Paper Reading Seminar "Observation of CP violation in B[±]→DK[±] decays"

Kennosuke Itagaki 27 June 2012

THE REAL

$$\phi_3 \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right) \cong -\arg\left(V_{ub}^*\right)$$

- $B \rightarrow D^0 K$ amplitude : proportional to V_{cb}
- $B \rightarrow \overline{D}{}^{0}K$ amplitude : depends on V_{ub}
- $D^0 \rightarrow f, \overline{D}^0 \rightarrow f$
- \rightarrow interference gives sensitivity to $\gamma(\phi_3)$ and may exhibit direct CPV
- f (it can be accessed D^0 and \overline{D}^0 .)
 - CP mode (D \rightarrow KK, $\pi\pi$)
 - ADS mode ($D \rightarrow \pi K$)
 - $b \rightarrow c$ to be followed DCSD
 - $b \rightarrow u$ to be followed favored D decay
 - Similar total magnitude

測定項目 $R^{f}_{K/\pi} \frac{\Gamma(B^{-} \to [f]_{D} K^{-}) + \Gamma(B^{+} \to [f]_{D} K^{+})}{\Gamma(B^{-} \to [f]_{D} \pi^{-}) + \Gamma(B^{+} \to [f]_{-} \pi^{+})}$ $A_h^f = \frac{\Gamma(B^- \to [f]_D h^-) - \Gamma(B^+ \to [f]_D h^+)}{\Gamma(B^- \to [f]_D h^-) + \Gamma(B^+ \to [f]_- h^+)}$ $R_{h}^{\pm} = \frac{\Gamma(B^{\pm} \to [\pi^{\pm}K^{\mp}]_{D}h^{\pm})}{\Gamma(B^{\pm} \to [K^{\pm}\pi^{\mp}]_{D}h^{\pm})}$ $\mathcal{A}_{DK} \equiv \frac{\mathcal{K}_{DK} - \mathcal{R}_{DK}^{+}}{\mathcal{R}_{DK}^{-} + \mathcal{R}^{+}}$ $\mathcal{R}_{DK}^{\pm} \equiv \frac{\Gamma([K^{\pm}\pi^{\pm}]_{D}K^{\pm})}{\Gamma([K^{\pm}\pi^{\pm}]_{D}K^{\pm})}$ $2 r_B r_D \sin \gamma \sin \delta / \mathcal{R}_{DK}$ $= r_B^2 + r_D^2 + 2 r_B r_D \cos(\pm \gamma + \delta)$

Detector

- the spectrometer magnet, a warm dipole magnet providing an integrated field of 4 Tm
- the vertex locator system (including a pile-up veto counter), called the VELO
- the tracking system
 - Trigger Tracker (a silicon microstrip detector, TT) in front of the spectrometer magnet
 - three tracking stations behind the magnet, made of silicon microstrips in the inner parts (IT) and of Kapton/Al straws for the outer parts (OT)
- two Ring Imaging Cherencov counters (RICH1 and RICH2) using Aerogel, C4F10 and CF4 as radiators, to achieve excellent π -K separation in the momentum range from 2 to 100 GeV/c, and Hybrid Photon Detectors
- the calorimeter system composed of a Scintillator Pad Detector and Preshower (SPD/PS), an electromagnetic (shashlik type) calorimeter (ECAL) and a hadronic (Fe and scintillator tiles) calorimeter (HCAL)
- the muon detection system composed of MWPC (except in the highest rate region, where triple-GEM's are used)

- Tracking system momentum resolution : 0.4-0.6% in the range 5-100 GeV/c
 - Silicon microstrip vertex detector
- Dipole magnet can be operated in either polarity → reduce systematic error due to detector asymmetries

- 58%:42%

- Two-ring imaging cherenkov (rich) with three radiators
 - PID (K, π) : momentum range from 2 to 100 GeV/c
- Two-stage trigger
 - Hardware-based decision : 40MHz以内
 - It accepts high transverse energy clusters in calorimeters(e or h) or muon of high transverse momentum
 - Software trigger
 - Receive 1 MHz of events
 - Retains ~0.3%
 - Required track with large Pt and large impact parameter
 - Part of secondary vertex
 - » Displaced from the PV
 - 2.5x10^5 events

- Outline of the analysis
- Analysis is based on **full 2011 dataset: 1.0 fb**⁻¹
- Every mass hypothesis combination $B \rightarrow [hh]_D h$ were reconstructed. $h=\pi,K$
- Extract Ratios & Asymmetries with simultaneous fit

Event selection

• Event reconstruction

D mass	$1765 < M_D < 1965 MeV/c^2$
D daughter tracks	$0.5 < p_T < 10 \ GeV/c^2$
Bachelor tracks	5
Mass vertex fit	

• Reconstructed candidates are selected using a boosted decision tree (BTD) discriminator.

Event selection:BDT

- Train
 - $B \rightarrow [K^{\pm}\pi^{\mp}]_{D}K^{\pm}$
 - D sideband BG

From			
The tracks, the D and B	p _T		
	χ^2 with respect to the PV		
The B and D	Decay time		
	Vertex quality		
The B	The angle between momentum vector and line connecting the PV to its decay vertex		

- Optimal cut chosen by
 - **–** ADS, favored : > 0.92
 - CP :> 0.8

Event selection:PID

- PID
 - Quantified as difference between $\ln L_h$: DLL
 - Daughter K of the D : $DLL_{K\pi} = lnL_K lnL_{\pi} > 2$
 - Daughter π of the D : DLL_{K π} < -2

Event selection:Fake D

- Flight distance significance : D from B vertex > 2
 - ΚΚΚ, Κππ, ΚΚπ
 - Cross feed
 - bachelor is confused with a D daughter at low decay time
- B invariant mass is J/ψ or $\psi(2S)$ mass $\pm 22 \text{ MeV} \rightarrow \text{veto}$
 - the combination of bachelor and opposite-sign D⁰ is made under hypothesis that they are muon.

Event selection:cross feed

 It is reduced by vetoing any ADS candidate whose D candidate mass under the exchange of its daughter track mass hypotheses, lies within ±15 MeV/c² of PDG D⁰ mass.

Event selection: Partially reconstructed events

- Partially reconstructed events misidentify $B \rightarrow XD\pi \rightarrow B \rightarrow XDK$

 - Used to model : $B_{u.d.s} \rightarrow DX$
 - \rightarrow Non-parametric PDFs are defined for DK and D π .
 - Apply all four D models
 - \therefore Specific cases
 - $D \rightarrow KK$
 - $\Lambda^0_h \rightarrow [pK\pi]_{\Lambda}h$: pion miss, proton $\rightarrow K$
 - $B \rightarrow D_{ADS}K$
 - $B_s^0 \rightarrow D^0 K \pi$: partially reconstructed. Cabibbo-favoured BG
 - Both from sim, smeared by the modest degradation in resolution observed data.

- 観測量はinvariant mass distributions のbinned maximum-likelihood fit で決定
- Sensitivity to CP asymmetry : B⁻B⁺ separation
- PID cut for bachelor track : DLL > 4
 - Pass : $B \rightarrow DK$
 - Not : $B \rightarrow D\pi$
- Fit comprise four subsamples
 - (plus, minus)x(K, π)

- PDF
- $B \rightarrow D\pi$
 - Modified gaussian : $f(x) \propto \exp(-(x-\mu)^2/2\sigma^2 + (x-\mu)^2\alpha_{L,R})$

- PDF
- B→DK
 - Same modified gaussian
 - Width : 0.95 ± 0.02 times D π
 - B \rightarrow DK reconstructed as D π : fix

• PDF

Partially reconstructed

- Non-parametric PDF from simulation

Combinatoric BG

– line

Mode specific BG

First observation

Table 1: Corrected event yields.

B^\pm mode	$D\ {\rm mode}$	B^-	B^+
DK^{\pm}	$K^{\pm}\pi^{\mp}$	3170 ± 83	3142 ± 83
	$K^{\pm}K^{\mp}$	592 ± 40	439 ± 30
	$\pi^{\pm}\pi^{\mp}$	180 ± 22	137 ± 16
	$\pi^{\pm}K^{\mp}$	23 ± 7	73 ± 11
	$K^{\pm}\pi^{\mp}$	40767 ± 310	40774 ± 310
$D_{\pi^{\pm}}$	$K^{\pm}K^{\mp}$	6539 ± 129	6804 ± 135
$D\pi$	$\pi^{\pm}\pi^{\mp}$	1969 ± 69	1973 ± 69
	$\pi^{\pm}K^{\mp}$	191 ± 16	143 ± 14

CP violation is observed in $B \rightarrow DK$ with a significance of 5.8 σ FIRST OBSERVATION of direct CP violation in B^{\pm}

Results

$R_{K/\pi}^{K\pi}$. =	$0.0774 \pm 0.0012 \pm 0.0018$	$A_{\pi}^{K\pi}$	=	$-0.0001 \pm 0.0036 \pm 0.0095$
$R_{K/\pi}^{KK}$. =	$0.0773 \pm 0.0030 \pm 0.0018$	$A_K^{K\pi}$	=	$0.0044 \pm 0.0144 \pm 0.0174$
$R_{K/\pi}^{\pi\pi}$. =	$0.0803 \pm 0.0056 \pm 0.0017$	A_K^{KK}	=	$0.1480 \pm 0.0369 \pm 0.0097$
			$A_K^{\pi\pi}$	=	$0.1351 \pm 0.0661 \pm 0.0095$
R_K^-	=	$0.0073 \pm 0.0023 \pm 0.0004$	A_{π}^{KK}	=	$-0.0199 \pm 0.0091 \pm 0.0116$
R_K^+	=	$0.0232 \pm 0.0034 \pm 0.0007$	$A_{\pi}^{\pi\pi}$	=	$-0.0009 \pm 0.0165 \pm 0.0099$
R_{π}^{-}	=	$0.00469 \pm 0.00038 \pm 0.00008$	~		
R_{π}^+	=	$0.00352 \pm 0.00033 \pm 0.00007$			

Results

 $R_{CP+} \approx < R_{K/\pi}^{KK}, R_{K/\pi}^{\pi\pi} > / R_{K/\pi}^{K\pi}$ = 1.01 ± 0.04 ± 0.01 $A_{CP+} = \langle A_{K}^{KK}, A_{K}^{\pi\pi} \rangle$ $= 0.15 \pm 0.03 \pm 0.01$ $R_{ADS(K)} = (R_{K}^{-} + R_{K}^{+})/2$ = 0.015 ± 0.002 ± 0.000 $A_{ADS(K)} = (R_{\kappa}^{-} - R_{\kappa}^{+})/(R_{\kappa}^{-} + R_{\kappa}^{+})$ $= -0.52 \pm 0.15 \pm 0.02$ $R_{ADS(\pi)} = (R_{\pi}^{-} + R_{\pi}^{+})/2$ $= 0.0041 \pm 0.0003 \pm 0.0001$ $A_{ADS(\pi)} = (R_{\pi}^{-} - R_{\pi}^{+})/(R_{\pi}^{-} + R_{\pi}^{+})$ $0.143 \pm 0.062 \pm 0.011$

