# Electron Positron Colliders and CP Violation

Hitoshi Yamamoto 2020 Feb 12, Tohoku U.

Ph.D. Thesis: A Study of Charged D\* Mesons Produced in e+e- Annihilation at Ecm = 29 GeV California Institute of Technology 1986





Figure 4.4.  $\Delta M$  distributions after the cut  $\sin \theta_{D\pi} < 0.13$  for K-mode (a) and  $\pi$ -mode candidates. The distributions for the wrong-sign combinations (histogram) are plotted over those for the right-signs (points with error bars). The arrows show the position of  $\Delta M$  cut which defines the  $D^*$  signal region.

One of the first Ph.D. thesis in HEP to use TeX and embedded graphics (~1984)

$$e^+e^- \rightarrow D^{*+}X$$
  
 $D^{*+} \rightarrow D^0\pi_s^+ \rightarrow (K^-\pi^+)\pi_s^+$ 

Measurements:

- 1. Production cross section
- 2. Fragmentation function
- 3. D<sup>0</sup> lifetime
- 4. D<sup>0</sup>-D<sup>0</sup>bar mixing upper limit

$$D^{*+} \rightarrow D^0 \pi_s^+ \rightarrow \overline{D}^0 \pi_s^+ \rightarrow (K^+ \pi^-) \pi_s^+$$

 $D^0$ - $D^0$ bar mixing  $\rightarrow$  'wrong sign'

But, doubly-Cabbibo-suppressed decay (DCSD) also leads to wrong sign:

$$D^0\pi^+ \to (K^+\pi^-)\pi^+_s$$

### Possible Solution for DCSD in measuring D<sup>0</sup> Mixing

Chapter 2). Our upper limit is still well above this value. In the future experiment that probes below 1 % level, the doubly Cabibbo-suppressed decay can become a limiting factor. One possible solution is to measure the decay

$$\psi'' o D^0 \overline{D}^0 o (K^- \pi^+) (K^- \pi^+) \quad ext{or} \quad (K^+ \pi^-) (K^+ \pi^-).$$

The  $D^0\overline{D}^0$  pair is generated in the state  $D^0\overline{D}^0 - \overline{D}^0D^0$  because the orbital angular momentum of the pair is one (or C = -). The resulting interference effect cancels the effect of the doubly Cabibbo-suppressed decay leaving only the mixing effect.

The wrong-sign right-sign ratio

$$\frac{N[(K^-\pi^+)(K^-\pi^+)] + N[(K^+\pi^-)(K^+\pi^-)]}{N[(K^-\pi^+)(K^+\pi^-)]}$$

directly gives the mixing parameter p defined by (2.62) with  $\xi = 0$  (i.e., CP is assumed).

#### From the thesis

On  $\Psi$ "  $\rightarrow$  D<sup>0</sup> D<sup>0</sup>bar, look for (K-pi+)(K-pi+), The effect of DCSD cancels and only the mixing effect remains.



From log book (page 7 / 7)





Advisor: Barry Barish



# Inclusive Decay Distributions of Coherent Two-body States Phys.Rev.Lett. 79 (1997) 2402-2405

$$\Psi = aB^0B^0 + bB^0\overline{B}^0 + c\overline{B}^0B^0 + d\overline{B}^0\overline{B}^0$$
$$|a|^2 + |b|^2 + |c|^2 + |d|^2 = 1$$

the necessary and sufficient condition for the naive incoherent sum

$$\begin{aligned} (2|a|^2 + |b|^2 + |c|^2) \, \Gamma_{B^0 \to f}(t) \\ &+ (2|d|^2 + |b|^2 + |c|^2) \, \Gamma_{\bar{B}^0 \to f}(t) \end{aligned}$$

to give the correct distribution for any final state f (and independent of the details of the mixing) is

$$G \stackrel{\text{def}}{\equiv} a^*(b+c) + d(b+c)^* = 0$$

Satisfied for  $J/\Psi(3S) \to D^0 \overline{D}^0$ , or  $\Upsilon(4S) \to B^0 \overline{B}^0$  etc.  $B^0 B^0 + B^0 \overline{B}^0 + \overline{B}^0 B^0 + \overline{B}^0 \overline{B}^0$  does not satisfy

# $\Phi$ Factory

- Proposed to use  $\phi \rightarrow KK$  to study CP violation in K decay (this had been proposed earlier by Kamae et al.)
- Bruce Winstein (U. of Chicago) was on sabbattical at SLAC, and we discussed Kaon experiments.
- It turned out that E731 (Bruce's experiment) had already the amount of data that φ factory can collect in 10 years.
- So, I joined his group.

### Fermilab E731: Direct CP Violation in K<sup>0</sup> System PI: Bruce Winstein





Search for direct CP violation:

$$\frac{\Gamma(K_S \to \pi^+ \pi^-) / \Gamma(K_L \to \pi^+ \pi^-)}{\Gamma(K_S \to \pi^0 \pi^0) / \Gamma(K_L \to \pi^0 \pi^0)} = 1 - 6Re \frac{\epsilon'}{\epsilon}$$

This ratio should be 1 if no direct CPV

Double K<sub>L</sub> beam Alternating regenerator

A key challenge:  $K_L \rightarrow 3\pi^0$  background

# Background from $K_L \rightarrow 3\pi^0$



A simulation study showed that  $K_L \rightarrow 3\pi^0$  with photons lost in the sweeper magnet reconstructed as  $K_L \rightarrow 2\pi^0$  reconstructed in the decay region.

Surround the vacuum pipe inside the sweeper magnet by scintillators.

- ✓ Photon will convert in the vacuum pipe.
- Need to protect PMT's from B field
   3 air gap layers with high mu cylinders

 $K_L {\rightarrow} \ 3\pi^0$  background reduced by 1/2.

'Sweeper anti counter' (or 'Super-nova anti' - supernova 1987a)



### Scattering in the Regenerator



<sup>•</sup> Figure 77. The center of energy of the four photons in the lead glass for reconstructed  $\pi^0\pi^0$  decays which occurred while the regenerator lay in the upper beam.



Measure the scattering by  $\pi^+\pi^-$  mode and simulate it as  $\pi^0\pi^0$  mode.

Agreed well with the tail in the ring number (absolutely). No criticism from the competitor Afterwards.

# **CLEO at CESR** (From Harvard University)

#### Cornell Electron Storage Ring (CESR)





# **CLEO** Detector

### **TOF Time Resolution Problem**

TOF: responsibility of Harvard



Difference beween expected and actual times



track hit location

Some counters had very bad time resolution.

The pattern in the plots can be explained if One assumes that the speed of light is different for left and right directions.

This can happen if one side had broken joint for PMT.

Using different speed of light for left and right improved time resolution by factor of  $\sim$ 3. (~ 600ps  $\rightarrow$  ~ 200 ps)

The analysis was complete ~1 week after I joined CLEO, and presented at a general CLEO meeting.

# CLEO 1.5 IR Beampipe



#### Designed for heating from inside = 400 W

First double-wall Be beampipe. Became the standard for B-factories later.

Water coolant.

No vacuum-to-liquid joints Electron beam welding Brazing

Au coated inside for X-ray blocking.

Heavy masks on both sides of this beampipe for particle background

## **Beam Background Studies**

### Two Harvard postdocs

### SR Background

#### Stu Henderson



- $\rightarrow$  Cornell accelerator physics
- $\rightarrow$  SNS
- $\rightarrow$  Director, Fermilab accelerator division
- $\rightarrow$  Director, Jefferson lab

### Particle Background

#### Dave Cinabro



 $\rightarrow$  Professor at Wane State University

#### GAS COOLING OF BEAMPIPE - single wall senario

Hitoshi Yamamoto Nov 14 1993

This memo reports a gas cooling study of the phase-II CLEO beampipe. The idea is to keep the Beryllium beampipe as single layer, surround it by another layer (capton?, Aluminium?) to make a gap for gas cooling.

The geometry of the bemapipe is given below:

| R: | beampipe ra | adius | = | 2.000  | (cm) |
|----|-------------|-------|---|--------|------|
| L: | beampipe le | ength |   | 30.000 | (cm) |
| D: | fluid gap   |       | ÷ | 0.0500 | (cm) |

Helium and Air have been investigated as coolant. Air was included because of obvious availability and ease of use, and Helium was included becuase of its excellent cooling capacity. Basic contants of the gases are:

| Fluid constants for <helium<br>rholq: density<br/>vis: viscosity<br/>klq: thermal conductivity<br/>Xlq: radiation length<br/>cplq: specific heat<br/>btlq: thermal exp. coef<br/>visk: kinematic viscosity<br/>chi: thermometric cond.<br/>Pr: prandtl number</helium<br> | Pressure<br>0.000178<br>0.000194<br>0.001480<br>520000.00<br>5.230<br>0.30E-02<br>0.11E+01<br>0.16E+01<br>0.686    | 1.0 (atm)<br>(g/cm**3)<br>(g/cm*s=poise)<br>(W/cm*K)<br>(cm)<br>(J/g*K)<br>(/K)<br>(cm**2/s)<br>(cm**2/s) |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Fluid constants for <air<br>rholq: density<br/>vis: viscosity<br/>klq: thermal conductivity<br/>Xlq: radiation length<br/>cplq: specific heat<br/>btlq: thermal exp. coef<br/>visk: kinematic viscosity<br/>chi: thermometric cond.<br/>pr: prandtl number</air<br>       | <br>Pressure<br>0.001200<br>0.000184<br>0.000245<br>30420.00<br>1.010<br>0.30E-02<br>0.15E+00<br>0.20E+00<br>0.759 | 1.0 (atm)<br>(g/cm**3)<br>(g/cm*s=poise)<br>(W/cm*K)<br>(cm)<br>(J/g*K)<br>(/K)<br>(cm**2/s)<br>(cm**2/s) |

As can be seen, the specific heat of Helium is 5 times that of air and it almost compensates the low density. The thermal conductivity of Helium is 6 times better than that of air. The Reynolds number is defined by the engineering convention using equavalent diameter: Cautious attitudes at Cornell Accelerator division regarding the double-wall design with liquid cooling.

Analysis of single-wall gas cooling That showed problems



# ~10 years later: CESR Exhibition room

# Lecture on Quantum Field Theory

- Given at Harvard University Graduate School 1993 1998.
- Lectures based on the above was also given at University of Hawaii and at Tohoku University.
- Tohoku U. 'Advanced High Energy Physics (IGPAS)' (高エネルギー物理学特論) and 'Science of Particle-Matter Hierarchy' (物質階層融合科学特論).
- The lecture note is to be published by Gordon and Breach as 'Introduction to Quantum Field Theory and Applications to Particle Physics'.

### Phases of Discrete Symmetries - C, P, T Symmetries -

$$\begin{aligned}
\phi(x) &= \sum_{\vec{p}} \left( a_{n\vec{p}} e_{\vec{p}}(x) + a^{\dagger}_{\vec{n}\vec{p}} e^{*}_{\vec{p}}(x) \right) & \text{(spin 0)} \\
\psi(x) &= \sum_{\vec{p},\sigma} \left( a_{n\vec{p}\sigma} f_{\vec{p}\sigma}(x) + a^{\dagger}_{\vec{n}\vec{p}\sigma} g_{\vec{p}\sigma}(x) \right) & \text{(spin 1/2)} \\
A^{\mu}(x) &= \sum_{\vec{p},\sigma} \left( a_{n\vec{p}\sigma} \epsilon^{\mu}_{\vec{p}\sigma} e_{\vec{p}}(x) + a^{\dagger}_{\vec{n}\vec{p}\sigma} \epsilon^{\mu*}_{\vec{p}\sigma} e^{*}_{\vec{p}}(x) \right) & \text{(spin 1)}
\end{aligned}$$

$$e_{\vec{p}}(x) \equiv \frac{e^{-ip \cdot x}}{\sqrt{2p^0 V}}, \quad f_{\vec{p}\sigma} \equiv u_{\vec{p}\sigma} e_{\vec{p}}(x), \quad g_{\vec{p}\sigma} \equiv v_{\vec{p}\sigma} e_{\vec{p}}^*(x).$$

$$\mathcal{P}a_{n\vec{p}\sigma}^{\dagger}\mathcal{P}^{\dagger} = \eta_{n\vec{p}\sigma} a_{n-\vec{p}\sigma}^{\dagger} \xrightarrow{\text{take}\,\dagger} \mathcal{P}a_{n\vec{p}\sigma}\mathcal{P}^{\dagger} = \eta_{n\vec{p}\sigma}^{*} a_{n-\vec{p}\sigma}$$

Arbitrary phase depending on particle type (n), momentum (p) and spin ( $\sigma$ ). Defines the parity operator P in Hilbert space. Can they be taken such that P commutes with S operator?

# **Choice of Parity Phase**

In order for the interactions such as

$$h_{QED} = \int d^3x \, \bar{\psi} \gamma^{\mu} \psi \, A_{\mu} \qquad \qquad h_Y = \int d^3x \, \bar{\psi} \psi \, \phi$$

to commute with P, the phases should satisfy

$$\mathcal{P}\phi(x)\mathcal{P}^{\dagger} = \eta_{n}^{*}\phi(Px) \qquad (\text{spin} - 0)$$
$$\mathcal{P}\psi(x)\mathcal{P}^{\dagger} = \eta_{n}^{*}\gamma^{0}\psi(Px) \qquad (\text{spin} - \frac{1}{2})$$
$$\mathcal{P}A_{\mu}(x)\mathcal{P}^{\dagger} = -\eta_{n}^{*}A^{\mu}(Px) \qquad (\text{spin} - 1)$$
$$\eta_{\bar{n}} = \eta_{n}^{*} \qquad (\text{spin} - 0, 1)$$
$$\eta_{\bar{n}} = -\eta_{n}^{*} \qquad (\text{spin} - \frac{1}{2})$$

(first, they should not depend on p and  $\sigma$ )

Are interactions essential? open E-mail discussion with Weinberg

### **Space-Time and Spinor Space**

| space      | Lorentz transformation | inner product                         | metric invariance                 |
|------------|------------------------|---------------------------------------|-----------------------------------|
| space-time | $A' = \Lambda A$       | $A \cdot B \equiv A^T G B$            | $\Lambda^T G \Lambda = G$         |
| spinor     | a' = Sa                | $ar{a}b\equiv a^{\dagger}\gamma^{0}b$ | $S^\dagger \gamma^0 S = \gamma^0$ |

Table 3.1: Correspondence between the space-time and the spinor space. A and B are 4-vectors and a and b are 4-component spinors.

### Antilinear Operator (T etc.)

The Dirac's bra-ket notation of a matrix element  $\langle a|O|b\rangle$  assumes an associativity:

$$(\langle a|O) |b\rangle = \langle a| (O|b\rangle). \tag{8.296}$$

Together with the rule that  $\langle a|O$  is the adjoint of  $O^{\dagger}|a\rangle$ , this reads

$$(O^{\dagger}a, b) = (a, Ob),$$
 (8.297)

which is nothing but the definition of adjoint operator (8.266). Thus, the Dirac's bra-ket notation naturally assumes that the operator is linear and using the bra-ket notation to antilinear operators causes confusions when inner products are involved.

### Antilinear Operator (T etc.) Formalism by Inner Products

A linear operator O is defined by

$$O(a_1\Psi_1 + a_2\Psi_2) = a_1 O\Psi_1 + a_2 O\Psi_2 \qquad (O: \text{ linear})$$
(8.265)

for any states  $\Psi_1$  and  $\Psi_2$ . The adjoint or the hermitian conjugate of O, denoted as  $O^{\dagger}$ , is defined to be the operator that satisfies

$$(\Psi, O^{\dagger}\Phi) = (O\Psi, \Phi) \text{ for any } \Psi, \Phi;$$
 (8.266)

namely, when a linear operator is moved from the first state to the second, it picks up the dagger sign. As defined earlier in (8.242), an antilinear operator A satisfies

$$A(a_1\Psi_1 + a_2\Psi_2) = a_1^*A\Psi_1 + a_2^*A\Psi_2 \qquad (A: \text{ antilinear}).$$
(8.267)

Then, the product of an antilinear operator and a linear operator is antilinear:

$$AO(a_1\Psi_1 + a_2\Psi_2) = A(a_1O\Psi_1 + a_2O\Psi_2) = a_1^*AO\Psi_1 + a_2^*AO\Psi_2.$$
(8.268)

Similarly, the product of two antilinear operators is linear.

The definition of the adjoint operator (8.266) is not self-consistent for an antilinear operator as we will see below. For an antilinear operator A, suppose there exists an operator  $A^{\dagger}$  that satisfies

# **KEK B-Factory and Belle Detector**

**KEK B-Factory** 



**Belle Detector** 



# MDI and Beam Backgrounds



### StarBall (or 'Star Wars') Beam background hot spot explorer

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

STARBALL

![](_page_23_Figure_4.jpeg)

Hung from the crane and runs along the beamline.

Directional resolution: R = 12 cm is much better Than R = 10 cm

# StarBall (or 'Star Wars')

### Identified a few hot spots

![](_page_24_Picture_2.jpeg)

![](_page_24_Picture_3.jpeg)

# Death of SVD (silicon vertex detector) Layer 1

![](_page_25_Figure_1.jpeg)

Figure 4: SVD gain vs time during summer 1999.

![](_page_26_Picture_0.jpeg)

![](_page_26_Figure_1.jpeg)

# The IR beampipe shows that the problem is clearly SR

Beam steering can place the beam in a dangerous configuration

![](_page_26_Figure_4.jpeg)

![](_page_27_Figure_0.jpeg)

Particle Background Study

![](_page_28_Picture_1.jpeg)

![](_page_28_Picture_2.jpeg)

Hulya Guler

# SVD 1.0 IR Beampipe

Cavity Structure? (resonance HOM heating)

![](_page_29_Figure_2.jpeg)

### HOM Resonance Study

![](_page_30_Figure_1.jpeg)

When the time difference of e+ and ebunches is integer times the HOM resonance period, a resonance can be excited.

HOM resonance as expected from geometry is observed.

Can the LER Ta mask be removed?

Period =  $31.61^{\circ}$  (TM011:  $31.54^{\circ}$  expected)

# SR Background

### Synchrotron Radiation

- 'Soft' SR background by HER Dominated by QC1 Backscat. at Oho-side Ta mask 0.5 kRad/yr (yoff = 0 mm)
   67 kRad/yr (yoff = 3 mm)
  - x5 before which used the LER-mask response w/ correction 1/10 should have been  $\sim 1/2$ .
  - $\times 1/3$  if Ta is not Au-coated.

#### 'Hard' SR background by HER

With Ta LER mask: small enough. If no Ta LER mask:  $\sim$ 20kRad/yr ( $\rightarrow$ no resonance HOM)

'Soft' SR background by LER

If BLWRP directly hits (it is possible): 1-80 kRad/yr for 2.5-3.5 mRad bending.

• All the above dominated by 11 keV Au L-edges. (Contribution to occupancy is small)

#### Sanjay Swain

![](_page_31_Picture_11.jpeg)

Grad. student at Hawaii  $\rightarrow$  Associate prof. at INISER India

# **Particle Background**

Unit = kRad/yr (1yr = 10<sup>7</sup> sec) (1.1A/2.6A, 1nTorr CO)

#### Data: SVD lyr 1

|     | dose       |
|-----|------------|
| HER | 24 kRad/yr |
| LER | 82 kRad/yr |

#### MC: SVD ly1 1

LER Particles entering GEANT just outside of b.p. depends strongly on materials around b.p. The numbers in (), such contributions set to 0.

|     | Brem/Coul  | Touschek  | total      |
|-----|------------|-----------|------------|
| HER | 40.5       | -         | 40.5       |
| LER | 35.2(23.3) | 56.5(6.5) | 91.7(29.8) |

Data/MC agreement is resonable.

#### Karim Trabelsi

![](_page_32_Picture_9.jpeg)

Postdoc at Hawaii  $\rightarrow$  KEK  $\rightarrow$  LAL Orsay research director

# What Beampipe Radius to Take?

- SVD1.4 (r=2cm) Old design
- SVD2.0 (r=1.5cm)
- SVD2.0 (r=1cm) Which one to take?

![](_page_33_Figure_4.jpeg)

- HY: 'You should not trust this study
- I mean there is a range of uncertainty'

R = 1.5 cm was taken in the end.

# Belle SVD2.0 Beampipe

![](_page_34_Figure_1.jpeg)

![](_page_35_Figure_0.jpeg)

### Inner cylinder

![](_page_36_Picture_1.jpeg)

Inner and outer cylinders

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

![](_page_37_Picture_0.jpeg)

Completed Belle SVD2.0 Beampipe

![](_page_37_Picture_2.jpeg)

Gold sheets and BR127 coating

2 beampipes made ~4000 万円 each

![](_page_37_Picture_5.jpeg)

He leak test

![](_page_38_Picture_0.jpeg)

After 2001, SR study is handed over to Tesuo Abe – A postdoc of Tohoku U.

2<sup>nd</sup> victim of our MDI effort to move to accelerator (1<sup>st</sup> is Stu Henderson) Now a associate professor in accelerator physics at KEK, an expert in RF design.

# **International Linear Collider**

![](_page_39_Figure_1.jpeg)

### TDR 'Baseline':

- Ecm = 500 GeV
- Polarization (e+/e-) =  $\pm 0.3/\pm 0.8$
- 2x10<sup>10</sup> particles/bunch, 1312 bunch/train, train: 5 Hz
- •Wall plug power = 163 MW

Starts as a Ecm = 250 GeV Higgs Factory

# **ILC Organization for Physics/Detecor**

Worldwide Study (later under Research Directorate) Asia: HY Europe: David Miller → Juan Fuster North Americas: Jim Brau

Linear Collider Collaboration (LCC) 2012 ~ Associate director for physics and detectors: HY (until physics department chair in 2017)

> Regional reps Asia: Keisuke Fujii Europe: Juan Fuster North America: Dimitri Denisov Many WG's

E.

![](_page_40_Figure_6.jpeg)

Jim Brau

Juan Fuster

# Luminosity vs Energy of Proposed e+e- Colliders

![](_page_41_Figure_1.jpeg)

- FCCee/CEPC points are for 1 IP (their CDR have 2 IPs)
- LC Higgs Factory numbers do not include effective x~2.5 by polarization (polarization effect next slide)
- ILC 10 Hz collision requires ~ILC500
- Capability of 250 GeV Higgs factories are similar

## **Power of Polarization**

![](_page_42_Figure_1.jpeg)

- equivalent to 5 ab-1 at 250 GeV (unpolarized)
- Effective luminosity  $\sim$  x 2.5 by polarization

![](_page_43_Picture_0.jpeg)

### Inclusive Decay Distributions of Coherent Two-body States

Orthogoanl states:  $i, j, i', j' = 1, 2 \dots n$ ,

Physical states:  $\alpha, \beta, \alpha', \beta' = a, b \dots (n \text{ total})$ 

Using the generalized Bell-Steinberger Relation

$$\frac{\sum_{f} a_{\alpha f}^{*} a_{\beta f}}{\frac{\gamma_{\alpha} + \gamma_{\beta}}{2} - i(m_{\alpha} - m_{\beta})} = \langle B_{\alpha} | B_{\beta} \rangle$$

one can prove the following orthonormality relation:

$$\begin{split} \sum_{f} \int_{0}^{\infty} dt \ A_{B_{i} \to f}^{*}(t) A_{B_{j} \to f}(t) \\ &= \sum_{\alpha \beta} r_{i\alpha}^{*} r_{j\beta} \sum_{f} a_{\alpha f}^{*} a_{\beta f} \int_{0}^{\infty} dt \ e_{\alpha}^{*}(t) e_{\beta}(t) \\ &= \sum_{\alpha \beta} r_{i\alpha}^{*} r_{j\beta} \ \frac{\sum_{f} a_{\alpha f}^{*} a_{\beta f}}{\frac{\gamma_{\alpha} + \gamma_{\beta}}{2} - i(m_{\alpha} - m_{\beta})} \\ &= \delta_{ij} \ . \end{split}$$

time dependent decay amplitudes  $A_{B_i \to f}(t)$