Belle (recent and coming results)

Karim Trabelsi for the Belle collaboration

karim.trabelsi@kek.jp

Tohoku University January 11, 2012

KEKB collider and Belle in a nutshell

Belle shutdown last June (2010)

Belle these days...

$ECL \ (backward \ endcap)$

ACC (barrel)

CDC

TOF

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Rien ne sert de courir ; il faut partir a point. Le Lievre et la Tortue en sont un temoignage. Gageons, dit celle-ci, que vous n'atteindrez point Si tot que moi ce but. Si tot ? Etes-vous sage ? Repartit l'Animal leger...

very stable detector, good particle identification, (kaon, pion, electron, muon),

 e^+e^- is a clean environment: excellent tracking, triggering, tagging...

Toward the final Belle results...

- $\circ~$ include the last part of the data (> 100 fb^{-1}, often much more...)
- $\circ~$ reprocessed data (~ 2/3 of the data, tracking efficiency increase > 20%)

Main motivation of Belle

- Overconstrain the CKM matrix: measure fundamental parameters, constrain new physics effects
- Measure the 4 free paremeters in various ways:
 - CP conserving $\{|V_{us}|, |V_{cb}|, |V_{td}|, |V_{ub}|\}$
 - CP violating $\{\epsilon_{K}, \phi_{s}, \phi_{1}, \phi_{3}\}$
 - Tree level $\{\ldots,\ldots,|V_{ub}|,\phi_3\}$
 - Loop level $\{\ldots,\ldots,|V_{td}|,\phi_1\}$

... to LP 2011

⇒ clear impact on B-factories (angles and sides) !

<u>Outline</u>

Recent updates for UT:

 $\phi_1/\beta \colon b \to c \overline{c} s, b \to c \overline{c} d$ $\phi_3/\gamma \colon B^+ \to DK^+$

 $\mathbf{B} \to \tau \, \nu$

 $(and \ modes \ with \ missing \ energy)$

Physics at $\Upsilon(5S)$: **B**_s **and bottomomium**

 $c \overline{c} K_{s} \text{ and } J/\psi K_{L}$

$772 \times 10^6 \ B\overline{B}$ pairs

 $\sin 2\phi_1$ in $(c\overline{c})K^0$... 772×10⁶ BB pairs

$$\sin 2\phi_1 = 0.668 \pm 0.023 \pm 0.013$$
$$A = 0.007 \pm 0.016 \pm 0.013$$

- World's most precise measurements 0
- anchor point of the SM 0
- still statistically limited ! 0

La raison d'être of the B factories

What is the source of CP violation ? The Kobayashi-Maskawa phase is the source Critical role of the B factories in the verification of the KM hypothesis

A single irreducible phase in the weak interaction matrix accounts for most of the CPV observed in kaons and B's

β in other modes

increasing tree diagram amplitude

increasing sensitivity to new physics

possible new sources of CPV ?

β with b \rightarrow s penguins

More statistics crucial for mode-by-mode studies

	$sin(2\beta^{eff})$	$\equiv \sin(20)$	() ^{eff}	HFAG Beauty 2011 PRELIMINARY
b→ccs	World Average			0.68 ± 0.02
φK ⁰	Average	⊢★	-	0.56 ^{+0.16} -0.18
η′ K⁰	Average	+*		0.59 ± 0.07
K _S K _S K _S	Average	H	* 1	0.74 ± 0.17
$\pi^0 K^0$	Average	⊢ ★	-1	0.57 ± 0.17
$\rho^0 K_S$	Average	⊢★	-	0.54 +0.18
ωK _S	Average	+		0.45 ± 0.24
f _o K _S	Average	⊢★	-	0.62 +0.11
$f_2 K_S$	Average	*		0.48 ± 0.53
f _x K _s	Average	*	-1	0.20 ± 0.53
$\pi^0 \pi^0 K_S$	Average	-		-0.72 ± 0.71
$\phi \pi^0 K^{}_{\rm S}$	Average	—	*	0.97 +0.03
$\pi^+ \pi^- K_S$	N R verage —	-		0.01 ± 0.33
K ⁺ K ⁻ K ⁰	Average		⊢★ -I	0.82 ± 0.07
-1.6 -1.4	-1.2 -1 -0.8 -0.6 -0.4 -0.2	0 0.2 0.4 0.6	0.8	1 1.2 1.4 1.6

Recent update of $B^0 \rightarrow D^+ D^-$ mode

SM prediction: $S = -\sin 2\beta$ and A=0 [Z.Z Xing, PRD61, 014010 (1999)] $B^{0} \rightarrow D^{+} D^{-} \rightarrow (K^{-} \pi^{+} \pi^{+})(K^{+} \pi^{-} \pi^{-})$ $\rightarrow (K^{-} \pi^{+} \pi^{+})(K^{0}_{S} \pi^{-})$

 $[> \times 2$ signal yield compared to previous analysis (535 MBB)]

Recent update of $B^0 \rightarrow D^+ D^-$ mode

SM prediction: $S = -\sin 2\beta$ and A=0 [Z.Z Xing, PRD61, 014010 (1999)] $B^{0} \rightarrow D^{+} D^{-} \rightarrow (K^{-} \pi^{+} \pi^{+})(K^{+} \pi^{-} \pi^{-})$ $\rightarrow (K^{-} \pi^{+} \pi^{+})(K^{0}_{S} \pi^{-})$

$\frac{\text{Measurement}(s) \text{ of the CKM angle } \gamma/\phi_3}{\text{at Belle}}$

γ measurements from $B^{\pm} \rightarrow DK^{\pm}$

- \circ Theoretically pristine $B \rightarrow DK$ approach
- \circ Access γ via interference between $B^- \to D^0 K^- and \, B^- \to \overline{D}^0 K^-$

relative magnitude of suppressed amplitude is $r_{\scriptscriptstyle B}$

$$r_{\rm B} = \frac{|A_{\rm suppressed}|}{|A_{\rm favoured}|} \sim \frac{|V_{\rm ub}V_{\rm cs}^*|}{|V_{\rm cb}V_{\rm us}^*|} \times [\text{color supp}] = 0.1 - 0.2$$

relative weak phase is γ , relative strong phase is $\delta_{\rm B}$

<u>measurements from $B^{\pm} \rightarrow DK^{\pm}$ </u>

- Reconstruct D in final states accessible to both D^0 and \overline{D}^0 0
 - D = D_{CP}, CP eigenstates as K⁺ K⁻, $\pi^+ \pi^-$, K_s π^0 **GLW method** (Gronau-London-Wyler)
 - D = D_{sup}, Doubly-Cabbibo suppressed decays as K π **ADS method** (Atwood-Dunietz-Soni)
 - Three-body decays as $D \rightarrow K_S \pi^+ \pi^-$, $K_S K^+ K^-$ **GGSZ** (**Dalitz**) **method** (**Giri-Grossman-Soffer-Zupan**)
 - Largest effects due to 0

- charm mixing
- charm CP violation
- charm CP violation
- negligible
Y.Grossman, A.Soffer, J.Zupan
[PRD 72, 031501 (2005)]

- Different B decays (DK, D^*K, DK^*)
 - different hadronic factors (r_B, δ_B) for each

 $B \rightarrow D^{(*)}K^{(*)}$ Dalitz analysis Reconstruction of three–body final states D^0 , $\overline{D}^0 \rightarrow K_s \pi^+ \pi^-$ Amplitude for each Dalitz point is described as: $\overline{D}^0 \rightarrow K_s \pi^+ \pi^- \sim f(m_+^2, m_-^2)$ model the amplitudes (using tagged D sample) $D^0 \rightarrow K_s \pi^+ \pi^- \sim f(m_-^2, m_+^2)$ $B^{+} \rightarrow (K_{\rm S} \pi^{+} \pi^{-})_{\rm D} K^{+} : f(m_{+}^{2}, m_{-}^{2}) + r_{\rm B} e^{i(\delta_{\rm B} + \gamma)} f(m_{-}^{2}, m_{+}^{2})$ m² ₃ m_{-}^2 D^0 $\overline{\mathsf{D}}^0$ $m_{-}=M(K_{S}\pi^{-})$ $m_{+}=M(K_{S}\pi^{+})$ 0.5 1.5 1.5 2 2.5 2.5 m_{\perp}^2 m_{+}^{2} $B^{-} \rightarrow (K_{s}\pi^{+}\pi^{-})_{D}K^{-}: f(m_{-}^{2}, m_{+}^{2}) + r_{B}e^{i(\delta_{B}-\gamma)}f(m_{+}^{2}, m_{-}^{2})$

Simultaneous fit of B⁺ and B⁻ to extract parameters r_B , γ and δ_B Note: 2 fold ambiguity on $\gamma: (\gamma, \delta_B) \rightarrow (\gamma + \pi, \delta_B + \pi)$ $B^- \to D^{(*)}(K_{_S}\pi\pi)K^-$ Dalitz , $\varDelta E$ and $M_{_{bc}}$ projections

 $|\cos\theta_{\rm thr}| < 0.8$ and F > -0.7

PRD 81, 112002 (2010) $657 \times 10^{6} B\overline{B}$ pairs

 γ measurement with $B \rightarrow D(K_s \pi \pi) K$

PRD 81, 112002 (2010) $657 \times 10^{6} B\overline{B}$ pairs

$$\mathbf{x}_{\pm} = \mathbf{r}_{\mathrm{B}} \cos(\delta_{\mathrm{B}} \pm \gamma), \ \mathbf{y}_{\pm} = \mathbf{r}_{\mathrm{B}} \sin(\delta_{\mathrm{B}} \pm \gamma)$$

$$\begin{split} \gamma &= (80.8 \ ^{+13.1}_{-14.8} \pm 5.0 \pm 8.9)^{\circ} & \gamma &= (73.9 \ ^{+18.9}_{-20.2} \pm 4.2 \pm 8.9)^{\circ} \\ r_{\rm B} &= 0.161 \ ^{+0.040}_{-0.038} \pm 0.011 \ ^{+0.050}_{-0.010} & r_{\rm B} &= 0.196 \ ^{+0.073}_{-0.072} \pm 0.013 \ ^{+0.062}_{-0.012} \\ \delta_{\rm B} &= (137.4 \ ^{+13.0}_{-15.7} \pm 4.0 \pm 22.9)^{\circ} & \delta_{\rm B} &= (341.7 \ ^{+18.6}_{-20.9} \pm 3.2 \pm 22.9)^{\circ} \end{split}$$

combining both B modes (Dalitz): $\gamma = (78.4^{+10.8}_{-11.6} \pm 3.6 \pm 8.9)^{\circ}$ CPV significance is 3.5 standard deviations

(model-dependent error will limit viability of this approach)

Binned Dalitz method result in $B \rightarrow DK$ from 772 million events

arXiv:1106.4046

uncertainty in c_i , s_i from CLEO data (can reduce using future BES-III data) <u>ADS method</u> measures ϕ_3 via the interference in rare $B^- \to [K^+ \pi^-]_D K^-$ decays

Cabibbo favoured D decay

doubly Cabibbo suppressed D decay ADS rate and asymmetry (relative to the common decay):

Yields for the ADS mode $B^- \rightarrow [K^+ \pi^-]_D K^-$ from 772 million $B\overline{B}$ events **PRL 106, 231803 (2011)**

Main background is $e^+e^- \rightarrow q \overline{q} (q=u, d, s, c)$ continuum $\Rightarrow 10$ variables combined to obtain a single NN output (NB) (for example, at 99% bckg rej. signal eff. = 42% now becomes 60%)

Fit ΔE and NB distributions together to extract signal

Results for the ADS mode $B^- \rightarrow [K^+\pi^-]_D K^-$ from 772 million $B\overline{B}$ events **PRL 106, 231803 (2011)**

Comparison of the results obtained for D^{*}K with expectations

(where ''expectations'' are derived from the GGSZ observables)

GLW with D_{CP}K D decays to CP eigenstates

Relation between (A_{CP+}, A_{CP-}, R_{CP+}, R_{CP-}) and (γ , r_B, δ _B)

$$R_{CP \pm} \simeq \frac{R_{D_{CP \pm}}}{R_{D_{fav}}}$$

$$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma} \qquad A_{CP-} = \frac{-2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 - 2r_B \cos \delta_B \cos \gamma}$$
$$R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma \qquad R_{CP-} = 1 + r_B^2 - 2r_B \cos \delta_B \cos \gamma$$

 $\Rightarrow \text{ look for } R_{\text{CP}\pm} \neq 1 \text{ and } A_{\text{CP}\pm} \neq 0$

 $\Rightarrow R_{D_{fav}} = (7.32 \pm 0.16)\%, A(DK) = (1.4 \pm 2.0)\%$

opposite asymmetry !!
GLW Results

Preliminary LP 2011

Yields $B \rightarrow D\pi$ $B \rightarrow DK$ $D \rightarrow K\pi$ 50432 ± 243 3692 ± 83 $D \rightarrow KK, \pi\pi$ 7696 ± 106 582 ± 40 $D \rightarrow K_s \pi^0, K_s \eta$ 5745 ± 91 476 ± 37

 $R_{CP+} = 1.03 \pm 0.07 \pm 0.03$ $R_{CP-} = 1.13 \pm 0.09 \pm 0.05$

 $A_{CP+} = +0.29 \pm 0.06 \pm 0.02$ $A_{CP-} = -0.12 \pm 0.06 \pm 0.01$

systematics dominated by peaking background, double ratio approximation

coming improvement: adding $K_S \omega$, $K_S \eta'$ for CP-odd modes coming update: D^*K modes

Combined measurements for γ from all methods

http://ckmfitter.in2p3.fr/

Angles only

Tauonic B decays

$$B_{\rm SM}({\rm B}^+ \to \tau^+ \nu) = \frac{{\rm G}_{\rm F}^2 {\rm m}_{\rm B} {\rm m}_{\tau}^2}{8\pi} (1 - \frac{{\rm m}_{\tau}^2}{{\rm m}_{\rm B}^2})^2 {\rm f}_{\rm B}^2 |{\rm V}_{\rm ub}|^2 \tau_{\rm B}$$

2HDM (type II): $B({\rm B}^+ \to \tau^+ \nu) = B_{\rm SM} \times (1 - \frac{{\rm m}_{\rm B}^2}{{\rm m}_{\rm H^+}^2} {\rm tan}^2 \beta)^2$

uncertainties from $f_{_B}$ and $|V_{_{ub}}|$ can be reduced to $B_{_B}$ and other CKM uncertainties by combining with precise $\varDelta\,m_d$

Event reconstruction in \mathbf{B} \rightarrow \tau \nu

$\underline{\mathbf{B}^{+}} \rightarrow \tau^{+} \nu \ \mathbf{results}$

$\underline{\mathbf{B}^+ \to \tau^+ \nu \text{ results}}$

World average: $B(B^+ \rightarrow \tau^+ \nu) = (1.68 \pm 0.31) \times 10^{-4}$

 $R_{s/l} = 0.20^{+0.08}_{-0.05} (BaBar)$, $0.28^{+0.13}_{-0.07} (Belle)$

= 0.52 ± 0.16 (HPQCD), 0.46 ± 0.10 (FNAL/MILC)

low q²: similar discrepancy btw data QCD sum rule

 \Rightarrow important to update $B (B \rightarrow \tau \nu)$

New full reconstruction

- reprocessed data sample with improved tracking efficiency
- none of the results shown for rare B decays use full data sample yet
- <u>had tag efficiency improved</u>: effective luminosity increased by factor > ×2

 $\mathbf{B} \rightarrow \tau \nu$, $\mu \nu$, $\mathbf{K}^{(*)} \nu \overline{\nu}$, exclusive $\mathbf{b} \rightarrow \mathbf{ul} \nu$, $\mathbf{D}^{(*)} \tau \mathbf{nu}$...

B_s production at $\Upsilon(5S)$

 $b \overline{b}$ cross section : subtraction of taken below open-beauty threshold

B_s production at $\Upsilon(5S)$

15% uncertainty, mainly due to model-dependent estimate

⇒ dominant systematics for our branching fractions

In 121 fb⁻¹: $N_{B_s^0} = 2 L_{int} \cdot \sigma(b \overline{b}) \cdot f_s \approx 14 \times 10^6$

B_s production at $\Upsilon(5S)$

3 productions modes:

 $\Upsilon(\mathbf{5S}) \to \mathbf{B}_{s}^{*} \ \overline{\mathbf{B}}_{s}^{*}, \ \Upsilon(\mathbf{5S}) \to \mathbf{B}_{s}^{*} \ \overline{\mathbf{B}}_{s}^{0}, \ \Upsilon(\mathbf{5S}) \to \mathbf{B}_{s}^{0} \ \overline{\mathbf{B}}_{s}^{0}$

 $B_s^* \rightarrow B_s^0 \gamma$ is not reconstructed (γ too soft)

Full reconstruction of the B_s^0 with observables: $(E_b^* = \sqrt{s}/2)$

- **Beam-constrained mass:** $M_{bc} = \sqrt{E_b^{*2} p_{B_s^0}^{*-2}}$
- Energy difference: $\Delta E = E_{B_s^0}^* E_b$

Study of $B_s^0 \rightarrow D_s^- \pi^+$

Phys. Rev. Lett. **102**, 021801 (2009)

- 20% uncertainties, f_s is a crucial source of systematics
- $\circ \ large \ f_{B_{\circ}^{*}B_{\circ}^{*}} \ confirmed \ (1st \ Belle \ value: (93_{-9}^{+7} \pm 1)\% \ [PRD \ 76, \ 012002 \ (07)])$
- $m_{B_1^*}$ is 2.6 σ larger than CLEO [PRL 96, 152001 (06)]
- $\circ \ m_{B_s^*} \left(m_{B_s} \right)$ is the 1st (2nd) most precise measurement so far

$\mathbf{B}_{\mathrm{s}} \rightarrow \mathbf{CP}$ eigenstates decays and more...

- CP eigenstates:
 - $\ B_s \to KK$
 - $B_s \rightarrow J/\psi \, \phi \; (especially \; BR)$
 - $-~B_s \rightarrow J/\psi\,f_0(980)\,(silver\ mode\ at\ LHCb\ to\ measure\ \beta_s)$
 - $B_s \rightarrow J/\psi \eta$, $J/\psi \eta'$, $J/\psi K_s^0$...
 - ⇒ the first step is to establish these modes !
 - \Rightarrow decays with π^0 and/or γ are difficult for hadron-collider experiments
- $\circ \ B^0_s \to D^{(*)+}_s D^{(*)-}_s \ dominates \ \varDelta \ \varGamma_s$

 $\Delta \Gamma^{\text{CP}} = \Gamma(\text{CP-even}) - \Gamma(\text{CP-odd}) \approx \Gamma(B_s^0 \to D_s^{(*)+} D_s^{(*)-})$

- $\circ \ CKM\mbox{-}favored\ and\ CP\mbox{-}even\ eigenstate\ (in\ heavy\mbox{-}quark\ limit)$
- Dominates $\Delta \Gamma$ (this relation has few % theoretical uncertainty)

$$\frac{\Delta \Gamma_{\rm s}^{\rm CP}}{\Gamma_{\rm s}} \approx \frac{2 \times B \left(\mathbf{B}_{\rm s}^{\rm 0} \rightarrow \mathbf{D}_{\rm s}^{(*)+} \mathbf{D}_{\rm s}^{(*)-}\right)}{1 - B \left(\mathbf{B}_{\rm s}^{\rm 0} \rightarrow \mathbf{D}_{\rm s}^{(*)+} \mathbf{D}_{\rm s}^{(*)-}\right)}$$

R.Aleksan et al., Phys. Lett. B 316, 567 (1993)

$B_s^0 \rightarrow CP$ -eigenstate Decay Modes

- $\circ~$ Large data sample recorded at $\Upsilon(5S)~(121~fb^{-1})$
- ∘ Precise measurements of exclusive modes, including CP modes for example, ''Observation of $B_s^0 \rightarrow J/\psi f_0(980)...$ '', PRL 106, 121802 (2011)
- $\mathbf{B}_{s} \rightarrow \mathbf{J}/\psi \eta$ in $\eta \rightarrow \gamma \gamma$, $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ channels

 $B_{c}^{0} \rightarrow D_{c}^{(*)+} D_{c}^{(*)-}$ Analysis

Preliminary, summer 2011

- \circ CP-even final states
 - $D_s^+ D_s^-$ pure CP-even
 - $D_s^* D_s^{(*)}$ predominantly CP-even
- $\circ~$ In the heavy-quark limit, while $(m_b-2m_c) \rightarrow 0~and~N_c \rightarrow \infty$
 - b \rightarrow c $\overline{c}\,s$ processes contribute constructively to $\Delta\, \Gamma_{\rm s}$
 - $\Gamma[B^0_s(CP+) \rightarrow D_s D_s] \text{ saturates } \Delta \Gamma_s^{CP}$
 - assuming negligible CP violation, we can estimate $\Delta \Gamma_{\rm s}/\Gamma_{\rm s}$

$$\frac{\Delta \Gamma_{s}}{\Gamma_{s}} = \frac{2 \times B \left(\mathbf{B}_{s}^{0} \rightarrow \mathbf{D}_{s}^{(*)+} \mathbf{D}_{s}^{(*)-}\right)}{1 - B \left(\mathbf{B}_{s}^{0} \rightarrow \mathbf{D}_{s}^{(*)+} \mathbf{D}_{s}^{(*)-}\right)}$$

R.Aleksan et al. , Phys. Lett. B 316, 567 $\left(1993\right)$

- $\circ \ \ Full \ reconstruction \ of \ B_{S}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-} \text{: large B.R.} \ (\sim 10^{-2}) \ but \ low \ efficiency \ (\sim 10^{-4}) \ but \ but$
- $\circ \ D_s^+ \ \text{reconstructed in 6 final states: } \phi \, \pi^+ \text{, } K_S^0 \, K^+ \text{, } \overline{K}^{*0} K^+ \text{, } \phi \, \rho^+ \text{, } K_S^0 \, K^{*+} \text{ and } \overline{K}^{*0} K^{*+}$
- $D_s^{*+} \rightarrow D_s^+ \gamma$: photon energy is low $(E_{\gamma} < 150 \text{ MeV})$!
- $\circ~$ Contamination between the 3 modes $(cross \ feed)$ when a photon is missing or added by error

Observation of $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$

Preliminary summer 2011

Simultaneous fit of the 3 modes. For each mode, cross feed from the 2 others is included
 Signal has 2 components: right and wrong combinations

 $\mathbf{N}_{s}(\mathbf{D}_{s}^{\pm}\mathbf{D}_{s}^{\mp}) = \mathbf{33.1}_{-5.4}^{+6.0} (\mathbf{11.6}\,\sigma) \ \mathbf{N}_{s}(\mathbf{D}_{s}^{\pm\pm}\mathbf{D}_{s}^{\mp}) = \mathbf{44.5}_{-5.5}^{+5.8} (\mathbf{13.3}\,\sigma) \ \mathbf{N}_{s}(\mathbf{D}_{s}^{\pm\pm}\mathbf{D}_{s}^{\pm}) = \mathbf{24.4}_{-3.6}^{+4.1} (\mathbf{8.6}\,\sigma)$

Observation of $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$

Preliminary, summer 2011

⇒ 3 modes are seen separately (102 signal events)

 $\begin{array}{l} B \; (B^0_s \rightarrow D^+_s D^-_s) = (0.58^{+0.11}_{-0.09} \pm \; 0.13)\% \\ \text{ consistent with CDF} \; [\text{PRL 100, 021803}] \end{array}$

 $B (B_{s}^{0} \rightarrow D_{s}^{*\pm} D_{s}^{\mp}) = (1.8 \pm 0.2 \pm 0.4)\% \Rightarrow B (B_{s}^{0} \rightarrow D_{s}^{(*)+} D_{s}^{(*)-}) = (4.3 \pm 0.4 \pm 1.0)\%$

Observation of $B_s^0 \rightarrow D_s^{(*)+} D_s^{(*)-}$

Preliminary, summer 2011

 $B (\mathbf{B}_{s}^{0} \to \mathbf{D}_{s}^{(*)+} \mathbf{D}_{s}^{(*)-}) = (\mathbf{4.3} \pm \mathbf{0.4} \pm \mathbf{1.0})\%$ $\Delta \Gamma_{s} / \Gamma_{s} = 2B / (1 - B)$

$$\frac{\Delta \Gamma_{\rm s}}{\Gamma_{\rm s}} = (\mathbf{9.0} \pm \mathbf{0.9} \pm \mathbf{2.2})\%$$

CDF: $(12 \pm 10)\%$ [PRL 100, 121803] D0: $(7.2 \pm 3.0)\%$ [PRL 102, 091801]

Nature of Y(5S)

- 1. Rescattering $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$? Simonov, JETP Lett 87, 147 (2008)
- 2. Similar effect as in charmonium ? $\Rightarrow \text{ assume a } Y_b \text{ exists close to } Y(5S)$ to distinguish them: energy scan $\Rightarrow \text{ shapes of } R_b \text{ and } \sigma(Y \pi \pi) \text{ different (only } 2\sigma)$

Nature of $\Upsilon(5S)$ is puzzling and not yet understood

Looking for $h_b(nP)$

(triggered by the observation of $e^+e^- \rightarrow \pi^+\pi^-h_c$ above $D\overline{D}$ threshold by CLEO)

 $(b\overline{b}): S=0, L=1, J^{PC}=1^{+-}$

Expected mass $\approx (M(x_{b0}) + 3 M(x_{b1}) + 5 M(x_{b2}))/9$

 $\Delta M_{\rm HF} \Rightarrow$ test of hyperfine interaction for $h_c: \Delta M_{\rm HF} = -0.12 \pm 0.30$ MeV, expect smaller deviation for $h_{\rm b}(nP)$

 $\Upsilon(5S) \rightarrow h_b \pi^+ \pi^-$ reconstruction

	Yield, 10^3	Mass, MeV/c^2	Significance
$\Upsilon(1S)$	$105.0 \pm 5.8 \pm 3.0$	$9459.4 \pm 0.5 \pm 1.0$	18.1σ
$h_b(1P)$	$50.0 \pm 7.8^{+4.5}_{-9.1}$	$9898.2^{+1.1}_{-1.0}^{+1.1}_{-1.1}$	6.1σ
$3S \rightarrow 1S$	55 ± 19	9973.01	2.9σ
$\Upsilon(2S)$	$143.8 \pm 8.7 \pm 6.8$	$10022.2 \pm 0.4 \pm 1.0$	17.1σ
$\Upsilon(1D)$	22.4 ± 7.8	10166.1 ± 2.6	2.4σ
$h_b(2P)$	$84.0 \pm 6.8^{+23.}_{-10.}$	$10259.8 \pm 0.6^{+1.4}_{-1.0}$	12.3σ
$2S \rightarrow 1S$	$151.3 \pm 9.7^{+9.0}_{-20.}$	$10304.6 \pm 0.6 \pm 1.0$	15.7σ
$\Upsilon(3S)$	$45.5 \pm 5.2 \pm 5.1$	$10356.7 \pm 0.9 \pm 1.1$	8.5σ

Significance w/systematics $h_b(1P) 5.5\sigma$ $h_b(2P) 11.2\sigma$

Resonant structure of $\Upsilon(5S) \rightarrow \mathbf{h}_{\mathbf{b}}(1P)\pi^{+}\pi^{-}$

Fit function $|BW(s, M_1, \Gamma_1) + a e^{i\phi} BW(s, M_2, \Gamma_2) + b e^{i\psi}|^2 \frac{qp}{\sqrt{s}}$ Results

$$\begin{split} \mathbf{M}_{1} &= 10605 \pm 2 \, {}^{+3}_{-1} \, \text{MeV/c}^{2} &\sim \mathbf{B} \, \overline{\mathbf{B}}^{*} \, \text{threshold} \\ \boldsymbol{\Gamma}_{1} &= 11.4 \, {}^{+4.5}_{-3.9} \, {}^{+2.1}_{-1.2} \, \text{MeV} & \mathbf{a} = 1.39 \pm 0.37 \, {}^{+0.05}_{-0.15} \\ \mathbf{M}_{2} &= 10654 \pm 3 \, {}^{+1}_{-2} \, \text{MeV/c}^{2} &\sim \mathbf{B} \, \overline{\mathbf{B}}^{*} \, \text{threshold} \\ \boldsymbol{\Gamma}_{2} &= 20.9 \, {}^{+5.4}_{-4.7} \, {}^{-5.7}_{-5.7} \, \text{MeV} & \boldsymbol{\phi} = (187 \, {}^{+44}_{-57} \, {}^{\circ}_{-12})^{\circ} \end{split}$$

 $\begin{array}{l} \text{Significances}\\ 18\,\sigma\,(16\,\sigma\,\,\text{w/syst}) \end{array}$

Resonant structure of $\Upsilon(5S) \rightarrow h_b(2P)\pi^+\pi^-$

Note: here Y(nS) is reconstructed in the $\mu^+ \mu^-$ channel !!

$\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ Dalitz plots

⇒ two resonances

⇒ clear signs of interference ⇒ amplitude analysis is required

Signal amplitude parameterization: Flatte

$$S(s_1, s_2) = A(Z_{b1}) + A(Z_{b2}) + A(f_0(980)) + A(f_2(1275)) + A_{NR}$$

$$A_{NR} = C_1 + C_2 \cdot m^2 (\pi \pi)$$
Breit-Wigner

Parameterization of the non-resonant amplitude as discussed in:

[1] M.B.Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008
[2] M.B.Voloshin, Phys. Rev. D74:054022, 2006

Results: $Y(1S)\pi^+\pi^-$

Results: $Y(2S)\pi^+\pi^-$

signals

Results: $\Upsilon(3S)\pi^+\pi^-$

Summary of parameters of charged Z_b states

- $\circ~$ Masses and width are consistent
- $\circ~$ Relative yield of $Z_b(10610)~and~Z_b(10650) \sim 1$
- $\,\circ\,$ Relative phases are swapped for Υ and $h_{\rm b}$ final states

and more...

 $\begin{array}{ll} \underline{\text{Expected decays of } h_b} & [\text{Godfrey \& Rosner, PRD 66, 014012 (2002)}] \\ & h_b(1P) \rightarrow ggg \ (57\%), \ \eta_b(1S)\gamma \ (41\%), \ \gamma gg \ (2\%) \\ & h_b(2P) \rightarrow ggg \ (63\%), \ \eta_b(1S)\gamma \ (13\%), \ \eta_b(2S)\gamma \ (19\%), \ \gamma gg \ (2\%) \end{array}$

and Belle recently observed large yields of $h_b(1P)$ and $h_b(2P)$! opportunity to study $\eta_b(nS)$ states...

```
Experimental status of \eta_{\rm b}
```

```
\begin{split} &M[\eta_b(1S)] = 9390.9 \pm 2.8 \ MeV \ (BaBar + CLEO) \\ &M[\Upsilon(1S)] - M[\eta_b(1S)] = 69.3 \ \pm 2.8 \ MeV \end{split}
```

```
pNRQCD: 41 \pm 14 \ MeV \\ [Kniehl et al., PRL 92, 242001 \ (2004)] \\
```

Lattice: $60 \pm 8 \text{ MeV}$ [Meinel, PRD 82, 114502 (2010)] $\eta_{\rm b}-{\rm small\ radius\ system}\,,$ precise calculation of mass

Method

<u>Results</u>

arXiv: 1110.3934

non-relativistic BW \otimes resolution + exponential func.

Hyperfine splitting $\Delta M_{\rm HF}[\eta_b(1S)]$ = 59.3 ± 1.9 $^{+2.4}_{-1.4}$ MeV/c²

single most precise measurement of $\eta_{\rm b}(1{\rm S})$ mass

⇒ radiative decays of $h_b(2P)$, search for $\eta_b(2S)$ coming...

$$N[\eta_{b}(1S)] = (21.9 \pm 2.0 {}^{+5.6}_{-1.7}) \times 10^{3}$$
$$M[\eta_{b}(1S)] = (9401.0 \pm 1.9 {}^{+1.4}_{-2.4}) \text{ MeV/c}^{2}$$
$$\Gamma[\eta_{b}(1S)] = (12.4 {}^{+5.5}_{-4.6} {}^{+11.5}_{-3.4}) \text{ MeV}$$
$$B[h_{b}(1P) \rightarrow \eta_{b}(1S)\gamma] = (49.8 \pm 6.8 {}^{+10.9}_{-5.2})\%$$

<u>Results</u>

arXiv: 1110.3934

non-relativistic BW \otimes resolution + exponential func.

Hyperfine splitting $\varDelta\,M_{\rm HF}[\,\eta_{\rm b}(1S)\,]$ = 59.3 $\pm\,1.9\,^{+2.4}_{-1.4}\,\,MeV/c^2$

single most precise measurement of $\eta_{\rm b}(1{\rm S})$ mass

⇒ radiative decays of $h_b(2P)$, search for $\eta_b(2S)$ coming...

 $N[\eta_{b}(1S)] = (21.9 \pm 2.0 {}^{+5.6}_{-1.7}) \times 10^{3}$ $M[\eta_{b}(1S)] = (9401.0 \pm 1.9 {}^{+1.4}_{-2.4}) \text{ MeV/c}^{2}$ $\Gamma[\eta_{b}(1S)] = (12.4 {}^{+5.5}_{-4.6} {}^{+11.5}_{-3.4}) \text{ MeV}$

 $B [h_{b}(1P) \rightarrow \eta_{b}(1S)\gamma] = (49.8 \pm 6.8 {}^{+10.9}_{-5.2})\%$

Summary

Exciting new results in 2011:

- \Rightarrow new (updated) measurements for the UT angles β , γ
- ⇒ new results with full Y(5S) data sample (B_s decays but also bottomonium studies)

Final Belle data sample is yet to be fully analyzed !

- more on α ($\pi^0 \pi^0$, $\rho^+ \rho^0$), γ ...
- **Rare B decays:** $\mathbf{K}^{(*)} \nu \overline{\nu}, \tau \nu, \mu \nu, \gamma \gamma, \dots$
- $\circ~$ Results on B_{s} decays with 5 \times more stat
- τ physics (lifetime, LVF decays), charm (mixing K π , KK, K_s $\pi\pi$), new particles (X, Y, Z), bottomonium...

and then...

and then...

⇒ physics with $O(10^{10})$ B, τ , D.... SuperKEKB/Belle II (in Japan)

Search for $B_s^0 \rightarrow J/\psi f_0(980)$

Contribution to FPCP 2010 (arXiv: 1009.2605)

- $\circ~$ Silver mode at LHCb to measure $\beta_{\rm s}~({\rm CP}\mbox{-violating phase in the B}_{\rm s}~{\rm mixing})$
- $\circ~BR$ is smaller than $B_s \to J/\psi\,\phi$ but $B_s \to J/\psi\,f_0(980)$ is a pure CP-eigenstate
 - no angular analysis is required as in ${\rm B_s} \to J/\psi\,\phi$
- $\circ~$ CP-eigenstate (odd) mode with a final state with only 4 charged particles
- Expectations:

 $- \frac{B(B_s^0 \to J/\psi \ f_0) \ B(f_0 \to \pi^+ \pi^-)}{B(B_s^0 \to J/\psi \ \phi) \ B(\phi \to K^+ K^-)} \approx 0.2 \quad (Stone + Zhang \ [PRD \ 79, \ 074024])$

 $- \frac{B(B_s^0 \to J/\psi \ f_0) \ B(f_0 \to \pi^+ \pi^-)}{B(B_s^0 \to J/\psi \ \phi) \ B(\phi \to K^+ K^-)} = 0.42 \pm 0.11 \quad (\text{CLEO} \ (D_s \to f_0 e^+ \nu_e) \ [\text{PRD 80, 052009}])$

 $\rightarrow B(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathbf{J}/\psi \mathbf{f}_{0}) B(\mathbf{f}_{0} \rightarrow \pi^{+}\pi^{-}) \approx (\mathbf{1.3} - \mathbf{2.7}) \times \mathbf{10}^{-4}$

 $- B(B_s^0 \to J/\psi f_0) = (3.1 \pm 2.4) \times 10^{-4} \text{ QCD (LO) [PRD 81, 074001]}$ with $B(f_0 \to \pi^+ \pi^-) = (50^{+7}_{-9})\%$ BES data [CLEO, PRD 80, 052009]

 $\rightarrow B(\mathbf{B}_{\mathrm{s}}^{0} \rightarrow \mathrm{J}/\psi \mathbf{f}_{0}) B(\mathbf{f}_{0} \rightarrow \pi^{+}\pi^{-}) \approx (\mathbf{1.6} \pm \mathbf{1.3}) \times \mathbf{10}^{-4}$

Search for B_s^0 \rightarrow J/\psi f_0(980)

Belle (121 fb^{-1})

PRL 106, 121802 (2011)

- $\circ \ J/\psi \rightarrow e^+ e^- \ or \ \mu^+ \mu^- \text{, } f_0 \rightarrow \pi^+ \pi^-$
- $\circ~(\varDelta\,E$, $\,M_{\pi^{*}\pi^{-}})$ 2D fit in $-0.1~GeV < \varDelta\,E < 0.2~GeV$ and $\,M_{\pi^{*}\pi^{-}} < 2.0~GeV/c^{2}$
- includes backgrounds from $B_s^0 \to J/\psi \pi^+ \pi^-$ (peaks in ΔE) and other J/ψ modes

 $B(B_{s}^{0} \rightarrow J/\psi f_{0}) \times B(f_{0} \rightarrow \pi^{+}\pi^{-}) = (1.16^{+0.31}_{-0.19}(stat)^{+0.15}_{-0.17}(syst)^{+0.26}_{-0.18}(N_{B_{s}^{(*)}\overline{B}_{s}^{(*)}})) \times 10^{-4} (at 90\% C.L.)$

Motivation for BR measurements

• $B_s \rightarrow \mu^+ \mu^-$:

S

sensitive probe to New Physics, very suppressed in SM:

 $B (B_s \rightarrow \mu^+ \mu^-) = (3.35 \pm 0.32) \times 10^{-9}$

[M.Blanke et al, hep-ph/0604057]

 $\circ~$ NP can lead to enhancement of the BR up to an order of magnitude (for example, constrained versions of the MSSM $\sim 20 \times 10^{-9})$

⇒ BUT could be ''only'' a factor 2 above SM value !!

 $\circ~$ Need normalization with BR of $B_{(s)}$ decays

– for example , Tevatron experiments use $B^{\scriptscriptstyle +} \to J/\psi\,K^{\scriptscriptstyle +}$

- $\sigma_{\text{syst}} \sim 13\%$: dominant error from $\frac{f(B_s)}{f(B)}$

⇒ not sufficient if $B (B_s \rightarrow \mu^+ \mu^-) < 10^{-8}$

 $\circ~$ Need normalization mode meas with higher accuracy , preferably B_{s} mode

⇒ measure B_s branching fraction in $\Upsilon(5S)$ decays ! (for example $B_s \rightarrow J/\psi \phi$) so need to improve f_s

Trigger

Observation of $e^+e^- \rightarrow \pi^+\pi^-h_c$ above D \overline{D} threshold by CLEO

Belle sees $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+ \pi^-$, so should search for $\Upsilon(5S) \rightarrow h_b \pi^+ \pi^-$! Non-observation of the bottomonium ground state was an annoying thorn in the side of quarkonium spectroscopy. Finally, after 30 years of work

First measurement of η_b by BABAR in radiative Y(3S) and Y(2S) decays, followed by CLEO.

Measured parameters

Hyperfine mass splitting predictions (MeV):

Potential models:	36-100 (36-87 recent models)
pNRQCD:	60.3 ± 5.5 ± 3.8 ± 2.1
Lattice QCD:	40-71

Confirmation from independent experiment or other decay channel desirable, as well as observation of $\eta_b(2S)$

