Belle
 (recent and coming results)

Karim Trabelsi
for the Belle collaboration
karim.trabelsi @ kek.jp

HIGH ENERGY ACCELERATOR RESEARCH ORGANIZATION

Tohoku University
January 11, 2012

KEKB collider and Belle in a nutshell

Belle is an international collaboration 15 countries, 64 institutes 365 members

Belle shutdown last June (2010)

Belle these days...
ECL (backward endcap)

ACC (barrel)

CDC

TOF

$\left(\mathrm{fb}^{-1}\right) \quad$ Luminosity at B factories

On resonance:
$Y(5 \mathrm{~S}): 121 \mathrm{fb}^{-1}$
$Y(\mathbf{4 S}): \mathbf{7 1 1} \mathrm{fb}^{-1}$
$r(3 \mathrm{~S}): 3 \mathrm{fb}$
$Y(2 S): 24 \mathrm{fb}^{-1}$
$Y(1 \mathrm{~S}): 6 \mathrm{fb}^{-1}$
Off reson./scan: $\sim 100 \mathrm{fb}^{-1}$
$\sim 550 \mathrm{fb}^{-1}$
On resonance:
$r(4 \mathrm{~S}): 433 \mathrm{fb}^{-1}$
$Y(3 S): 30 \mathrm{fb}^{-1}$
$Y(2 S): 14 \mathrm{fb}^{-1}$
Off resonance:
$\sim 54 \mathrm{fb}^{-1}$

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1
Rien ne sert de courir ; il faut partir a point. Le Lievre et la Tortue en sont un temoignage. Gageons, dit celle-ci, que vous n'atteindrez point Si tot que moi ce but. Si tot ? Etes-vous sage ? Repartit l'Animal leger...

Belle in a nutshell

Silicon Vertex Detector:
3/4 detection layers
Vertex resolution $\sim 100 \mu \mathrm{~m}$
8.0 GeV e

Central Drift Chamber 8,400 sense wires PID with dE/dx
$\mathbf{K L M}\left(\mathbf{K}_{\mathbf{L}} \boldsymbol{\mu}\right)$ Detector: Sandwich of 14 RPCs and 15 iron plates

Solenoid: 1.5 T
3.5 GeV e ${ }^{+}$

Electromagnetic Cal :
CsI(Tl) crystal
$\sigma_{\mathrm{E}} / \mathrm{E} \sim 1.6 \%$ @ 1 GeV
Time-of-Flight Counter : K / π-ID of high p

Aerogel Cerenkov Counter :

Refractive index $\mathrm{n}=1.01$-1.03
K / π of middle p
very stable detector, good particle identification, (kaon, pion, electron, muon), $\mathrm{e}^{+} \mathrm{e}^{-}$is a clean environment: excellent tracking, triggering, tagging...

Toward the final Belle results...

- include the last part of the data (> $100 \mathrm{fb}^{-1}$, often much more...)
- reprocessed data ($\sim 2 / 3$ of the data, tracking efficiency increase $>20 \%$)

Efficiency for $\mathrm{B}^{+} \rightarrow \psi(2 \mathrm{~S})(\mathrm{J} / \psi \pi \pi) \mathrm{K}^{+} \quad$ Example of $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{S}} \pi \pi$

reconstruction systematics improved: tracking efficiency systematics at high P_{t}
$1.2 \% \rightarrow 0.35 \%$ (update)

$$
\mathrm{K}_{\mathrm{S}}: 4.5 \% \rightarrow 2 \%
$$

$\pi^{0}: 4 \% \rightarrow$??
0.5 M signal candidates in $540 \mathrm{fb}^{-1}$ PRL 99, 131803 (2007) status of the update:
1.1 M signal candidates in $790 \mathrm{fb}^{-1}$

Main motivation of Belle

- Overconstrain the CKM matrix : measure fundamental parameters, constrain new physics effects
- Measure the 4 free paremeters in various ways:
- CP conserving $\left\{\left|\mathrm{V}_{\mathrm{us}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|,\left|\mathrm{V}_{\mathrm{td}}\right|,\left|\mathrm{V}_{\mathrm{ub}}\right|\right\}$
- CP violating $\left\{\epsilon_{\mathrm{K}}, \phi_{\mathrm{s}}, \phi_{1}, \phi_{3}\right\}$
- Tree level $\left\{\ldots, \ldots,\left|\mathrm{V}_{\mathrm{ub}}\right|, \phi_{3}\right\}$
- Loop level
$\left\{\ldots, \ldots,\left|V_{\text {td }}\right|, \phi_{1}\right\}$

from EPS 2001...
...to LP 2011

\Rightarrow clear impact on B-factories (angles and sides)!

Outline

Recent updates for UT:

$$
\begin{aligned}
& \phi_{1} / \beta: \mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{~s}, \mathrm{~b} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{~d} \\
& \phi_{3} / \gamma: \mathrm{B}^{+} \rightarrow \mathrm{DK}^{+}
\end{aligned}
$$

$B \rightarrow \tau v$

(and modes with missing energy)
Physics at $\Upsilon(5 S): B_{s}$ and bottomomium

Time-dependent CP asymmetries in decays to CP eigenstates

$\sin 2 \phi_{1}$ from $B \rightarrow f_{C P}+B \leftrightarrow \bar{B} \rightarrow f_{C P}$ interf.

Sanda, Bigi \& Carter:

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{CP}}(\mathrm{f} ; \mathrm{t})=\frac{\mathrm{N}\left(\overline{\mathrm{~B}}^{0}(\mathrm{t}) \rightarrow \mathrm{f}\right)-\mathrm{N}\left(\mathrm{~B}^{0}(\mathrm{t}) \rightarrow \mathrm{f}\right)}{\mathrm{N}\left(\overline{\mathrm{~B}}^{0}(\mathrm{t}) \rightarrow \mathrm{f}\right)+\mathrm{N}\left(\mathrm{~B}^{0}(\mathrm{t}) \rightarrow \mathrm{f}\right)} \\
& \quad=\mathbf{S} \sin \Delta \mathrm{m}_{\mathrm{d}} \mathrm{t}+\mathbf{A} \cos \Delta \mathrm{m}_{\mathrm{d}} \mathrm{t}
\end{aligned}
$$

$$
=\frac{2 \operatorname{Im} \lambda}{|\lambda|^{2}+1} \sin \Delta \mathrm{~m}_{\mathrm{d}} \mathrm{t}+\frac{|\lambda|^{2}-1}{|\lambda|^{2}+1} \cos \Delta \mathrm{~m}_{\mathrm{d}} \mathrm{t}
$$

$$
\lambda=\frac{\mathrm{q}}{\mathrm{p}} \frac{\mathrm{~A}\left(\overline{\mathrm{~B}}^{0} \rightarrow \mathrm{f}\right)}{\mathrm{A}\left(\mathrm{~B}^{0} \rightarrow \mathrm{f}\right)}=\mathrm{e}^{-\mathrm{i} 2 \phi_{i}} \frac{\overline{\mathrm{~A}}_{\mathrm{f}}}{\mathrm{~A}_{\mathrm{f}}}
$$

$\circ \mathbf{A}=0$ and $\mathbf{S}=-\xi_{f} \sin 2 \beta$ for $(c \bar{c}) K_{\text {S/L }}\left(\xi_{f}=\mp 1\right)$
$\circ \mathbf{A}=0$ and $\mathbf{S}=\sin 2 \alpha$ for $\pi^{+} \pi^{-}$(if tree only)

$\mathbf{C}=-\mathbf{A}$

$\underline{c \bar{c} K_{S}}$ and $\mathrm{J} / \psi \mathrm{K}_{\mathrm{L}}$

772×10^{6} B \bar{B} pairs

 $\sin 2 \phi_{1}=0.671 \pm 0.029$
$A=-0.014 \pm 0.021$

$\sin 2 \phi_{1}$ in $(\mathbf{C} \overline{\mathbf{C}}) \mathrm{K}^{0} \ldots \quad 772 \times 1 \mathbf{1 0}^{6} \mathbf{B} \overline{\mathbf{B}}$ pairs

$$
\begin{gathered}
\sin 2 \phi_{1}=0.668 \pm 0.023 \pm 0.013 \\
\mathrm{~A}=0.007 \pm 0.016 \pm 0.013
\end{gathered}
$$

- World's most precise measurements
- anchor point of the SM
- still statistically limited !

La raison d'être of the B factories

What is the source of CP violation ?
The Kobayashi-Maskawa phase is the source

Critical role of the B factories in the verification of the KM hypothesis

A single irreducible phase in the weak interaction matrix accounts
for most of the CPV observed in kaons and B's

β in other modes

$$
\begin{aligned}
& J / \psi K_{S}^{0}, \psi(2 S) K_{S}^{0}, \chi_{c 1} K_{S}^{0}, \\
& \eta_{c} K_{S}^{0}, J / \psi K_{L}^{0}, \\
& J / \psi K^{* 0}\left(K^{* 0} \rightarrow K_{S}^{0} \pi^{0}\right)
\end{aligned}
$$

$\phi K^{0}, K^{+} K^{-} K_{S}^{0}$,
$K_{S}^{0} K_{S}^{0} K_{S}^{0}, \eta^{\prime} K^{0}, K_{S}^{0} \pi^{0}$, $\omega K_{S}^{0}, f_{0}(980) K_{S}^{0}$

increasing tree diagram amplitude

increasing sensitivity to new physics
possible new sources of CPV ?

β with $\mathrm{b} \rightarrow \mathrm{s}$ penguins

More statistics crucial for mode-by-mode studies
$\sin \left(2 \beta^{\mathrm{eff}}\right) \equiv \sin \left(2 \phi_{1}^{\text {eff }}\right) \underset{\substack{\text { BRantronti| }}}{\text { HFAG }}$
PRELIMINARY

Recent update of $\mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}$mode

772×10^{6} B $\overline{\text { B }}$ pairs preliminary shown at EPS11

SM prediction: $\mathrm{S}=-\sin 2 \beta$ and $\mathrm{A}=0 \quad$ [Z.Z Xing, PRD61, 014010 (1999)] $\mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-} \rightarrow\left(\mathrm{K}^{-} \pi^{+} \pi^{+}\right)\left(\mathrm{K}^{+} \pi^{-} \pi^{-}\right)$

$$
\rightarrow\left(\mathrm{K}^{-} \pi^{+} \pi^{+}\right)\left(\mathrm{K}_{\mathrm{S}}^{0} \pi^{-}\right)
$$

[$>\times 2$ signal yield compared to previous analysis (535 MBB)]

Recent update of $\mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-}$mode

772×10^{6} B $\overline{\text { B }}$ pairs preliminary shown at EPS11

SM prediction: $\mathrm{S}=-\sin 2 \beta$ and $\mathrm{A}=0 \quad$ [Z.Z Xing, PRD61, 014010 (1999)] $\mathrm{B}^{0} \rightarrow \mathrm{D}^{+} \mathrm{D}^{-} \rightarrow\left(\mathrm{K}^{-} \pi^{+} \pi^{+}\right)\left(\mathrm{K}^{+} \pi^{-} \pi^{-}\right)$
$\rightarrow\left(\mathrm{K}^{-} \pi^{+} \pi^{+}\right)\left(\mathrm{K}_{\mathrm{S}}^{0} \pi^{-}\right)$
[$>\times 2$ signal yield compared to previous analysis (535 MBB)]
$\mathrm{D}^{+} \mathrm{D}^{-} \mathrm{S}_{\mathbf{C P}}{ }^{\text {vs }} \mathbf{C}_{\mathbf{C P}}$
HFAG
EPS 2011

Measurement(s) of the CKM angle γ / ϕ_{3} at Belle

γ measurements from $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

\circ Theoretically pristine B \rightarrow DK approach

- Access y via interference between $\mathrm{B}^{-} \rightarrow \mathrm{D}^{0} \mathrm{~K}^{-}$and $\mathrm{B}^{-} \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{-}$

color suppressed

$$
\begin{aligned}
\mathrm{B}^{-} & \rightarrow \overline{\mathrm{D}}^{0} \mathrm{~K}^{-} \sim \mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{cs}} \\
& \sim \mathbf{A} \boldsymbol{\lambda}^{3}(\rho-\mathbf{i} \eta)
\end{aligned}
$$

relative magnitude of suppressed amplitude is r_{B}

$$
\mathrm{r}_{\mathrm{B}}=\frac{\left|\mathrm{A}_{\text {suppressed }}\right|}{\left|\mathrm{A}_{\text {favoured }}\right|} \sim \frac{\left|\mathrm{V}_{\mathrm{ub}} \mathrm{~V}_{\mathrm{cs}}^{*}\right|}{\left|\mathrm{V}_{\mathrm{cb}} \mathrm{~V}_{\mathrm{us}}^{*}\right|} \times[\text { color supp }]=0.1-0.2
$$

relative weak phase is γ, relative strong phase is δ_{B}

γ measurements from $\mathrm{B}^{ \pm} \rightarrow \mathrm{DK}^{ \pm}$

- Reconstruct D in final states accessible to both D^{0} and $\overline{\mathrm{D}}^{0}$
$-\mathrm{D}=\mathrm{D}_{\mathrm{CP}}, \mathrm{CP}$ eigenstates as $\mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{S}} \pi^{0}$
GLW method (Gronau-London-Wyler)
- $\mathrm{D}=\mathrm{D}_{\text {sup }}$, Doubly -Cabbibo suppressed decays as $\mathrm{K} \pi$ ADS method (Atwood-Dunietz-Soni)
- Three-body decays as $\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{+} \pi^{-}, \mathrm{K}_{\mathrm{s}} \mathrm{K}^{+} \mathrm{K}^{-}$

GGSZ (Dalitz) method (Giri-Grossman-Soffer-Zupan)

- Largest effects due to
- charm mixing
- charm CP violation

negligible
Y.Grossman, A.Soffer, J.Zupan [PRD 72, 031501 (2005)]
- Different B decays (DK, D* $\mathrm{K}, \mathrm{DK}^{*}$)
- different hadronic factors $\left(\mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}\right)$ for each

$\mathrm{B} \rightarrow \mathrm{D}^{(*)} \mathrm{K}^{(*)}$ Dalitz analysis

Reconstruction of three-body final states $\mathrm{D}^{0}, \overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-}$
Amplitude for each Dalitz point is described as:

$$
\begin{aligned}
& \overline{\mathrm{D}}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-} \sim \mathrm{f}\left(\mathrm{~m}_{+}^{2}, \mathrm{~m}_{-}^{2}\right) \\
& \mathrm{D}^{0} \rightarrow \mathrm{~K}_{\mathrm{s}} \pi^{+} \pi^{-} \sim \mathrm{f}\left(\mathrm{~m}_{-}^{2}, \mathrm{~m}_{+}^{2}\right)
\end{aligned}
$$

model the amplitudes (using tagged D sample)

$$
\mathrm{B}^{+} \rightarrow\left(\mathrm{K}_{\mathrm{S}} \pi^{+} \pi^{-}\right)_{\mathrm{D}} \mathrm{~K}^{+}: \mathrm{f}\left(\mathrm{~m}_{+}^{2}, \mathrm{~m}_{-}^{2}\right)+\mathrm{r}_{\mathrm{B}} \mathrm{e}^{\mathrm{i}\left(\delta_{\mathrm{B}}+\gamma\right)} \mathrm{f}\left(\mathrm{~m}_{-}^{2}, \mathrm{~m}_{+}^{2}\right)
$$

Simultaneous fit of B^{+}and B^{-}to extract parameters $\mathrm{r}_{\mathrm{B}}, \gamma$ and δ_{B}
Note: 2 fold ambiguity on $\gamma:\left(\gamma, \delta_{\mathrm{B}}\right) \rightarrow\left(\gamma+\pi, \delta_{\mathrm{B}}+\pi\right)$

$\mathrm{B}^{-} \rightarrow \mathrm{D}^{(*)}\left(\mathrm{K}_{\mathrm{s}} \pi \pi\right) \mathrm{K}^{-}$Dalitz, $\Delta \mathrm{E}$ and M_{bc} projections

$$
\left|\cos \theta_{\mathrm{thr}}\right|<0.8 \text { and } F>-0.7
$$

PRD 81, 112002 (2010) 657×10^{6} B \bar{B} pairs

γ measurement with $\mathrm{B} \rightarrow \mathrm{D}\left(\mathrm{K}_{\mathrm{s}} \pi \pi\right) \mathrm{K}$

$$
\mathrm{x}_{ \pm}=\mathrm{r}_{\mathrm{B}} \cos \left(\delta_{\mathrm{B}} \pm \gamma\right), \mathrm{y}_{ \pm}=\mathrm{r}_{\mathrm{B}} \sin \left(\delta_{\mathrm{B}} \pm \gamma\right)
$$

$$
\begin{aligned}
& \gamma=\left(80.8_{-14.8}^{+13.1} \pm 5.0 \pm 8.9\right)^{\circ} \\
& \mathrm{r}_{\mathrm{B}}=0.161_{-0.040}^{+0.048} \pm 0.011_{-0.010}^{+0.050} \\
& \delta_{\mathrm{B}}=\left(137.4_{-15.7}^{+13.0} \pm 4.0 \pm 22.9\right)^{\circ}
\end{aligned}
$$

$$
\gamma=\left(73.9_{-20.2}^{+18.9} \pm 4.2 \pm 8.9\right)^{\circ}
$$

$$
\mathrm{r}_{\mathrm{B}}=0.161_{-0.038}^{+0.040} \pm 0.011_{-0.010}^{+0.050} \quad \mathrm{r}_{\mathrm{B}}=0.196_{-0.072}^{+0.073} \pm 0.013_{-0.012}^{+0.062}
$$

$$
\delta_{\mathrm{B}}=\left(341.7_{-20.9}^{+18.6} \pm 3.2 \pm 22.9\right)^{\circ}
$$

combining both B modes (Dalitz): $\boldsymbol{\gamma}=\left(\mathbf{7 8 . 4}_{-1 \mathbf{1} .6}^{+\mathbf{1 0 . 8}} \pm \mathbf{3 . 6} \pm \mathbf{8 . 9}\right)^{\circ}$
CPV significance is 3.5 standard deviations (model-dependent error will limit viability of this approach)

Binned Dalitz method result in $\mathrm{B} \rightarrow \mathrm{DK}$ from 772 million events

$$
\begin{aligned}
& \gamma=\left(77.3_{-14.9}^{+15.1} \pm 4.2 \pm 4.3\right)^{\circ} \\
& \mathrm{r}_{\mathrm{B}}=0.145 \pm 0.030 \pm 0.011 \pm 0.011 \\
& \delta_{\mathrm{B}}=(129.9 \pm 15.0 \pm 3.9 \pm 4.7)^{\circ}
\end{aligned}
$$

uncertainty in $\mathrm{c}_{\mathrm{i}}, \mathrm{s}_{\mathrm{i}}$ from CLEO data (can reduce using future BES-III data)

ADS method measures ϕ_{3} via the interference in rare $\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{K}^{-}$decays

ADS rate and asymmetry (relative to the common decay):
favoured
 suppressed

$$
\mathcal{R}_{D K}=\frac{\stackrel{\Gamma}{ }\left(\left[K^{+} \pi^{-}\right] K^{-}\right)+\Gamma\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}{\Gamma\left(\left[K^{-} \pi^{+}\right] K^{-}\right)+\Gamma\left(\left[K^{+} \pi^{-}\right] K^{+}\right)}
$$

$$
\pi^{+} \sqrt{7}
$$

$$
=r_{B}^{2}+r_{D}^{2}+2 r_{B} r_{D} \cos \left(\delta_{B}+\delta_{D}\right) \cos \phi_{3}
$$

$$
\begin{aligned}
\mathcal{A}_{D K} & =\frac{\Gamma\left(\left[K^{+} \pi^{-}\right] K^{-}\right)-\Gamma\left(\left[K^{-} \pi^{+}\right] K^{+}\right)}{\Gamma\left(\left[K^{-} \pi^{+}\right] K^{-}\right)+\Gamma\left(\left[K^{+} \pi^{-}\right] K^{+}\right)} \\
& =2 r_{B} r_{D} \sin \left(\delta_{B}+\delta_{D}\right) \sin \phi_{3} / \mathcal{R}_{D K}
\end{aligned}
$$

where $\quad r_{D}=\left|\frac{\mathcal{A}\left(D^{0} \rightarrow K^{+} \pi^{-}\right)}{\mathcal{A}\left(\bar{D}^{0} \rightarrow K^{+} \pi^{-}\right)}\right|=0.0613 \pm 0.0010$

Yields for the ADS mode $\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{K}^{-}$from 772 million $\mathrm{B} \overline{\mathrm{B}}$ events PRL 106, 231803 (2011)
Main background is $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{q} \overline{\mathrm{q}}(\mathrm{q}=\mathrm{u}, \mathrm{d}, \mathrm{s}, \mathrm{c})$ continuum $\Rightarrow 10$ variables combined to obtain a single NN output (NB) (for example, at 99% bckg rej. signal eff. $=42 \%$ now becomes 60%)
Fit $\Delta \mathrm{E}$ and NB distributions together to extract signal

$56.0_{-14.2}^{+15.1}$ events

$$
\mathbf{R}_{\mathrm{DK}}=\left(1.63_{-0.41-0.13}^{+0.44+0.07}\right) \times 10^{-2}
$$

$$
\mathrm{A}_{\mathrm{DK}}=-0.39_{-0.28-0.03}^{+0.26+0.04}
$$

First evidence obtained with a significance of 3.8σ (including syst.)

Results for the ADS mode $\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}} \mathrm{K}^{-}$from 772 million $\mathrm{B} \overline{\mathrm{B}}$ events PRL 106, 231803 (2011)

```
Rads Averages }\frac{|}{\frac{HFAGG}{\mathrm{ EPS 2011 }}
```


$$
\left(1.63_{-0.41-0.13}^{+0.44+0.07}\right) \times 10^{-2}
$$

```

```

$$
\Rightarrow \mathbf{r}_{\mathbf{B}} \neq \mathbf{0}
$$

$\mathrm{A}_{\mathrm{ADS}}$ Averages

HFAG
EPS 2011
PRELIMINARY

$-0.86 \pm 0.47_{-0.16}^{+0.12}$
\vdots
$-0.399_{0.28}^{+0.26}{ }_{-0.03}^{+0.04}$
\vdots
$-0.82 \pm 0.44 \pm 0.09$
\vdots
$-0.39 \pm 0.17 \pm 0.02$
\vdots
-0.46 ± 0.13
\vdots
$2 \overbrace{B E L L E}^{-0.39^{+0.26+0.04}} \begin{array}{r}+0.28-0.03\end{array}$

```

First evidence for the ADS mode \(\mathrm{B}^{-} \rightarrow\left[\mathrm{K}^{+} \pi^{-}\right]_{\mathrm{D}^{+}} \mathrm{K}^{-}\) from Belle 772 million \(\mathrm{B} \overline{\mathrm{B}}\) events

Preliminary
LP 2011 study both modes: \(\mathrm{D}^{*} \rightarrow \mathrm{D} \pi^{0}, \mathrm{D} \gamma\) :

Signal seen with a significance of \(3.5 \sigma\) for \(\mathbf{D}^{*} \rightarrow D_{\gamma}\) mode

Ratio to favored mode:

\(\mathbf{R}_{\mathrm{D}_{\gamma}}=\left(3.6_{-1.2}^{+1.4}(\right.\) stat \() \pm \mathbf{0 . 2}(\) syst \(\left.)\right) \times \mathbf{1 0}^{-2}\)
asymmetry :
\(\mathbf{A}_{\mathbf{D}_{\pi^{0}}}=\mathbf{0 . 4}{ }_{-0.7}^{+1.1}(\text { stat })_{-0.1}^{+0.2}(\) syst \()\)
\(A_{D_{\gamma}}=-0.511_{-0.29}^{+0.33}(\) stat \() \pm 0.08(\) syst \()\)



Comparison of the results obtained for \(\mathrm{D}^{*} \mathrm{~K}\) with expectations
(where ''expectations' ' are derived from the GGSZ observables)


WA taken from HFAG 2011 summer.

\section*{GLW with \(D_{C P} K\)}

D decays to CP eigenstates

Relation between \(\left(\mathrm{A}_{\mathrm{CP}+}, \mathrm{A}_{\mathrm{CP}-}, \mathrm{R}_{\mathrm{CP}+}, \mathrm{R}_{\mathrm{CP}-}\right)\) and \(\left(\gamma, \mathrm{r}_{\mathrm{B}}, \delta_{\mathrm{B}}\right)\)
\[
\begin{aligned}
& \mathrm{R}_{\mathrm{CP} \pm} \simeq \frac{\mathrm{R}_{\mathrm{D}_{\mathrm{CP} \pm}}}{\mathrm{R}_{\mathrm{D}_{\mathrm{fav}}}} \\
& \mathbf{A}_{\mathrm{CP}+}=\frac{2 \mathrm{r}_{\mathrm{B}} \sin \delta_{\mathrm{B}} \sin \gamma}{1+\mathrm{r}_{\mathrm{B}}^{2}+2 \mathrm{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma} \quad \mathbf{A}_{\mathrm{CP}-}=\frac{-2 \mathrm{r}_{\mathrm{B}} \sin \delta_{\mathrm{B}} \sin \gamma}{1+\mathrm{r}_{\mathrm{B}}^{2}-2 \mathrm{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma} \\
& \mathbf{R}_{\mathrm{CP}+}=\mathbf{1}+\mathrm{r}_{\mathrm{B}}^{2}+\mathbf{2} \mathrm{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma \quad \mathbf{R}_{\mathrm{CP}-}=\mathbf{1}+\mathrm{r}_{\mathrm{B}}^{2}-\mathbf{2} \mathrm{r}_{\mathrm{B}} \cos \delta_{\mathrm{B}} \cos \gamma \\
& \Rightarrow \text { look for } \mathrm{R}_{\mathrm{CP} \pm} \neq 1 \text { and } \mathrm{A}_{\mathrm{CP} \pm} \neq 0
\end{aligned}
\]

\title{
\(\underline{\mathbf{B} \rightarrow \mathbf{D h}, \mathbf{D} \rightarrow \mathbf{K} \boldsymbol{\pi} \rightarrow \mathbf{R}_{\mathbf{D}_{\mathrm{tuv}}}}\)
}
\(\operatorname{data}(772 \mathrm{MB} \overline{\mathrm{B}})\) \(\mathrm{B} \rightarrow \mathrm{D} \mathrm{\pi}\) B \(\rightarrow\) DK B \(\bar{B}\)
continuum
h is a pion candidate ( \(\mathrm{KID}<0.6\) )
h is a kaon candidate ( \(\mathrm{KID}>0.6\) )








\(\Rightarrow \mathrm{R}_{\mathrm{D}_{\mathrm{fav}}}=(7.32 \pm 0.16) \%, \quad \mathrm{~A}(\mathrm{DK})=(1.4 \pm 2.0) \%\)

\section*{\(\mathbf{B} \rightarrow \mathbf{D h}, \mathbf{D} \rightarrow \mathbf{K} \boldsymbol{\pi} \rightarrow \mathbf{R}_{+}\) \\ \(\mathrm{D} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-}, \pi^{+} \pi^{-}\) \\ Preliminary LP 2011 \\ \(\operatorname{data}(772 \mathrm{MB} \overline{\mathrm{B}})\) \(\mathrm{B} \rightarrow \mathrm{D} \pi\) \(\mathrm{B} \rightarrow \mathrm{DK}\) \(B \bar{B}\) continuum}
h is a pion candidate ( \(\mathrm{KID}<0.6\) )






\(\Rightarrow \mathrm{R}_{\mathrm{D}_{\mathrm{CP}+}}=(7.56 \pm 0.51) \%, \mathrm{~A}_{\mathrm{D}_{\mathrm{CP}+}}=(28.7 \pm 6.0) \%\)

\section*{\(\mathbf{B} \rightarrow \mathbf{D h}, \mathbf{D} \rightarrow \mathbf{K} \boldsymbol{\pi} \rightarrow \mathbf{R}\) \\ \(\mathrm{D} \rightarrow \mathrm{K}_{\mathrm{s}} \pi^{0}, \mathrm{~K}_{\mathrm{s}} \eta(\gamma \gamma)\) \\ Preliminary \\ LP 2011 \\ \(\operatorname{data}(772 \mathrm{MB} \overline{\mathrm{B}})\) \(\mathrm{B} \rightarrow \mathrm{D} \pi\) \(\mathrm{B} \rightarrow \mathrm{DK}\) \(B \bar{B}\) \\ continuum}
h is a pion candidate ( \(\mathrm{KID}<0.6\) )








\(\Rightarrow \mathrm{R}_{\mathrm{D}_{\text {ср- }}}=(8.29 \pm 0.63) \%, \mathrm{~A}_{\mathrm{D}_{\text {ср- }}}=(-12.4 \pm 6.4) \%\)
opposite asymmetry !!

\section*{GLW Results}

\section*{Preliminary}

LP 2011
\[
\begin{array}{ccc}
\text { Yields } & \mathbf{B} \rightarrow \mathbf{D} \boldsymbol{\pi} & \mathbf{B} \rightarrow \mathbf{D K} \\
\mathbf{D} \rightarrow \mathbf{K} \boldsymbol{\pi} & 50432 \pm 243 & 3692 \pm 83 \\
\mathbf{D} \rightarrow \mathbf{K K}, \boldsymbol{\pi} \boldsymbol{\pi} & 7696 \pm 106 & 582 \pm 40 \\
\mathbf{D} \rightarrow \mathbf{K}_{\mathbf{s}} \boldsymbol{\pi}^{\mathbf{0}}, \mathbf{K}_{\mathbf{s}} \boldsymbol{\eta} & 5745 \pm 91 & 476 \pm 37
\end{array}
\]
\[
\begin{aligned}
& \mathbf{R}_{\text {CP }+}=\mathbf{1 . 0 3} \pm \mathbf{0 . 0 7} \pm \mathbf{0 . 0 3} \\
& \mathbf{R}_{\mathrm{CP}-}=\mathbf{1 . 1 3} \pm \mathbf{0 . 0 9} \pm \mathbf{0 . 0 5} \\
& \mathbf{A}_{\mathbf{C P}+}=+\mathbf{0 . 2 9} \pm \mathbf{0 . 0 6} \pm \mathbf{0 . 0 2} \\
& \mathbf{A}_{\mathbf{C P}-}=-\mathbf{0 . 1 2} \pm \mathbf{0 . 0 6} \pm \mathbf{0 . 0 1}
\end{aligned}
\]
systematics dominated by peaking background, double ratio approximation
coming improvement: adding \(\mathrm{K}_{\mathrm{s}} \omega, \mathrm{K}_{\mathrm{s}} \eta^{\prime}\) for CP -odd modes coming update: \(\mathrm{D}^{*} \mathrm{~K}\) modes

\section*{Combined measurements for \(y\) from all methods}


\section*{Angles only}



\section*{Tauonic B decays}

\[
B_{\mathrm{SM}}\left(\mathrm{~B}^{+} \rightarrow \tau^{+} v\right)=\frac{\mathrm{G}_{\mathrm{F}}^{2} \mathrm{~m}_{\mathrm{B}} \mathrm{~m}_{\tau}^{2}}{8 \pi}\left(1-\frac{\mathrm{m}_{\tau}^{2}}{\mathrm{~m}_{\mathrm{B}}^{2}}\right)^{2} \mathrm{f}_{\mathrm{B}}^{2}\left|\mathrm{~V}_{\mathrm{ub}}\right|^{2} \tau_{\mathrm{B}}
\]
\(2 \mathrm{HDM}\left(\right.\) type II) \(: B\left(\mathrm{~B}^{+} \rightarrow \boldsymbol{\tau}^{+} v\right)=B_{\mathrm{SM}} \times\left(1-\frac{\mathrm{m}_{\mathrm{B}}^{2}}{\mathrm{~m}_{\mathrm{H}^{+}}^{2}} \tan ^{2} \beta\right)^{2}\)
uncertainties from \(f_{B}\) and \(\left|V_{u b}\right|\) can be reduced to \(B_{B}\) and other CKM uncertainties by combining with precise \(\Delta \mathrm{m}_{\mathrm{d}}\)

\section*{Event reconstruction in \(B \rightarrow \tau \mathcal{\nu}\)}
\[
\underline{B}_{\mathrm{sig}} \rightarrow \tau \mathcal{V}
\]
\[
\text { (70 \% of all } \tau \text { decays) }
\]

Require no particle and no energy left after removing \(\mathrm{B}_{\text {tag }}\)
\[
\tau \rightarrow \mathrm{e} v v, \mu v v,
\]
\[
\tau \rightarrow \pi v, \pi \pi^{0} v, 3 \pi v
\]


Btag
\(\boldsymbol{B}_{\text {tag }}\)
hadronic tag \(\mathrm{B} \rightarrow \mathrm{D}^{(*)} \pi, \mathrm{D}^{(*)}\) rho.... \(\epsilon \sim 0.2 \%\)
semileptonic tag
\[
\mathrm{B} \rightarrow \mathrm{D}^{(*)} l v \mathrm{X}
\]

\section*{\(\mathbf{B}^{+} \rightarrow \tau^{+} \nu\) results}



Extra calorimeter energy: \(\mathrm{E}_{\text {ELL/extra }}(\mathrm{GeV})\)
Belle
\(\mathrm{N}_{\text {Bछ }}\)
\(\boldsymbol{B}\left(10^{-4}\right) \quad \Sigma(\sigma)\)
\begin{tabular}{rlrll|} 
& Hadronic tag & \((449 \mathrm{M})\) & \(\left(1.79_{-0.49}^{+0.56}+0.51\right.\) \\
\(\Rightarrow\) & Semilep. tag & \((657 \mathrm{M})\) & \(\left(1.54_{-0.37-0.31}^{+0.38}\right)\) & 3.5 \\
PRL97, \(251802(2006)\) & PRD 82, \(071101(2010)\) \\
\hline
\end{tabular}

BaBar
\(\Rightarrow\)\begin{tabular}{|ccccc|}
\hline Hadronic tag & \((468 \mathrm{M})\) & \(\left(1.80_{-0.54}^{+0.57} \pm 0.26\right)\) & 3.6 & preliminary \\
\hline Semilep. tag & \((459 \mathrm{M})\) & \((1.7 \pm 0.8 \pm 0.2)\) & 2.3 & PRD81, 051101 (2010) \\
\hline
\end{tabular}

\section*{\(\mathbf{B}^{+} \rightarrow \tau^{+} \nu\) results}

\section*{World average : \(B\left(B^{+} \rightarrow \tau^{+} v\right)=(\mathbf{1 . 6 8} \pm \mathbf{0 . 3 1}) \times \mathbf{1 0}^{-4}\)}


\section*{\(\mathrm{B}^{+} \rightarrow \boldsymbol{\tau}^{+} \boldsymbol{\nu}\) versus...}

\section*{... \(\sin 2 \beta_{\text {cc }}\)}
\(\Rightarrow\) within the SM, either the observed \(B R[B \rightarrow \tau v]\) is too high, either \(\sin 2 \beta_{c c}\) is too low

\(\ldots\left|\mathbf{V}_{\mathbf{u b}}\right| \quad\) [A.Khodjamirian et al, arXiv:1103.2655]
\[
\mathrm{R}_{\mathrm{s} / 1}\left(\mathrm{q}_{1,}^{2}, \mathrm{q}_{2}^{2}\right) \equiv \frac{\Delta B_{B \rightarrow \pi l \nu}\left(\mathrm{q}_{1,}^{2} \mathrm{q}_{2}^{2}\right)}{B\left(\mathrm{~B} \rightarrow \boldsymbol{\tau} v_{\tau}\right)}\left(\frac{\tau_{\mathrm{B}^{-}}}{\boldsymbol{\tau}_{\mathrm{B}^{0}}}\right)
\]
high \(\mathrm{q}^{2}\) : comparison with lattice QCD results :
\[
\begin{aligned}
\mathrm{R}_{\mathrm{s} / 1} & =0.20_{-0.5}^{+0.08}(\mathrm{BaBar}), 0.28_{-0.07}^{+0.13}(\text { Belle }) \\
& =0.52 \pm 0.16(\mathrm{HPQCD}), 0.46 \pm 0.10(\text { FNAL/MILC })
\end{aligned}
\]
low \(\mathrm{q}^{2}\) : similar discrepancy btw data QCD sum rule
\(\Rightarrow\) important to update \(B(B \rightarrow \tau v)\)

\section*{New full reconstruction}
- reprocessed data sample with improved tracking efficiency
- none of the results shown for rare B decays use full data sample yet
- had tag efficiency improved : effective luminosity increased by factor \(>\times 2\)



All hadron tag B analyses (leptonic and semileptonic decays) are being reviewed
e.g. \(\mathrm{B} \rightarrow \pi \mathrm{l} \nu\)
(teaser!)

\(\Rightarrow\) new results coming soon!
\(\mathbf{B} \rightarrow \boldsymbol{\tau} v, \mu v, \mathbf{K}^{(*)} v \bar{v}\), exclusive \(\mathbf{b} \rightarrow \mathbf{u l} v, \mathbf{D}^{(*)} \tau\) nu...


\section*{\(\mathbf{B}_{\mathrm{s}}\) production at \(\Upsilon(5 \mathrm{~S})\)}

\(\mathrm{b} \overline{\mathrm{b}}\) cross section : subtraction of taken below open-beauty threshold


\section*{\(B_{s}\) production at \(Y(5 S)\)}

\(\mathrm{f}_{\mathrm{s}}=\) fraction of \(\mathrm{B}_{\mathrm{s}}\). Inclusive measurements:


15\% uncertainty , mainly due to model-dependent estimate measurement with \(1.86 \mathrm{fb}^{-1}\)
\(\Rightarrow\) dominant systematics
for our branching fractions
In \(121 \mathrm{fb}^{-1}\) :
\(\mathrm{N}_{\mathrm{B}_{\mathrm{s}}}=2 \mathrm{~L}_{\text {int }} \cdot \sigma(\mathrm{b} \overline{\mathrm{b}}) \cdot \mathrm{f}_{\mathrm{s}} \approx 14 \times 10^{6}\)


\section*{\(\mathbf{B}_{\mathrm{s}}\) production at \(\Upsilon(5 \mathrm{~S})\)}

3 productions modes:
\[
\Upsilon(\mathbf{5 S}) \rightarrow \mathbf{B}_{\mathrm{s}}^{*} \overline{\mathbf{B}}_{\mathrm{s}}^{*}, \quad \Upsilon(5 \mathbf{S}) \rightarrow \mathbf{B}_{\mathrm{s}}^{*} \overline{\mathbf{B}}_{\mathrm{s}}^{0}, \Upsilon(5 \mathbf{S}) \rightarrow \mathbf{B}_{\mathrm{s}}^{0} \overline{\mathbf{B}}_{\mathrm{s}}^{0}
\]
\(B_{\mathrm{s}}^{*} \rightarrow \mathbf{B}_{\mathrm{s}}^{\mathbf{0}} \boldsymbol{\gamma}\) is not reconstructed ( \(\boldsymbol{\gamma}\) too soft)
Full reconstruction of the \(B_{s}^{0}\) with observables: \(\left(E_{b}^{*}=\sqrt{s} / 2\right)\)
- Beam-constrained mass: \(\mathbf{M}_{\mathrm{bc}}=\sqrt{\mathbf{E}_{\mathrm{b}}^{* 2}-\mathbf{p}_{\mathbf{B}_{\mathrm{s}}{ }^{2}}{ }^{2}}\)
- Energy difference: \(\Delta E=E_{\mathbf{B}_{s}^{0}}^{*}-\mathbf{E}_{\mathrm{b}}\)
\(\Rightarrow \mathrm{B}_{\mathrm{s}}^{0}\) candidates are in 3 signal regions
\(B_{s}^{0}\) events



\section*{Study of \(\mathbf{B}_{\mathbf{s}}^{\mathbf{0}} \rightarrow \mathbf{D}_{\mathbf{s}}^{-} \boldsymbol{\pi}^{+}\)}

Phys. Rev. Lett. 102, 021801 (2009)

\[
B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{-} \pi^{+}\right)=\left(3.67_{-0.33}^{+0.35}+0.42 \pm 0.49\left(\mathrm{f}_{\mathrm{s}}\right)\right) \times 10^{-3}
\]
- \(20 \%\) uncertainties, \(\mathrm{f}_{\mathrm{s}}\) is a crucial source of systematics
- large \(\mathrm{f}_{\mathrm{B}_{s}^{*} \mathrm{~B}_{s}^{*}}\) confirmed (1st Belle value: \(\left(93_{-9}^{+7} \pm 1\right) \%[\) PRD 76, \(012002(07)]\) )
- \(\mathrm{m}_{\mathrm{B}_{\mathrm{s}}^{*}}\) is \(2.6 \sigma\) larger than CLEO [PRL 96, 152001 (06)]
- \(m_{B_{s}^{*}}\left(m_{B_{s}}\right)\) is the 1 st ( 2 nd ) most precise measurement so far

\section*{\(B_{s} \rightarrow\) CP eigenstates decays and more...}
- CP eigenstates:
- \(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{KK}\)
\(-\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi\) (especially BR )
\(-\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \mathrm{f}_{0}(980)\) (silver mode at LHCb to measure \(\beta_{\mathrm{s}}\) )
- \(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \eta, \mathrm{J} / \psi \eta^{\prime}, \mathrm{J} / \psi \mathrm{K}_{\mathrm{s}}^{0} \ldots\)
\(\Rightarrow\) the first step is to establish these modes !
\(\Rightarrow\) decays with \(\pi^{0}\) and/or \(\gamma\) are difficult for hadron-collider experiments
\(-\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{(*)+} \mathrm{D}_{\mathrm{s}}^{(*)-}\) dominates \(\Delta \Gamma_{\mathrm{s}}\)
\[
\Delta \Gamma^{\mathrm{CP}}=\Gamma(\mathrm{CP}-\text { even })-\Gamma(\mathrm{CP}-\text { odd }) \approx \Gamma\left(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{(*)+} \mathrm{D}_{\mathrm{s}}^{(*)-}\right)
\]
- CKM-favored and CP-even eigenstate (in heavy -quark limit)
- Dominates \(\Delta \Gamma\) (this relation has few \% theoretical uncertainty)
\[
\frac{\Delta \Gamma_{\mathrm{s}}^{\mathrm{CP}}}{\Gamma_{\mathrm{s}}} \approx \frac{2 \times \boldsymbol{B}\left(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\right)}{1-\boldsymbol{B}\left(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\right)}
\]
R.Aleksan et al., Phys. Lett. B 316, 567 (1993)

\section*{\(\mathrm{B}_{\mathrm{s}}^{\mathbf{0}} \rightarrow \mathbf{C P}\)-eigenstate Decay Modes}
- Large data sample recorded at \(Y(5 \mathrm{~S})\left(121 \mathrm{fb}^{-1}\right)\)
- Precise measurements of exclusive modes, including CP modes for example, ' 'Observation of \(\mathrm{B}_{\mathrm{S}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}(980) . . .{ }^{\prime}\) ', PRL 106, 121802 (2011)
- \(\mathbf{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \eta\) in \(\eta \rightarrow \gamma \gamma, \eta \rightarrow \pi^{+} \pi^{-} \pi^{\mathbf{0}}\) channels
new Belle results with \(121 \mathrm{fb}^{-1}\)




\(\operatorname{Br}\left(\mathbf{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \eta\right)=\left(5.11 \pm \mathbf{0 . 5 0}(\right.\) stat \() \pm 0.35(\) syst \(\left.) \pm 0.68\left(\mathbf{f}_{\mathrm{s}}\right)\right) \times \mathbf{1 0}^{-4}\)

\section*{\(\underline{\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-} \text { Analysis }}\)}

Preliminary, summer 2011
- CP-even final states
- \(\mathrm{D}_{\mathrm{s}}^{+} \mathrm{D}_{\mathrm{s}}^{-}\)pure CP-even
\(-\mathrm{D}_{\mathrm{s}}^{*} \mathrm{D}_{\mathrm{s}}^{(*)}\) predominantly CP-even
- In the heavy - quark limit, while \(\left(\mathrm{m}_{\mathrm{b}}-2 \mathrm{~m}_{\mathrm{c}}\right) \rightarrow 0\) and \(\mathrm{N}_{\mathrm{c}} \rightarrow \infty\)
\(-\mathrm{b} \rightarrow \mathrm{c} \overline{\mathrm{c}}\) processes contribute constructively to \(\Delta \Gamma_{\mathrm{s}}\)
\(-\Gamma\left[\mathrm{B}_{\mathrm{s}}^{0}(\mathrm{CP}+) \rightarrow \mathrm{D}_{\mathrm{s}} \mathrm{D}_{\mathrm{s}}\right]\) saturates \(\Delta \Gamma_{\mathrm{s}}^{\mathrm{CP}}\)
- assuming negligible CP violation, we can estimate \(\Delta \Gamma_{\mathrm{s}} / \Gamma_{\mathrm{s}}\)
\[
\frac{\Delta \Gamma_{\mathrm{s}}}{\Gamma_{\mathrm{s}}}=\frac{2 \times \boldsymbol{B}\left(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\right)}{1-\boldsymbol{B}\left(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\right)}
\]
R.Aleksan et al. , Phys. Lett. B 316, 567 (1993)
- Full reconstruction of \(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{(*)+} \mathrm{D}_{\mathrm{s}}^{(*)}\) : large B.R. \(\left(\sim 10^{-2}\right)\) but low efficiency \(\left(\sim 10^{-4}\right)\)

。 \(\mathrm{D}_{\mathrm{s}}^{+}\)reconstructed in 6 final states: \(\phi \pi^{+}, \mathrm{K}_{\mathrm{S}}^{0} \mathrm{~K}^{+}, \overline{\mathrm{K}}^{* 0} \mathrm{~K}^{+}, \phi \rho^{+}, \mathrm{K}_{\mathrm{S}}^{0} \mathrm{~K}^{*+}\) and \(\overline{\mathrm{K}}^{* 0} \mathrm{~K}^{*+}\)
- \(\mathrm{D}_{\mathrm{s}}^{*+} \rightarrow \mathrm{D}_{\mathrm{s}}^{+} \gamma:\) photon energy is low \(\left(\mathrm{E}_{\gamma}<150 \mathrm{MeV}\right)\) !
- Contamination between the 3 modes (cross feed) when a photon is missing or added by error

\section*{Observation of \(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\)}
- Simultaneous fit of the 3 modes. For each mode, cross feed from the 2 others is included Signal has 2 components: right and wrong combinations
select events in \(\Delta \mathrm{E} \in[-0.1,0.0]\)



 select events in \(\mathrm{M}_{\mathrm{bc}} \in[5.4,5.43]\)


\(\Delta \mathrm{E}(\mathrm{GeV})\)

\section*{Observation of \(B_{s}^{0} \rightarrow D_{s}^{(*)+} \mathbf{D}_{s}^{(*)-}\)}

Preliminary, summer 2011

\(B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{+} \mathrm{D}_{\mathrm{s}}^{-}\right)=\left(0.58_{-0.09}^{+0.11} \pm 0.13\right) \%\)
consistent with CDF [PRL 100, 021803]
\(B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{* \pm} \mathrm{D}_{\mathrm{s}}^{\mp}\right)=(1.8 \pm 0.2 \pm 0.4) \% \Rightarrow \boldsymbol{B}\left(\mathbf{B}_{\mathrm{s}}^{\mathbf{0}} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\right)=(\mathbf{4 . 3} \pm \mathbf{0 . 4} \pm \mathbf{1 . 0}) \%\)
\(B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{D}_{\mathrm{s}}^{*+} \mathrm{D}_{\mathrm{s}}^{*-}\right)=(2.0 \pm 0.3 \pm 0.5) \%\)
first observation

\section*{Observation of \(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{D}_{\mathrm{s}}^{(*)+} \mathbf{D}_{\mathrm{s}}^{(*)-}\)}

Preliminary, summer 2011

\(B\left(B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{\mathrm{s}}^{(*)-}\right)=(4.3 \pm \mathbf{0 . 4} \pm \mathbf{1 . 0}) \%\)
\(\Delta \Gamma_{\mathrm{s}} / \Gamma_{\mathrm{s}}=2 B /(1-B)\)
\[
\frac{\Delta \Gamma_{\mathrm{s}}}{\Gamma_{\mathrm{s}}}=(9.0 \pm 0.9 \pm 2.2) \%
\]

CDF: \((12 \pm 10) \%\) [PRL 100, 121803] D0: \(7.2 \pm 3.0\) ) \% [PRL 102, 091801]


\section*{Rare \(B_{s}\) decays}
(still using \(1 / 5\) of the \(Y(5 \mathrm{~S})\) data sample available)

\section*{Rare Bs Decay Modes}

\(\Rightarrow\) complementarity between B-factories and LHCb

Belle can do neutrals, cleaner, but have less statistics...


Anomalous production of \(Y(\mathrm{nS}) \pi^{+} \pi^{-}\)
PRL 100, 112001 (2008) \(\quad \Gamma(\mathrm{MeV})\)
\(\left.\begin{array}{lc}\Upsilon(5 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.59 \pm 0.04 \pm 0.09 \\ \Upsilon(5 S) \rightarrow \Upsilon(2 S) \pi^{+} \pi^{-} & 0.85 \pm 0.07 \pm 0.16 \\ \Upsilon(5 S) \rightarrow \Upsilon(3 S) \pi^{+} \pi^{-} & 0.52_{-0.17}^{+0.20} \pm 0.10 \\ \Upsilon(2 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.0060 \\ \Upsilon(3 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.0009 \\ \Upsilon(4 S) \rightarrow \Upsilon(1 S) \pi^{+} \pi^{-} & 0.0019\end{array}\right) \times \mathbf{1 0}^{\mathbf{2}}\).
1. Rescattering \(Y(5 \mathrm{~S}) \rightarrow \mathrm{BB} \pi \pi \rightarrow Y(\mathrm{nS}) \pi \pi\) ?

Simonov, JETP Lett 87, 147 (2008)
2. Similar effect as in charmonium ?
\(\Rightarrow\) assume a \(\mathrm{Y}_{\mathrm{b}}\) exists close to \(Y(5 \mathrm{~S})\)
to distinguish them: energy scan
\(\Rightarrow\) shapes of \(\mathrm{R}_{\mathrm{b}}\) and \(\sigma(Y \pi \pi)\) different (only \(2 \sigma\) )


Zweig-suppressed diagram for the transition \(Y(\mathrm{nS}) \rightarrow Y(\mathrm{mS}) \pi^{+} \pi^{-}\)



Nature of \(\Upsilon(5 S)\) is puzzling and not yet understood

\section*{Looking for \(\mathbf{h}_{b}(\mathbf{n P})\)}
(triggered by the observation of \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}\) above \(\mathrm{D} \overline{\mathrm{D}}\) threshold by CLEO)
\((\mathrm{b} \overline{\mathrm{b}}): \mathrm{S}=0, \mathrm{~L}=1, \mathrm{~J}^{\mathrm{PC}}=1^{+-}\)

Expected mass
\(\approx\left(\mathrm{M}\left(x_{\mathrm{b} 0}\right)+3 \mathrm{M}\left(x_{\mathrm{b} 1}\right)+5 \mathrm{M}\left(x_{\mathrm{b} 2}\right)\right) / 9\)
\(\Delta \mathrm{M}_{\mathrm{HF}} \Rightarrow\) test of hyperfine interaction for \(\mathrm{h}_{\mathrm{c}}: \Delta \mathrm{M}_{\mathrm{HF}}=-0.12 \pm 0.30 \mathrm{MeV}\), expect smaller deviation for \(h_{b}(\mathrm{nP})\)



\section*{\(\Upsilon(5 S) \rightarrow h_{b} \pi^{+} \pi^{-}\)reconstruction}
\(\mathrm{h}_{\mathrm{b}} \rightarrow \mathrm{ggg}, \eta_{\mathrm{b}} \gamma \Rightarrow\) no good exclusive final states

''Missing mass' \({ }^{\prime} \quad \mathrm{M}\left(\mathrm{h}_{\mathrm{b}}\right)=\sqrt{\left(\mathrm{E}_{\mathrm{CM}}-\mathrm{E}_{\pi^{+} \pi^{-}}^{*}\right)^{2}-\mathrm{p}^{* 2}{ }_{\pi^{+} \pi^{-}}} \equiv \mathrm{M}_{\text {miss }}\left(\pi^{+} \pi^{-}\right)\)


Results
\(121.4 \mathrm{fb}^{-1}\) [arXiv:1103.3419]

\begin{tabular}{c|rcr}
\hline & Yield, \(10^{3}\) & Mass, MeV \(/ c^{2}\) & Significance \\
\hline\(\Upsilon(1 S)\) & \(105.0 \pm 5.8 \pm 3.0\) & \(9459.4 \pm 0.5 \pm 1.0\) & \(18.1 \sigma\) \\
\hline\(h_{b}(1 P)\) & \(50.0 \pm 7.8_{-9.1}^{+4.5}\) & \(9898.2_{-1.0}^{+1.1+1.1}\) & \(6.1 \sigma\) \\
\(3 S \rightarrow 1 S\) & \(55 \pm 19\) & 9973.01 & \(2.9 \sigma\) \\
\(\Upsilon(2 S)\) & \(143.8 \pm 8.7 \pm 6.8\) & \(10022.2 \pm 0.4 \pm 1.0\) & \(17.1 \sigma\) \\
\(\Upsilon(1 D)\) & \(22.4 \pm 7.8\) & \(10166.1 \pm 2.6\) & \(2.4 \sigma\) \\
\hline\(h_{b}(2 P)\) & \(84.0 \pm 6.8_{-10 .}^{+23 .}\) & \(10259.8 \pm 0.6_{-1.0}^{+1.4}\) & \(12.3 \sigma\) \\
\(2 S \rightarrow 1 S\) & \(151.3 \pm 9.7_{-20 .}^{+9.0}\) & \(10304.6 \pm 0.6 \pm 1.0\) & \(15.7 \sigma\) \\
\(\Upsilon(3 S)\) & \(45.5 \pm 5.2 \pm 5.1\) & \(10356.7 \pm 0.9 \pm 1.1\) & \(8.5 \sigma\) \\
\hline
\end{tabular}

\section*{Significance w/ systematics}
\[
\mathrm{h}_{\mathrm{b}}(1 \mathrm{P}) \quad 5.5 \sigma
\]
\[
\mathrm{h}_{\mathrm{b}}(2 \mathrm{P}) \quad 11.2 \sigma
\]

\section*{Results}
\(121.4 \mathrm{fb}^{-1}\) [arXiv:1103.3419]


Hyperfine splitting deviations from CoG of \(x_{b j}\) masses \(\quad(1.7 \pm 1.5) \mathrm{MeV} / \mathrm{c}^{2}\) for \(\mathrm{h}_{\mathrm{b}}(1 \mathrm{P})\) consistent with zero, as expected
\(\left(0.5_{-1.2}^{+1.6}\right) \mathrm{MeV} / \mathrm{c}^{2}\) for \(\mathrm{h}_{\mathrm{b}}(2 \mathrm{P})\)
Ratio of production rates \({ }^{\text {splin- flip }}\)

 by \(1 / \mathrm{m}_{\mathrm{b}}\) in the amplitude Mechanism of \(\boldsymbol{r}(\mathbf{5 S}) \rightarrow \mathbf{h}_{\mathbf{b}}(\mathbf{n P}) \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\)decay seems exotic! [arXiv:1108.2197]

Resonant structure of \(\Upsilon(5 S) \rightarrow h_{b}(1 P) \pi^{+} \pi^{-}\)
\(\mathrm{M}\left(\mathrm{h}_{\mathrm{b}} \pi^{+}\right) \equiv \mathrm{M}_{\mathrm{miss}}\left(\pi^{-}\right)\)

\(121.4 \mathrm{fb}^{-1}\)


Fit function \(\left|\mathrm{BW}\left(\mathrm{s}, \mathrm{M}_{1}, \Gamma_{1}\right)+\mathrm{ae}^{\mathrm{i} \phi} \mathrm{BW}\left(\mathrm{s}, \mathrm{M}_{2}, \Gamma_{2}\right)+\mathrm{be} \mathrm{e}^{\mathrm{i} \psi}\right|^{2} \frac{\mathrm{qp}}{\sqrt{\mathrm{s}}}\)
Results
\[
\begin{array}{lc}
\mathrm{M}_{1}=10605 \pm 2_{-1}^{+3} \mathrm{MeV} / \mathrm{c}^{2} & \sim \mathrm{~B} \overline{\mathrm{~B}}^{*} \text { threshold } \\
\Gamma_{1}=11.4_{-3.9-1.2}^{+4.5} \mathrm{MeV} & \mathrm{a}=1.39 \pm 0.37_{-0.15}^{+0.05} \\
\mathrm{M}_{2}=10654 \pm 3_{-2}^{+1} \mathrm{MeV} / \mathrm{c}^{2} & \sim \mathrm{~B} \overline{\mathrm{~B}}^{*} \text { threshold } \\
\Gamma_{2}=20.9_{-4.7-5.7}^{+5.4} \mathrm{MeV} & \phi=\left(187_{-57-12}^{+44.1}\right)^{\circ+3}
\end{array}
\]

Significances
\(18 \sigma(16 \sigma \mathrm{w} /\) syst \()\)

\section*{Resonant structure of \(\Upsilon(5 S) \rightarrow h_{b}(2 P) \pi^{+} \pi^{-}\)}
\(\mathrm{M}\left(\mathrm{h}_{\mathrm{b}} \pi^{+}\right) \equiv \mathrm{M}_{\mathrm{miss}}\left(\pi^{-}\right)\)


\[
\mathbf{h}_{\mathbf{b}}(\mathbf{1 P}) \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}
\]
\(\mathrm{M}_{1}=10605 \pm 2_{-1}^{+3} \mathrm{MeV} / \mathrm{c}^{2}\)
\(\Gamma_{1}=11.4_{-3.9}^{+4.5}+1.2 \mathrm{MeV}\)
\(\mathrm{M}_{2}=10654 \pm 3_{-2}^{+1} \mathrm{MeV} / \mathrm{c}^{2}\)
\(\Gamma_{2}=20.9_{-4.7}^{+5.4}{ }_{-5.7}^{+2.1} \mathrm{MeV}\)
\(\mathrm{a}=1.39 \pm 0.37_{-0.15}^{+0.05}\)
\(\phi=\left(187_{-57-12}^{+44+3}\right)^{\circ}\)
\(\mathbf{h}_{\mathbf{b}}(\mathbf{2 P}) \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}\)(consistent)
\(10599{ }_{-3}^{+6}{ }_{-4}^{+5} \mathrm{MeV} / \mathrm{c}^{2}\)
\(133_{-8}^{+10}{ }_{-7}^{9} \mathrm{MeV}\)
Significances
\(10651{ }_{-3}^{+2}{ }_{-2}^{+3} \mathrm{MeV} / \mathrm{c}^{2}\)
\(6.7 \sigma(5.6 \sigma \mathrm{w} /\) syst \()\)
\(19 \pm 7{ }_{-7}^{+11} \mathrm{MeV}\)
\(1.6_{-0.4}^{+0.6+0.6}\)
\(\left(181{ }_{-105}^{+65}{ }_{-109}^{+74}\right)\)
\(\ldots\) and what about \(\Upsilon(5 S) \rightarrow \Upsilon(n S) \pi^{+} \pi^{-}\)final state? ( \(\mathrm{n}=1,2,3\) ) \(121.4 \mathrm{fb}^{-1}\) [arXiv:1110.2251]


Note: here \(\Upsilon(\mathrm{nS})\) is reconstructed in the \(\mu^{+} \mu^{-}\)channel !!

\(\Rightarrow\) two resonances
\(\Rightarrow\) clear signs of interference \(\Rightarrow\) amplitude analysis is required
Signal amplitude parameterization:
Flatte
\[
\begin{array}{ll}
\mathrm{S}\left(\mathrm{~s}_{1}, \mathrm{~s}_{2}\right)=\mathrm{A}\left(\mathrm{Z}_{\mathrm{b} 1}\right)+\mathrm{A}\left(\mathrm{Z}_{\mathrm{b} 2}\right)+\mathrm{A}\left(\mathrm{f}_{0}(980)\right)+\mathrm{A}\left(\mathrm{f}_{2}(1275)\right)+\mathrm{A}_{\mathrm{NR}} \\
\mathrm{~A}_{\mathrm{NR}}=\mathrm{C}_{1}+\mathrm{C}_{2} \cdot \mathrm{~m}^{2}(\pi \pi) & \text { Breit-Wigner }
\end{array}
\]

Parameterization of the non-resonant amplitude as discussed in:
[1] M.B.Voloshin, Prog. Part. Nucl. Phys. \(61: 455,2008\)
[2] M.B.Voloshin, Phys. Rev. D74:054022, 2006

\section*{Results: \(Y(1 S) \pi^{+} \pi^{-}\)}




Results: \(\Upsilon(\mathbf{2 S}) \pi^{+} \pi^{-}\)
signals




\section*{Results: \(\Upsilon(3 S) \pi^{+} \pi^{-}\)}


\section*{Summary of parameters of charged \(\mathrm{Z}_{\mathrm{b}}\) states}

[arXiv: 1110.2251]

\author{
\(\mathbf{Z}_{\mathbf{b}}(\mathbf{1 0 6 1 0})\) \\ \(\mathrm{M}=10607.2 \pm 2.0 \mathrm{MeV}\) \\ \(\Gamma=18.4 \pm 2.4 \mathrm{MeV}\) \\ \(\mathbf{Z}_{\mathrm{b}}(\mathbf{1 0 6 5 0})\) \\ \(\mathrm{M}=10652.2 \pm 1.5 \mathrm{MeV}\) \\ \[
\Gamma=11.5 \pm 2.2 \mathrm{MeV}
\]
}
\begin{tabular}{lccccr} 
Final state & \(\Upsilon(1 S) \pi^{+} \pi^{-}\) & \(\Upsilon(2 S) \pi^{+} \pi^{-}\) & \(\Upsilon(3 S) \pi^{+} \pi^{-}\) & \(h_{b}(1 P) \pi^{+} \pi^{-}\) & \(h_{b}(2 P) \pi^{+} \pi^{-}\) \\
\hline\(M\left[Z_{b}(10610)\right], \mathrm{MeV} / c^{2}\) & \(10611 \pm 4 \pm 3\) & \(10609 \pm 2 \pm 3\) & \(10608 \pm 2 \pm 3\) & \(10605 \pm 2_{-1}^{+3}\) & \(10599_{-3}^{+6+5}\) \\
\(\Gamma\left[Z_{b}(10610)\right], \mathrm{MeV}\) & \(22.3 \pm 7.7_{-4.0}^{+3.0}\) & \(24.2 \pm 3.1_{-3.0}^{+2.0}\) & \(17.6 \pm 3.0 \pm 3.0\) & \(11.4_{-3.9-1.2}^{+4.5+2}\) & \(13_{-8-7}^{+10+9}\) \\
\(M\left[Z_{b}(10650)\right], \mathrm{MeV} / c^{2}\) & \(10657 \pm 6 \pm 3\) & \(10651 \pm 2 \pm 3\) & \(10652 \pm 1 \pm 2\) & \(10654 \pm 3 \pm 3_{-2}^{+1}\) & \(10651_{-3}^{+2+3}\) \\
\(\Gamma\left[Z_{b}(10650)\right], \mathrm{MeV}\) & \(16.3 \pm 9.8_{-2.0}^{+6.0}\) & \(13.3 \pm 3.3_{-3.0}^{+4.0}\) & \(8.4 \pm 2.0 \pm 2.0\) & \(20.9_{-4.7-5.7}^{+5.4+2.1}\) & \(19 \pm 77_{-7}^{+11}\) \\
Rel. normalization & \(0.57 \pm 0.21_{-0.194}^{+0.19}\) & \(0.86 \pm 0.11_{-0.10}^{+0.04}\) & \(0.96 \pm 0.14_{-0.05}^{+0.08}\) & \(1.39 \pm 0.37_{-0.15}^{+0.05}\) & \(1.6_{-0.4-0.6}^{+0.6+0.4}\) \\
Rel. phase, degrees & \(58 \pm 43_{-9}^{+4}\) & \(-13 \pm 13_{-8}^{+17}\) & \(-9 \pm 19_{-26}^{+11}\) & \(187_{-57-12}^{+44+3}\) & \(181_{-105-109}^{+65^{+74}}\)
\end{tabular}
- Masses and width are consistent
- Relative yield of \(\mathrm{Z}_{\mathrm{b}}(10610)\) and \(\mathrm{Z}_{\mathrm{b}}(10650) \sim 1\)
- Relative phases are swapped for \(Y\) and \(h_{b}\) final states

\section*{and more...}

Expected decays of \(\mathrm{h}_{\mathrm{b}} \quad\) [Godfrey \& Rosner, PRD 66, 014012 (2002)]
\[
\begin{aligned}
& \mathrm{h}_{\mathrm{b}}(1 \mathrm{P}) \rightarrow \operatorname{ggg}(57 \%), \eta_{b}(1 \mathrm{~S}) \gamma(41 \%), \gamma \mathrm{gg}(2 \%) \\
& \mathrm{h}_{\mathrm{b}}(2 \mathrm{P}) \rightarrow \operatorname{ggg}(63 \%), \eta_{b}(1 \mathrm{~S}) \gamma(13 \%), \eta_{b}(2 \mathrm{~S}) \gamma(19 \%), \gamma \mathrm{gg}(2 \%)
\end{aligned}
\]
and Belle recently observed large yields of \(h_{b}(1 P)\) and \(h_{b}(2 P)\) ! opportunity to study \(\eta_{\mathrm{b}}(\mathrm{nS})\) states...

Experimental status of \(\eta_{b}\)
\(\mathrm{M}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=9390.9 \pm 2.8 \mathrm{MeV}(\) BaBar + CLEO \()\) \(\mathrm{M}[\gamma(1 \mathrm{~S})]-\mathrm{M}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=69.3 \pm 2.8 \mathrm{MeV}\)
pNRQCD: \(41 \pm 14 \mathrm{MeV}\)
[Kniehl et al., PRL 92, 242001 (2004)]
Lattice: \(60 \pm 8 \mathrm{MeV}\)
[Meinel, PRD 82, 114502 (2010)]
\(\eta_{b}\) - small radius system, precise calculation of mass

\section*{Method}

Decay chain :
\[
\begin{aligned}
& \Upsilon(5 \mathrm{~S}) \rightarrow \mathrm{Z}_{\mathrm{b}}^{+} \pi^{-} \\
& \rightarrow h_{b}(n P) \pi^{+} \\
& \hookrightarrow \eta_{\mathrm{b}}(\mathrm{mS}) \gamma \\
& \begin{array}{c}
\Delta \mathrm{M}_{\text {miss }}\left(\pi^{+} \pi^{-} \gamma\right) \equiv \\
\mathrm{M}_{\text {miss }}\left(\pi^{+} \pi^{-} \gamma\right)-\mathrm{M}_{\text {miss }}\left(\pi^{+} \pi^{-}\right)+\mathrm{M}\left(\mathrm{~h}_{\mathrm{b}}\right)
\end{array}
\end{aligned}
\]


Require intermediate \(\mathrm{Z}_{\mathrm{b}}\) :
\[
10.59<\mathrm{MM}(\pi)<10.67 \mathrm{GeV}
\]
bg. suppression \(\times 5.2\)
approach:
fit \(\mathrm{M}_{\text {miss }}\left(\pi^{+} \pi^{-}\right)\)spectra
in \(\Delta \mathrm{M}_{\text {miss }}\left(\pi^{+} \pi^{-} \gamma\right)\) bins

\section*{Results}
non-relativistic \(\mathrm{BW} \otimes\) resolution + exponential func.


Hyperfine splitting
\(\Delta \mathrm{M}_{\mathrm{HF}}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=59.3 \pm 1.9_{-1.4}^{+2.4} \mathrm{MeV} / \mathrm{c}^{2}\)
single most precise measurement of \(\eta_{b}(1 \mathrm{~S})\) mass
\[
\begin{aligned}
& \mathrm{N}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=\left(21.9 \pm 2.0_{-1.7}^{+5.6}\right) \times 10^{3} \\
& \mathrm{M}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=\left(9401.0 \pm 1.9_{-2.4}^{+1.4}\right) \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=\left(12.4_{-4.6}^{+5.5}{ }_{-1.4}^{+1.5}\right) \mathrm{MeV} \\
& B\left[\mathrm{~h}_{\mathrm{b}}(1 \mathrm{P}) \rightarrow \eta_{\mathrm{b}}(1 \mathrm{~S}) \gamma\right]=\left(49.8 \pm 6.8_{-5.2}^{+10.9}\right) \%
\end{aligned}
\]

\(\Rightarrow\) radiative decays of \(h_{b}(2 P)\), search for \(\eta_{b}(2 S)\) coming...

\section*{Results}
non-relativistic \(B W \otimes\) resolution + exponential func.


Hyperfine splitting
\(\Delta \mathrm{M}_{\mathrm{HF}}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=59.3 \pm 1.9_{-1.4}^{+2.4} \mathrm{MeV} / \mathrm{c}^{2}\)
single most precise measurement of \(\eta_{b}(1 \mathrm{~S})\) mass
\[
\begin{aligned}
& \mathrm{N}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=\left(21.9 \pm 2.0_{-1.7}^{+5.6}\right) \times 10^{3} \\
& \mathrm{M}\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=\left(9401.0 \pm 1.9_{-2.4}^{+1.4}\right) \mathrm{MeV} / \mathrm{c}^{2} \\
& \Gamma\left[\eta_{\mathrm{b}}(1 \mathrm{~S})\right]=\left(12.4_{-4.6-3.4}^{+5.5+11.5}\right) \mathrm{MeV} \\
& B\left[\mathrm{~h}_{\mathrm{b}}(1 \mathrm{P}) \rightarrow \eta_{\mathrm{b}}(1 \mathrm{~S}) \gamma\right]=\left(49.8 \pm 6.8_{-5.2}^{+10.9}\right) \% \\
& \quad \text { pNRQCD Lattice }
\end{aligned}
\]
\(\Rightarrow\) radiative decays of \(h_{b}(2 P)\), search for \(\eta_{b}(2 S)\) coming...

\section*{Summary}

Exciting new results in 2011:
\(\Rightarrow\) new (updated) measurements for the UT angles \(\beta, \gamma\)
\(\Rightarrow\) new results with full \(Y\) (5S) data sample ( \(\mathrm{B}_{\mathrm{s}}\) decays but also bottomonium studies)

Final Belle data sample is yet to be fully analyzed !
- more on \(\alpha\left(\pi^{0} \pi^{0}, \rho^{+} \rho^{0}\right), \gamma \ldots\)
- Rare B decays: \(\mathbf{K}^{(*)} \nu \bar{v}, \tau v, \mu \nu, \gamma \gamma, \ldots\)
- Results on \(B_{s}\) decays with \(5 \times\) more stat
- \(\tau\) physics (lifetime, LVF decays), charm (mixing \(K \pi, K K, K_{s} \pi \pi\) ), new particles ( \(X, Y, Z\) ), bottomonium...
and then...

\section*{and then...}
\(\Rightarrow\) physics with \(\mathrm{O}\left(10^{10}\right) \mathrm{B}, \tau, \mathrm{D} . .\).
SuperKEKB/Belle II (in Japan)
\(\Rightarrow\) KEKB upgrade has been approved



\section*{Search for \(\mathbf{B}_{\mathrm{s}}^{\mathbf{0}} \rightarrow \mathbf{J} / \boldsymbol{\psi} \mathbf{f}_{\mathbf{0}}(\mathbf{9 8 0})\)}

Contribution to FPCP 2010 (arXiv: 1009.2605)
- Silver mode at LHCb to measure \(\beta_{\mathrm{s}}\) (CP-violating phase in the \(\mathrm{B}_{\mathrm{s}}\) mixing)
- BR is smaller than \(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi\) but \(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \mathrm{f}_{0}(980)\) is a pure CP-eigenstate
- no angular analysis is required as in \(\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{J} / \psi \phi\)
- CP-eigenstate (odd) mode with a final state with only 4 charged particles
- Expectations:
\(-\frac{B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}\right) B\left(\mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)}{B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi\right) B\left(\phi \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)} \approx 0.2 \quad\) (Stone + Zhang [PRD 79, 074024])
\(-\frac{B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}\right) B\left(\mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)}{B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \phi\right) B\left(\phi \rightarrow \mathrm{~K}^{+} \mathrm{K}^{-}\right)}=0.42 \pm 0.11 \quad\left(\operatorname{CLEO}\left(\mathrm{D}_{\mathrm{s}} \rightarrow \mathrm{f}_{0} \mathrm{e}^{+} v_{\mathrm{e}}\right)[\operatorname{PRD} 80,052009]\right)\)
\[
\rightarrow B\left(B_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{\mathbf{0}}\right) B\left(\mathbf{f}_{\mathbf{0}} \rightarrow \pi^{+} \pi^{-}\right) \approx(1.3-2.7) \times 10^{-4}
\]
\(-B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}\right)=(3.1 \pm 2.4) \times 10^{-4} \mathrm{QCD}(\mathrm{LO})[P R D 81,074001]\) with \(B\left(\mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\right)=\left(50_{-9}^{+7}\right) \%\) BES data [CLEO, PRD 80, 052009]
\[
\rightarrow B\left(\mathrm{~B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \mathrm{f}_{0}\right) B\left(\mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\right) \approx(1.6 \pm 1.3) \times 10^{-4}
\]

\section*{\(\underline{\text { Search for } \mathbf{B}_{\mathbf{s}}^{\mathbf{0}} \rightarrow \mathbf{J} / \boldsymbol{\psi} \mathbf{f}_{\mathbf{0}}(\mathbf{9 8 0}) \quad \text { Belle }\left(121 \mathrm{fb}^{-1}\right)}\)}

\section*{PRL 106, 121802 (2011)}
- \(\mathrm{J} / \psi \rightarrow \mathrm{e}^{+} \mathrm{e}^{-}\)or \(\mu^{+} \mu^{-}, \mathrm{f}_{0} \rightarrow \pi^{+} \pi^{-}\)
- \(\left(\Delta \mathrm{E}, \mathrm{M}_{\pi^{+} \pi^{-}}\right) 2 \mathrm{D}\) fit in \(-0.1 \mathrm{GeV}<\Delta \mathrm{E}<0.2 \mathrm{GeV}\) and \(\mathrm{M}_{\pi^{+} \pi^{+}}<2.0 \mathrm{GeV} / \mathrm{c}^{2}\)
- includes backgrounds from \(\mathrm{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{~J} / \psi \pi^{+} \pi^{-}\)(peaks in \(\Delta \mathrm{E}\) ) and other \(\mathrm{J} / \psi\) modes

\[
B\left(B_{s}^{0} \rightarrow J / \psi f_{0}\right) \times B\left(f_{0} \rightarrow \pi^{+} \pi^{-}\right)=\left(1.16_{-0.19}^{+0.31}(\text { stat })_{-0.17}^{+0.15}(\text { syst })_{-0.18}^{+0.26}\left(\mathbf{N}_{B_{s}^{(+)} B_{s}^{(\omega)}}\right)\right) \times 10^{-4}(\text { at } 90 \% \text { C.L. })
\]

\section*{Motivation for BR measurements}
- \(\mathrm{B}_{\mathrm{s}} \rightarrow \mu^{+} \mu^{-}\):
sensitive probe to New Physics, very suppressed in SM:
\[
B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)=(3.35 \pm 0.32) \times \mathbf{1 0}^{-9}
\]

[M.Blanke et al, hep-ph/0604057]
- NP can lead to enhancement of the BR up to an order of magnitude (for example, constrained versions of the MSSM \(\sim 20 \times 10^{-9}\) )
\(\Rightarrow\) BUT could be ' only' ' a factor 2 above \(S M\) value !!
- Need normalization with BR of \(\mathrm{B}_{(\mathrm{s})}\) decays
- for example, Tevatron experiments use \(\mathrm{B}^{+} \rightarrow \mathrm{J} / \psi \mathrm{K}^{+}\)
\(-\sigma_{\text {syst }} \sim 13 \%\) : dominant error from \(\frac{\mathrm{f}\left(\mathrm{B}_{\mathrm{s}}\right)}{\mathrm{f}(\mathrm{B})}\)
\(\Rightarrow\) not sufficient if \(B\left(B_{s} \rightarrow \mu^{+} \mu^{-}\right)<\mathbf{1 0}^{-8}\)
- Need normalization mode meas with higher accuracy, preferably \(\mathrm{B}_{\mathrm{s}}\) mode
\(\Rightarrow\) measure \(B_{s}\) branching fraction in \(\Upsilon(5 S)\) decays !
(for example \(B_{s} \rightarrow J / \psi \phi\) ) so need to improve \(f_{s}\)

\section*{Trigger}

Observation of \(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \pi^{+} \pi^{-} \mathrm{h}_{\mathrm{c}}\) above \(\mathrm{D} \overline{\mathrm{D}}\) threshold by CLEO

Energy dependence of the cross-section (R.Mitchell @ CHARM2010)


Belle sees \(Y(5 \mathrm{~S}) \rightarrow Y(\mathrm{nS}) \pi^{+} \pi^{-}\), so should search for \(Y(5 \mathrm{~S}) \rightarrow \mathrm{h}_{\mathrm{b}} \pi^{+} \pi^{-}\)!

\section*{Bottomonium ground state \(\eta_{\mathrm{b}}\)}

Non-observation of the bottomonium ground state was an annoying|thorn in the side of quarkonium spectroscopy. Finally, after 30 years of work

First measurement of \(\eta_{b}\) by BABAR in radiative \(Y(3 S)\) and \(Y(2 S)\) decays, followed by CLEO.

Measured parameters
\[
\begin{array}{ll}
\mathrm{BF}\left(\mathrm{Y}(3,2 \mathrm{~S}) \rightarrow \gamma \eta_{\mathrm{b}}\right)\left(10^{-4}\right) & 5.1 \pm 0.7 / 3.9 \pm 1.5 \\
\mathrm{Y}(1 \mathrm{~S})-\eta_{\mathrm{b}}(1 \mathrm{~S}) \text { mass spliting: } & 69.3 \pm 2.8 \mathrm{MeV}
\end{array}
\]

Hyperfine mass splitting predictions ( MeV ):
Potential models: \(\quad 36-100\) ( \(36-87\) recent models) pNRQCD:
\(60.3 \pm 5.5 \pm 3.8 \pm 2.1\)
Lattice QCD:
40-71

Confirmation from independent experiment or other decay channel desirable, as well as observation of \(\eta_{b}(2 \mathbf{S})\)

```

