Mesurement of the Negative Muon Anomalous Magnetic Moment to 0.7 ppm

Tomoyuki Saito

2012/07/04

New physics search

Energy Frontier (High energy experiment)

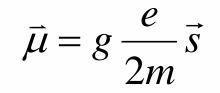
• LHC, ILC \rightarrow observe new heavy particle by direct production

Luminosity Frontier (Precise experiment)

- Muon physics
- B physics
- K physics
- EDM search

observe new heavy particle via loop process

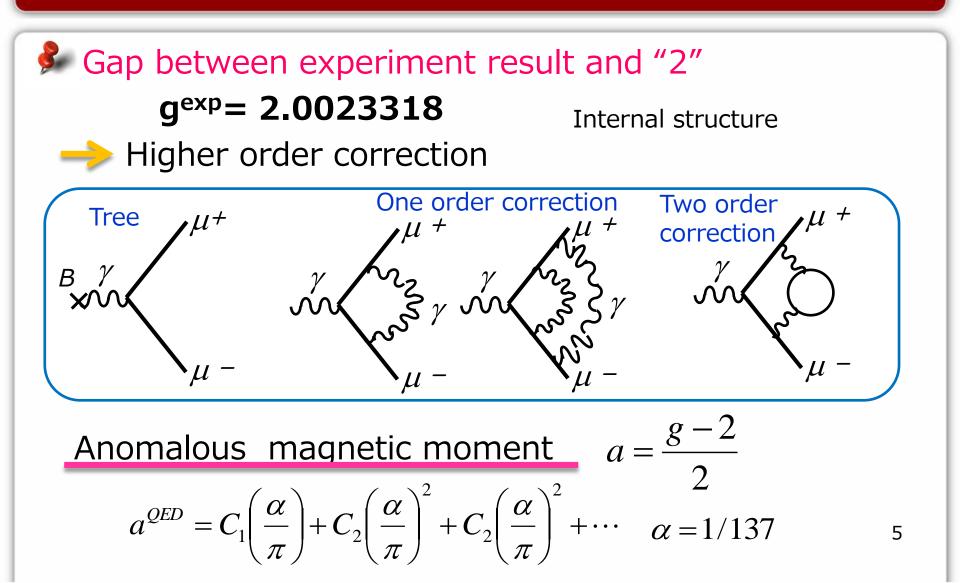
Key to identify a correct theory for NP


The muon (g-2) measurement is one of the most sensitive test of the SM.

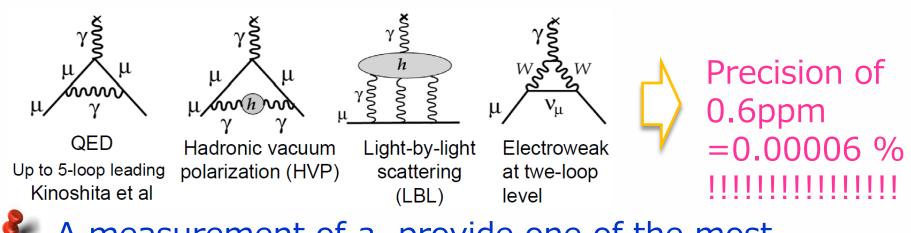
Magnetic

Moment

Magnetic moment


Magnetic moment is a strength of coupling between a magnetic field and a charged particle with a spin.

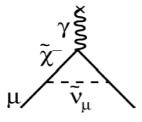
Force from B $\vec{\tau} = \vec{\mu} \times \vec{B}$ Potential energy $U = -\vec{\mu} \cdot \vec{B}$


In the case of μ and e(spin1/2, Dirac e.q.), we find

Anomalous magnetic moment

Magnetic moment and New physics

In the SM, there are corrections from QCD and EW as well as QED.



A measurement of a_{μ} provide one of the most sensitive test of the SM.

 \rightarrow can be a breakthrough in reaching to beyond the SM. (Because the mass is so much heavier than electron's there is larger contribution.)

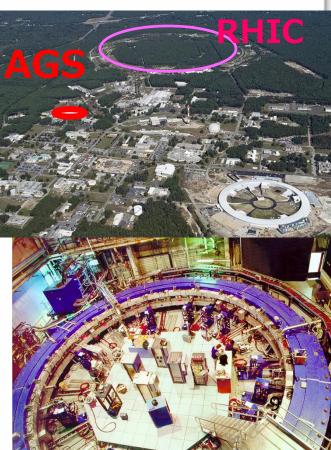
Magnetic moment and New physics

The a_{μ} is paticularly sensitive to SUSY(smuonneutrarlino and sneutrino-chargino loops).

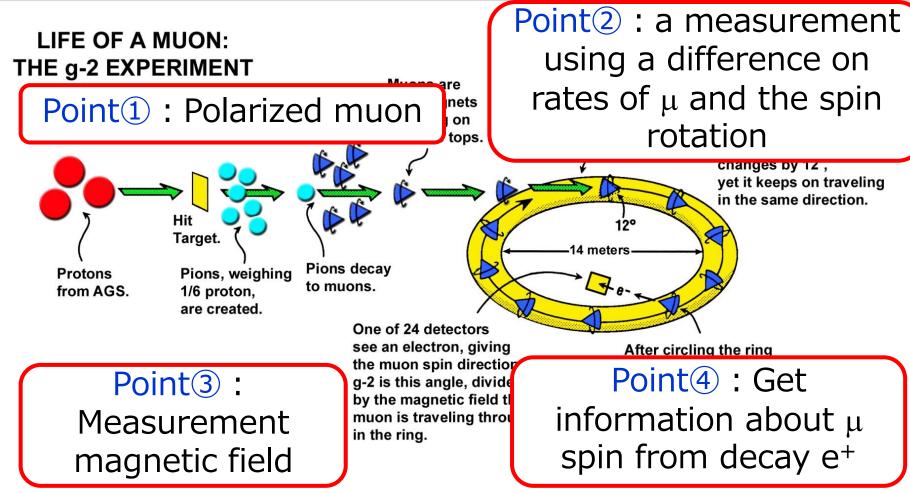
Beyond SM

- Large tanb
- $\boldsymbol{\cdot}$ Degenerate spectrum of superparticles with mass $\widetilde{\boldsymbol{\mathsf{m}}}$

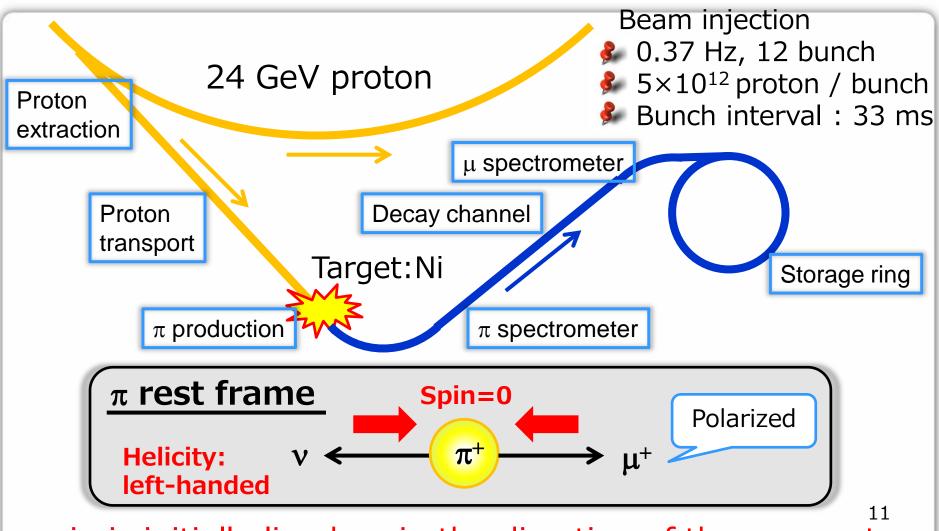
$$a_{\mu}(\text{SUSY}) \approx 140 \times 10^{-11} \left(\frac{100 \text{ GeV}}{\widetilde{\text{m}}}\right)^2 \tan\beta$$


E-821

experiment


Brookhaven National Laboratory

🛸 Located on Long Island, New York, Brookhaven RHIC(Relativistic Heavy Ion Collider)、2000-


- First heavy ion accelerator
- only spin-polarized proton collid
- PHENIX experiment etc.
- AGS booster(Alternating Gradient Synchrotron)
 - Radius: 7.1m
 - B : 1.45 T

Experiment overview

Point1 : Polarized muon

 μ spin is initially lined up in the direction of the momentum.

Point²: Measurement principle

To measure a_{μ} • spin precession frequency (ω_s) • cyclotron frequency(ω_c) angular frequency difference Larmor $(\omega_a = \omega_s - \omega_c)$ Thomas $\vec{\omega}_s = \left[g \frac{e}{2m} \vec{B}\right] + \left[(\gamma - 1) \frac{eB}{m\gamma}\right], \quad \vec{\omega}_c = \frac{eB}{m\gamma}$

$$\vec{\omega}_a = \gamma \left(\frac{g-2}{2}\right) \frac{e\vec{B}}{m\gamma} = a_\mu \frac{e\vec{B}}{m}$$

Considering the interaction with E to confine μ ,

$$\vec{\omega}_a = \frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} \right]$$

12

Momentum

Spin

Point²: Measurement principle

$$\vec{\omega}_a = \frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \right] \vec{\beta} \times \vec{E}$$

It is easier if the second term is disappeared.

$$a_{\mu} - \frac{1}{\gamma^{2} - 1} = 0 \qquad \xrightarrow{a_{\mu} \approx 0.001166} \qquad \gamma = 29.3$$

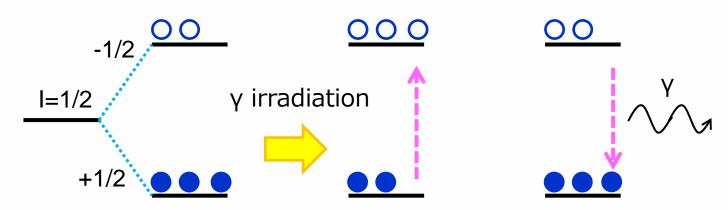
$$\gamma = E/m \qquad p_{\mu} = 3.094[GeV/c] \qquad \text{Magic momentum !}$$
Accurate determination a

Accurate determination a_{μ} = Accurate measurement of **B** and ω_a

Point²: Measurement principle

Additional idea to get higher precision \Rightarrow use Larmor frequency of proton

$$\omega_a = a_\mu \frac{eB}{m_\mu}$$
 $\omega_s = \frac{g_\mu}{2} \frac{eB}{m_\mu}$ (Larmor precession)


$$a_{\mu} = \frac{\omega_a}{\omega_s - \omega_a} = \frac{\omega_a / \omega_p}{\omega_s / \omega_p - \omega_a / \omega_p} = \frac{R}{\lambda - R}$$

 $\lambda \equiv \frac{\omega_s}{\omega_p} = \frac{\mu_{\mu}}{\mu_p} = 3.18334539(10)$ $R \equiv \underbrace{\omega_a}_{\omega_p}$ These two are measured to obtain a_{μ} ¹⁴

Point³: Magnetic field measurement

MR(Nuclear Magnetic Resonance)

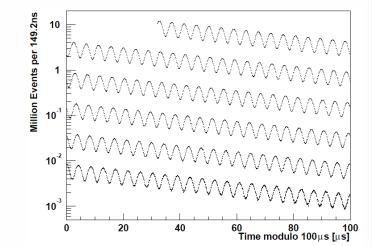
• A proton sets up a magnetic field B and the energy level is split into two.

This technique is used for MRI

$$\frac{\omega_p}{2\pi} = 61791400(11)Hz$$

Point④: Muon spin and detected e

There is a correlation between μ spin direction and e emission direction due to the P violation.

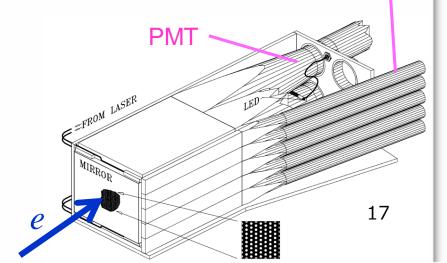

$$N = N_0 e^{(-t/\gamma\tau)} \left\{ 1 - A\cos(\omega_a + \phi) \right\} \qquad \gamma\tau = 64.4 \,\mu s$$

 $[\mu \text{ polarization}(\sim 95\%)] \times [asymmetry in \mu - e decay]$

e direction highly correlated to the muon spin direction

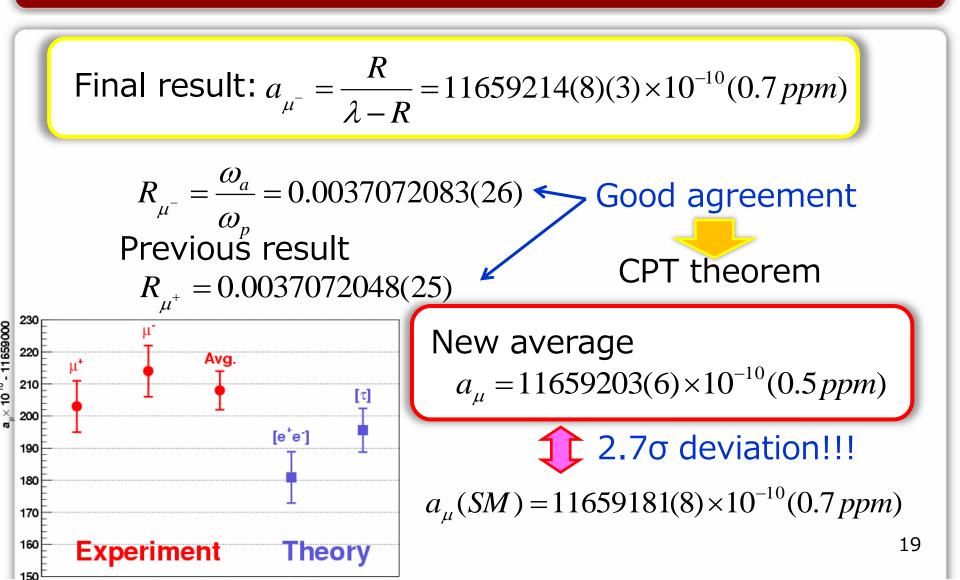
Fitting to the time distribution of the detected electrons in a given energy bin.

 $\frac{\omega_a}{2\pi} = 229073.59(15)(5)Hz$


Point4 : Detector

Maximizes the acceptance of the high energy electron
24 detector stations(15 degree intervals)

- Calorimeter \rightarrow Electron energy
 - consists of scintillating fibers embedded in lead
 - depth: $13X_0$
- 5 scintillator paddles \rightarrow Electron time

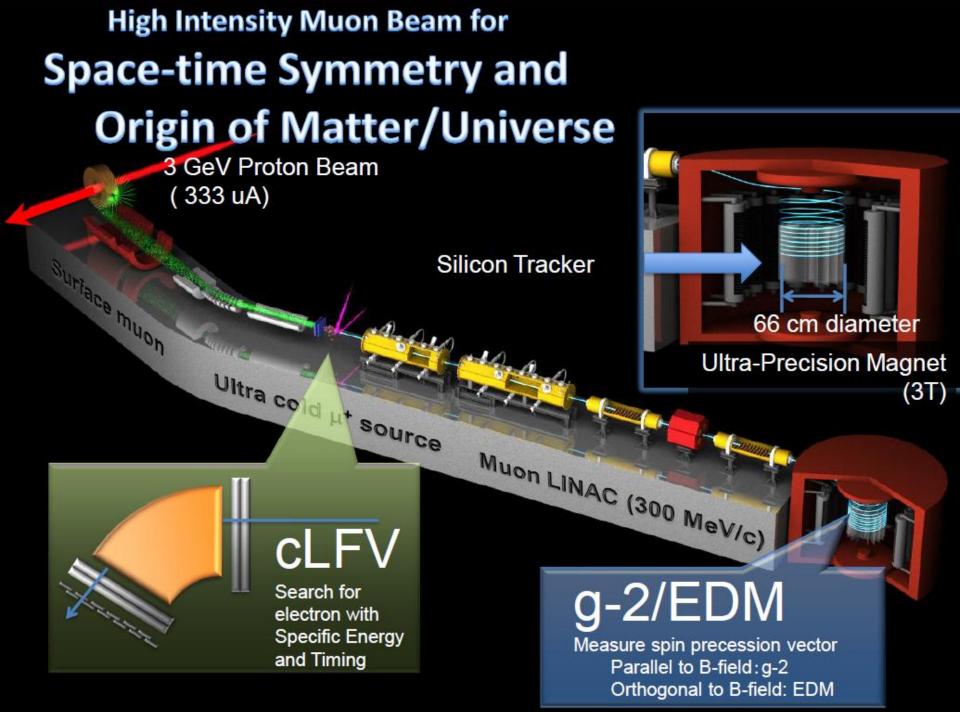

Scintillator

Result

Current situation

SM prediction has been improved.

 $a_{\mu}^{SM} = 116591834(2)(41)(26) \times 10^{-11}$


$$\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = 255(63)(49) \times 10^{-11}$$

3.2σ deviation!!!

New experiment is needed to improve the experimental result.

Proposed experiment

	BNL-E821	Fermilab	J-PARC
Muon momentum	3.09 GeV/c		0.3 GeV/c
gamma	29.3		3
Storage field	B=1.45 T		3.0 T
Focusing field	Electric quad		None
# of detected μ+ decays	5.0E9	1.8E11	1.5E12
# of detected μ- decays	3.6E9	-	-
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm

g-2/EDM @J-PARK

$$\vec{\omega}_a = \frac{e}{m} \left[a_\mu \vec{B} - \left(a_\mu - \frac{1}{\gamma^2 - 1} \right) \vec{\beta} \times \vec{E} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Measure the muon spin precession

Off magic momentum with ultra-cold muon beam at 300 MeV/c

Stored in ultra-precision B-field without E-field so that the β×E drops-> ω_aとω_dが直交になる→両方独立に測れる →Eをなくすのはchallenging

Many technical challenges are undergoing

Summary

- The anomalous magnetic moment of the muon has played an important role in the search for BSM.
- This is the final analysis of the anomalous magnetic moment from E821.

 $a_{\mu} = 11659203(6) \times 10^{-10}(0.5\,ppm)$

2.7 σ deviation (current : 3.2 σ)

To improve the result some new experiments are proposed.