Daya Bay Reactor Neutrino Experiment $\sim \theta_{13} \sim$

arXiv:1203.1669v2 2012/04/25 佐藤 優太郎

Neutrino Physics

- ニュートリノ振動のパラメータ
 - 質量の2 乗差 |Δm₁₂|, |Δm₂₃|,|Δm₁₃| : 波長
 - 混合角 $\theta_{12}, \theta_{23}, \theta_{13}$: 振幅

→ θ₁₃ とδ が未測定

- 位相 δ: CP の破れ

ニュートリノ振動(2世代の場合)

0 -

$$P(\nu_e \to \nu_\mu; L) = \frac{\sin^2 2\theta}{\sin^2 2\theta} \cdot \sin^2 1.27 \frac{\Delta m^2 [\text{eV}^2]}{E[\text{GeV}]} L[\text{km}]$$

$$\frac{1}{120} \frac{1}{120} \frac{1}{1$$

→ ニュートリノ振動は混合があり(θ≠0)、かつ質量差があるとき(Δm≠0)のみ、生じる。

振動周期に対して飛行距離が短い場合 振動周期に対して飛行距離が長い場合、 ニュートリノエネルギーに幅があることから、 $P(\nu_e \to \nu_\mu) \sim \sin^2 2\theta \cdot \left(\frac{\Delta m^2}{4E}L\right)^2$ $P(\nu_e \to \nu_\mu) \sim \frac{1}{2} \sin^2 2\theta$

θ₁₃ 測定

<u>加速器を用いた方法(T2K, MINOS)</u>

- ・ ニュートリノ源: 陽子ビームを標的に当てて生成された K,π が生成。 その崩壊から生じる(ミューオン)ニュートリノ。
- Appearance experiment $(v_{\mu} \rightarrow v_{e})$

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\Delta m_{31}^{2} L/4E\right)$$

$$= 4J_{r} \sin \delta \sin \left(\Delta m_{21}^{2} L/2E\right) \sin^{2} \left(\Delta m_{31}^{2} L/4E\right) + \dots$$

$$(Approximation @ \Delta m_{31}^{2} L/4E \sim \pi/2, \Delta m_{32}^{2} \sim \Delta m_{31}^{2})$$

$$+ \text{ for } \overline{\nu} \qquad J_{r} \equiv \cos \theta_{12} \sin \theta_{12} \cos \theta_{23} \sin \theta_{23} \underline{\cos^{2} \theta_{13} \sin \theta_{13}}$$

<u>原子炉を用いた方法(Double Chooz, Daya Bay, Reno)</u>

- ニュートリノ源:ウラン原子核が中性子を吸収して、核分裂を起こす。
 核分裂で生じた原子核がβ崩壊を起こす。→反電子ニュートリノ
- Disappearance experiment (anti- $v_e \rightarrow anti-v_e$)

$$P(\overline{\nu}_e \to \overline{\nu}_{\mu,\tau}) \approx \sin^2(2\theta_{13}) \sin^2\left(\frac{\Delta m_{32}^2 L}{4E}\right) + \sin^2(2\theta_{12}) \cos^4(\theta_{13}) \sin^2\left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

- 2つの測定は相補的。
- 原子炉を用いた方法は、*CP*の破れ(δ)、物質効果の影響を受けない。

θ₁₃ 測定

• Near Detector とFar Detector で比較して、

反電子ニュートリノがわずかに減少していることを観測する。

• Near Detector とFar Detector で系統誤差を相殺。

Reactor-based theta_13 Experiments

原子炉

- 6 つの2.9 GWth の原子炉を使用。
 - 合計17.4GWth = 3.6×10^{21} v/s
 - GWth (熱出力:単位時間当たりの原子炉の発熱量) はThermal power[GW] のこと。

検出器の配置図

- 今回の解析では、6つの検出器を使用。
- 3つの実験ホール。
 - 3つの実験ホールは水平トンネルでつながっている。
- Far detector は振動確率が最大になると予想されている点。

Daya Bay Underground Laboratory

反電子ニュートリノの検出方法

遅延同時計測法 液体シンチレータ(0.1% Gadolinium doped LS) を用いて、 逆β崩壊を観測することにより、反電子ニュートリノを検出する。 先発信号:液体シンチレータ中の電子と対消滅を 起こして、2本のγ線を出す $\bar{\nu}_e + p \rightarrow e^+ + n$ \rightarrow +p \rightarrow D + γ (2.2 MeV) 180 µs \rightarrow +Gd \rightarrow Gd^{*} \rightarrow Gd + γ (8 MeV) 30 µs 後発信号:中性子が液体シンチレータ中において、弾性散乱 を繰り返す中で減速し、熱中性子となる。そのあと、 液体シンチレータ中の水素原子もしくはガドリニウム 原子に捕獲され、先発信号から遅れて、γ線を出す。 v_e spectrum (no oscillation) 先発信号と後発信号の時間差とエネルギーでB.G. を抑制。 先発信号の大きさ

 $E_{prompt} = E_{\bar{\nu}_e} - 1.8 \text{MeV}(\text{threshold}) + 1.02 \text{MeV}(\text{anihilation})$

 $\sim E_{\bar{\nu}_e} - 0.78 MeV$

 $E_{\rm th} = (m_n + m_e) - m_p$ = 1.805 [MeV]

2

3

8

E. (MeV)

Expected Neutrino Signals

Near sites ~700/day/detector

Far site ~90/day/detector

アクリルタンク(透明)

- ・ 検出器は3層に分かれている。
- 上下にリフレクター(反射鏡)を設置。
 - Photocathode coverage $5.6\% \rightarrow 12\%$
- Detector mass : 110 t

ターゲット層(液体シンチレータ+Gd)■ ここでニュートリノが反応。20t

Gamma-Catcher 層(液体シンチレータ)-ターゲット層から漏れ出たγを逃さず 反応させる。(No-fiducial volume cut), 20t

Buffer 層(ミネラルオイル) ここではシンチレーション光は発生しない。 外部からの放射線を遮断。37t

スチールタンク (直径5m)

PMT (光検出器) 192 個, 12%/√E @1 MeV

検出器の組み立て

Stainless Steel Vessel (SSV) in assembly pit

Install Lower reflector

4m Acrylic Vessel (AV)

Lower 3m AV

Install Calibration Units

Close SSV Lid

Install Top reflector

Install PMT Ladders

Two ADs Installed in Hall 1

Three ADs insalled in Hall 3 Physics Data Taking Started on Dec.24, 2011

Muon Veto System

	Overburden	R_{μ}	E_{μ}	D1,2	L1,2	L3,4
EH1	250	1.27	57	364	857	1307
EH2	265	0.95	58	1348	480	528
EH3	860	0.056	137	1912	1540	1548

TABLE I. Vertical overburden (m.w.e.), muon rate R_{μ} (Hz/m²), and average muon energy E_{μ} (GeV) of the three EHs, and the distances (m) to the reactor pairs.

Water Cerenkov detector

2層のプール、それぞれにPMT が設置されている。

Two active cosmic-muon veto's

- > Water Cerenkov: Eff.>97%
- > RPC Muon tracker: Eff. > 88%

<u>期間</u>

- 2011年12月24日~2012年2月17日 (55 日間)
- 43,000 ton-GWth-day livetime exposure

<u>検出した反電子ニュートリノイベント</u>

- 80,376 イベント (near hall)
- 10,416 イベント (far hall)

Blind analysis

- 原子炉の発熱量
- ターゲット層の液体シンチレータの量

<u>トリガー</u>

- 2 つの条件のどちらかを満たした場合、トリガーをかける。(rate < 280 Hz/AD)
 閾値 0.25 photoelectron を越えたPMT の数 (NHIT>45)
 - 閾値を越えたPMT の総電荷 (ESUM~>65)
- データとしては各PMT のcharge とtiming をそれぞれの検出器で独立に保存。
- Reactor flux fluctuations による系統誤差を抑えるため、すべての検出器が動いて いた時のみの取得データを使用。

イベント選択条件

- 先発信号のエネルギー: 0.7~12.0 MeV
- 後発信号のエネルギー: 6.0 < 12.0 MeV,
- 先発信号と後発信号の時間差1~200 μs

Muon-veto

- 検出器の外のプールのPMT のNHIT>12 → WS muon candidate "µws"
 - 後発信号が600µs 以内にあるときは除外。
- μ_{ws}から2µs以内に検出器のPMTのエネルギーが20MeV 以上 → muon "µ_{AD}"
 後発信号が1000µs 以内にあるときは除外。
- µ_{ws}から2µs以内に検出器のPMTのエネルギーが2.5GeV 以上 → showering muon "µ_{sh}"
 後発信号が1s 以内にあるときは除外。
- Multiplicit ycut
 - No additional > 0.7 MeV trigger in the time range $[t_p-200 \ \mu s, t_d+200 \ \mu s]$

バックグランドの見積もり

	AD1	AD2	AD3	AD4	AD5	AD6	
IBD candidates	28935	28975	22466	3528	3436	3452	
No-oscillation prediction for IBD	28647	29096	22335	3566.5	3573.0	3535.9	
DAQ live time (days)	49.5530		49.4971	48.9473			
Muon veto time (days)	8.7418	8.9109	7.0389	0.8785	0.8800	0.8952	
$\epsilon_{\mu}\cdot\epsilon_{m}$	0.8019	0.7989	0.8363	0.9547	0.9543	0.9538	
Accidentals (per day)	$9.82{\pm}0.06$	$9.88{\pm}0.06$	$7.67{\pm}0.05$	3.29 ± 0.03	3.33 ± 0.03	$3.12\pm\!0.03$	
Fast-neutron (per day)	$0.84{\pm}0.28$	$0.84{\pm}0.28$	$0.74{\pm}0.44$	$0.04{\pm}0.04$	$0.04{\pm}0.04$	$0.04 {\pm} 0.04$	
⁹ Li/ ⁸ He (per AD per day)	3.1±1.6		$1.8{\pm}1.1$	$0.16{\pm}0.11$			
Am-C correlated (per AD per day)	0.2±0.2						
¹³ C(α , n) ¹⁶ O background (per day)	$0.04{\pm}0.02$	$0.04{\pm}0.02$	$0.035 {\pm} 0.02$	$0.03{\pm}0.02$	$0.03{\pm}0.02$	$0.03 {\pm} 0.02$	
IBD rate (per day)	714.17 ± 4.58	717.86 ± 4.60	532.29±3.82	71.78 ± 1.29	69.80±1.28	70.39±1.28	

TABLE II. Signal and background summary. The background and IBD rates were corrected for the $\epsilon_{\mu} \cdot \epsilon_{m}$ efficiency. The no-oscillation predictions based on reactor flux analyses and detector simulation have been corrected with the best-fit normalization parameter in determining $\sin^{2} 2\theta_{13}$.

バックグランドの見積もり

• Accidental background

バックグランドの見積もり

• 高速中性子

バックグランドの見積もり

• 核破砕反応 (⁸He/⁹Li)

Signal+Backgound Spectrum

系統誤差

検出器

Detector							
	Efficiency	Correlated	Uncorrelated				
Target Protons		0.47%	0.03%				
Flasher cut	99.98%	0.01%	0.01%				
Delayed energy cut	90.9%	0.6%	0.12%				
Prompt energy cut	99.88%	0.10%	0.01%				
Multiplicity cut		0.02%	< 0.01%				
Capture time cut	98.6%	0.12%	0.01%				
Gd capture ratio	83.8%	0.8%	< 0.1%				
Spill-in	105.0%	1.5%	0.02%				
Livetime	100.0%	0.002%	< 0.01%				
Combined	78.8%	1.9%	0.2%				
Reactor							
Correlated	l	Uncorrelated					
Energy/fission	0.2%	Power	0.5%				
IBD reaction/fission	> 3%	Fission fraction	0.6%				
		Spent fuel	0.3%				
Combined	3%	Combined	0.8%				

原子炉

結果

- 2 つのNear hall の測定結果から、ニュートリノ振動がないことを仮定して、Far hall での測定値を予言。
- → Ratio(測定値/予言値) = 0.940 ± 0.011(統計誤差) ± 0.004(系統誤差)

$$\chi^2 = \sum_{d=1}^{6} \frac{\left[M_d - T_d \left(1 + \varepsilon + \sum_r \omega_r^d \alpha_r + \varepsilon_d\right) + \eta_d\right]^2}{M_d + B_d}$$
$$+ \sum_r \frac{\alpha_r^2}{\sigma_r^2} + \sum_{d=1}^{6} \left(\frac{\varepsilon_d^2}{\sigma_d^2} + \frac{\eta_d^2}{\sigma_B^2}\right),$$

結果

• $\sin^2 2\theta_{13} = 0.092 \pm 0.016$ (統計誤差) ± 0.005(系統誤差)

Summary

- 唯一測定されていなかった θ_{13} が発見された。
- sin²2θ₁₃ = 0.092±0.016(統計誤差) ± 0.005(系統誤差) @ Daya Bay
- sin²2θ₁₃ = 0.113 ± 0.013(統計誤差) ± 0.019(系統誤差) @ RENO

Backup Slides

Measuring θ_{13} : A Possible Scenario

Karsten Heeger, Univ. of Wisconsin

ICATPP2011, October 7, 2011

Experiment	Thermal Power (GW)	Distances Near/Far (m)	Depth Near/Far (mwe)	Target Mass (tons)	Start Date Near/Far	Sensitivity @2.5x10 ⁻³ eV ² 90% CL, 3 years
Double- CHOOZ (France)	8.6	410/1050	115/300	8.8/8.8	2012/2011	0.03
RENO (So. Korea)	17.3	290/ 1380	120/450	20/20	2011/2011	0.02
Daya Bay (China)	17.4	363(481) / 1985(1613)	260/910	40(×2) / 80	2011/2012	0.008

Automated calibration units(ACUs)

- LED
- 68Ge source
- Combined source of 241Am-13C
- 60Co
- ・ をGd-LS とLS の層に入れられるようになっている。
 - **Three Z axis:**
 - ⇒ One at the center
 - ✓ For time evolution, energy scale, nonlinearity...
 - \Rightarrow One at the edge
 - ✓ For efficiency, space response
 - \Rightarrow One in the γ -catcher
 - ✓ For efficiency, space response
 - 3 sources for each z axis:
 - ⇒ LED
 - \checkmark for T₀, gain and relative QE
 - \Rightarrow ⁶⁸Ge (2×0.511 MeV γ 's)
 - ✓ for positron threshold & non-linearity...
 - \Rightarrow ²⁴¹Am-¹³C + ⁶⁰Co (1.17+1.33 MeV γ 's)
 - ✓ For neutron capture time, ...
 - ✓ For energy scale, response function, ...
 - Once every week:
 - ⇒ 3 axis, 5 points in Z, 3 sources 2012-03-08

