Bottomonium results

KEKB collider and Belle in a nutshell

Nature of Y(5S)

- 1. Rescattering $\Upsilon(5S) \rightarrow BB\pi\pi \rightarrow \Upsilon(nS)\pi\pi$? Simonov, JETP Lett 87, 147 (2008)
- 2. Similar effect as in charmonium ? $\Rightarrow \text{ assume a } Y_b \text{ exists close to } Y(5S)$ to distinguish them: energy scan $\Rightarrow \text{ shapes of } R_b \text{ and } \sigma(Y \pi \pi) \text{ different (only } 2\sigma)$

Nature of $\Upsilon(5S)$ is puzzling and not yet understood

Looking for $h_b(nP)$

(triggered by the observation of $e^+e^- \rightarrow \pi^+\pi^-h_c$ above $D\overline{D}$ threshold by CLEO)

 $(b\overline{b}): S=0, L=1, J^{PC}=1^{+-}$

Expected mass $\approx (M(x_{b0}) + 3 M(x_{b1}) + 5 M(x_{b2}))/9$

 $\Delta M_{\rm HF} \Rightarrow$ test of hyperfine interaction for $h_c: \Delta M_{\rm HF} = -0.12 \pm 0.30$ MeV, expect smaller deviation for $h_{\rm b}(nP)$

 $\Upsilon(5S) \rightarrow h_b \pi^+ \pi^-$ reconstruction

	Yield, 10^3	Mass, MeV/c^2	Significance
$\Upsilon(1S)$	$105.0 \pm 5.8 \pm 3.0$	$9459.4 \pm 0.5 \pm 1.0$	18.1σ
$h_b(1P)$	$50.0 \pm 7.8^{+4.5}_{-9.1}$	$9898.2^{+1.1}_{-1.0}^{+1.1}_{-1.1}$	6.1σ
$3S \rightarrow 1S$	55 ± 19	9973.01	2.9σ
$\Upsilon(2S)$	$143.8 \pm 8.7 \pm 6.8$	$10022.2 \pm 0.4 \pm 1.0$	17.1σ
$\Upsilon(1D)$	22.4 ± 7.8	10166.1 ± 2.6	2.4σ
$h_b(2P)$	$84.0 \pm 6.8^{+23.}_{-10.}$	$10259.8 \pm 0.6^{+1.4}_{-1.0}$	12.3σ
$2S \rightarrow 1S$	$151.3 \pm 9.7^{+9.0}_{-20.}$	$10304.6 \pm 0.6 \pm 1.0$	15.7σ
$\Upsilon(3S)$	$45.5 \pm 5.2 \pm 5.1$	$10356.7 \pm 0.9 \pm 1.1$	8.5σ

Significance w/systematics $h_b(1P) 5.5\sigma$ $h_b(2P) 11.2\sigma$

Resonant structure of $\Upsilon(5S) \rightarrow \mathbf{h}_{\mathbf{b}}(1P)\pi^{+}\pi^{-}$

Fit function $|BW(s, M_1, \Gamma_1) + a e^{i\phi} BW(s, M_2, \Gamma_2) + b e^{i\psi}|^2 \frac{qp}{\sqrt{s}}$ Results

$$\begin{split} \mathbf{M}_{1} &= 10605 \pm 2 \, {}^{+3}_{-1} \, \text{MeV/c}^{2} &\sim \mathbf{B} \, \overline{\mathbf{B}}^{*} \, \text{threshold} \\ \boldsymbol{\Gamma}_{1} &= 11.4 \, {}^{+4.5}_{-3.9} \, {}^{+2.1}_{-1.2} \, \text{MeV} & \mathbf{a} = 1.39 \pm 0.37 \, {}^{+0.05}_{-0.15} \\ \mathbf{M}_{2} &= 10654 \pm 3 \, {}^{+1}_{-2} \, \text{MeV/c}^{2} &\sim \mathbf{B} \, \overline{\mathbf{B}}^{*} \, \text{threshold} \\ \boldsymbol{\Gamma}_{2} &= 20.9 \, {}^{+5.4}_{-4.7} \, {}^{-5.7}_{-5.7} \, \text{MeV} & \boldsymbol{\phi} = (187 \, {}^{+44}_{-57} \, {}^{\circ}_{-12})^{\circ} \end{split}$$

 $\begin{array}{l} \text{Significances}\\ 18\,\sigma\,(16\,\sigma\,\,\text{w/syst}) \end{array}$

Resonant structure of $\Upsilon(5S) \rightarrow h_b(2P)\pi^+\pi^-$

Note: here Y(nS) is reconstructed in the $\mu^+ \mu^-$ channel !!

$\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ Dalitz plots

⇒ two resonances

⇒ clear signs of interference ⇒ amplitude analysis is required

Signal amplitude parameterization: Flatte

$$S(s_1, s_2) = A(Z_{b1}) + A(Z_{b2}) + A(f_0(980)) + A(f_2(1275)) + A_{NR}$$

$$A_{NR} = C_1 + C_2 \cdot m^2 (\pi \pi)$$
Breit-Wigner

Parameterization of the non-resonant amplitude as discussed in:

[1] M.B.Voloshin, Prog. Part. Nucl. Phys. 61:455, 2008
[2] M.B.Voloshin, Phys. Rev. D74:054022, 2006

Results: $Y(1S)\pi^+\pi^-$

Results: $Y(2S)\pi^+\pi^-$

signals

Results: $\Upsilon(3S)\pi^+\pi^-$

Summary of parameters of charged Z_b states

- $\circ~$ Masses and width are consistent
- $\circ~$ Relative yield of $Z_b(10610)~and~Z_b(10650) \sim 1$
- $\,\circ\,$ Relative phases are swapped for Υ and $h_{\rm b}$ final states

and more...

 $\begin{array}{ll} \underline{\text{Expected decays of } h_b} & [\text{Godfrey \& Rosner, PRD 66, 014012 (2002)}] \\ & h_b(1P) \rightarrow ggg \ (57\%), \ \eta_b(1S)\gamma \ (41\%), \ \gamma gg \ (2\%) \\ & h_b(2P) \rightarrow ggg \ (63\%), \ \eta_b(1S)\gamma \ (13\%), \ \eta_b(2S)\gamma \ (19\%), \ \gamma gg \ (2\%) \end{array}$

and Belle recently observed large yields of $h_b(1P)$ and $h_b(2P)$! opportunity to study $\eta_b(nS)$ states...

```
Experimental status of \eta_{\rm b}
```

```
\begin{split} &M[\eta_b(1S)] = 9390.9 \pm 2.8 \ MeV \ (BaBar + CLEO) \\ &M[\Upsilon(1S)] - M[\eta_b(1S)] = 69.3 \ \pm 2.8 \ MeV \end{split}
```

```
pNRQCD: 41 \pm 14 \ MeV \\ [Kniehl et al., PRL 92, 242001 \ (2004)] \\
```

Lattice: $60 \pm 8 \text{ MeV}$ [Meinel, PRD 82, 114502 (2010)] $\eta_{\rm b}-{\rm small\ radius\ system}\,,$ precise calculation of mass

Method

<u>Results</u>

arXiv: 1110.3934

non-relativistic BW \otimes resolution + exponential func.

Hyperfine splitting $\Delta M_{\rm HF}[\eta_b(1S)]$ = 59.3 ± 1.9 $^{+2.4}_{-1.4}$ MeV/c²

single most precise measurement of $\eta_{\rm b}(1{\rm S})$ mass

⇒ radiative decays of $h_b(2P)$, search for $\eta_b(2S)$ coming...

$$N[\eta_{b}(1S)] = (21.9 \pm 2.0 {}^{+5.6}_{-1.7}) \times 10^{3}$$
$$M[\eta_{b}(1S)] = (9401.0 \pm 1.9 {}^{+1.4}_{-2.4}) \text{ MeV/c}^{2}$$
$$\Gamma[\eta_{b}(1S)] = (12.4 {}^{+5.5}_{-4.6} {}^{+11.5}_{-3.4}) \text{ MeV}$$
$$B[h_{b}(1P) \rightarrow \eta_{b}(1S)\gamma] = (49.8 \pm 6.8 {}^{+10.9}_{-5.2})\%$$

<u>Results</u>

arXiv: 1110.3934

non-relativistic BW \otimes resolution + exponential func.

Hyperfine splitting $\varDelta\,M_{\rm HF}[\,\eta_{\rm b}(1S)\,]$ = 59.3 $\pm\,1.9\,^{+2.4}_{-1.4}\,\,MeV/c^2$

single most precise measurement of $\eta_{\rm b}(1{\rm S})$ mass

⇒ radiative decays of $h_b(2P)$, search for $\eta_b(2S)$ coming...

 $N[\eta_{b}(1S)] = (21.9 \pm 2.0 {}^{+5.6}_{-1.7}) \times 10^{3}$ $M[\eta_{b}(1S)] = (9401.0 \pm 1.9 {}^{+1.4}_{-2.4}) \text{ MeV/c}^{2}$ $\Gamma[\eta_{b}(1S)] = (12.4 {}^{+5.5}_{-4.6} {}^{+11.5}_{-3.4}) \text{ MeV}$

 $B [h_{\rm b}(1{\rm P}) \rightarrow \eta_{\rm b}(1{\rm S})\gamma] = (49.8 \pm 6.8 {}_{-5.2}^{+10.9})\%$

Non-observation of the bottomonium ground state was an annoying thorn in the side of quarkonium spectroscopy. Finally, after 30 years of work

First measurement of η_b by BABAR in radiative Y(3S) and Y(2S) decays, followed by CLEO.

Measured parameters

Hyperfine mass splitting predictions (MeV):

Potential models:	36-100 (36-87 recent models)
pNRQCD:	60.3 ± 5.5 ± 3.8 ± 2.1
Lattice QCD:	40-71

Confirmation from independent experiment or other decay channel desirable, as well as observation of $\eta_b(2S)$

