比
- W⁻の方向の関数として微分反応断面積 → SM と良く一致!