

$\frac{\text{``Theoretical issues in heavvy flavor physics''}}{\text{LP2011, Amol Dighe}}$

Window to New Physics beyond the SM

Puzzles that may lead directly to NP

- The $K \pi$ puzzle: is it just matrix elements calculation ?
- Anomalous like-sign-dimuon asymmetry
- $B \rightarrow \tau \nu_{\tau}$: loss of universality ?
- Lifetime difference and CP phase in B_s decay

Questions that may not have quick answers

- Why three generations ? (Only three, are we sure ?)
- Why the extreme hierarchy of masses ?
- What is the source of CP violation ?
- What about baryon asymmetry ?

Old puzzle

 $\circ~$ Before 2004, the K π puzzle was said to be in the ratios of averaged decay rates:

Year	$R_c \equiv rac{2\overline{\Gamma}^{0+}}{\overline{\Gamma}^{+0}}$	$R_n \equiv rac{\overline{\Gamma}^{-+}}{2\overline{\Gamma}^{00}}$	Difference
	$\left \frac{P'+T'+C'+P'_{EW}}{P'}\right ^2$	$\left \frac{P' + T'}{P' - C' - P'_{EW}} \right ^2$	$\mathcal{O}(\left[\frac{C'+P'_{EW}}{P'} ight]^2)$
pre-2004	1.15 ± 0.12	0.78 ± 0.10	2.4σ
2004 ICHEP	1.00 ± 0.09	0.79 ± 0.08	1.9σ
2005 LepPho	1.10 ± 0.09	0.82 ± 0.07	1.6σ
2008 ICHEP	1.12 ± 0.07	0.99 ± 0.07	1.3σ

 $\,\circ\,$ It is by now clear that this puzzle is disappearing and the remaining small difference can be explained by the contributions of C' and P'_{EW} amplitudes

Measuring direct CPV with B \rightarrow K\pi

$$egin{array}{rcl} {\cal A}_t &=& |A_t| \, e^{i \phi_t} \, e^{i \delta_t} \ {\cal A}_p &=& |A_p| \, e^{i \phi_p} \, e^{i \delta_p} \end{array}$$

$$\begin{split} \Gamma(B \to f) &= |\mathcal{A}_t + \mathcal{A}_p|^2 \\ &= |A_t|^2 + |A_p|^2 + 4|A_t||A_p|\cos(\Delta\phi + \Delta\delta), \\ & \left(\begin{matrix} \Delta\phi &= \phi_t - \phi_p \\ \Delta\delta &= \delta_t - \delta_p \end{matrix} \right) \\ \hline \bar{\mathcal{A}}_t &= |A_t| e^{-i\phi_t} e^{i\delta_t} \\ \bar{\mathcal{A}}_p &= |A_p| e^{-i\phi_p} e^{i\delta_p} \\ &= |A_t|^2 + |A_p|^2 + 4|A_t||A_p|\cos(-\Delta\phi + \Delta\delta), \end{split}$$

$$\Rightarrow \ A_{CP} \ \equiv \ \frac{\Gamma(\bar{B} \to \bar{f}) - \Gamma(B \to f)}{\Gamma(\bar{B} \to \bar{f}) + \Gamma(B \to f)} \ \propto \ \sin \Delta \phi \, \sin \Delta \delta$$

Measuring direct CPV with B \rightarrow K\pi

$$A_{CP} \;\equiv\; rac{\Gamma(ar{B}
ightarrow ar{f}) - \Gamma(B
ightarrow f)}{\Gamma(ar{B}
ightarrow ar{f}) + \Gamma(B
ightarrow f)} \;\propto\; \sin\Delta\phi\,\sin\Delta\delta$$

Diagrams identical except for spectator quark ? \Rightarrow strong and weak phases are the same, A_{CP} should be the same ?

$B \rightarrow K\pi$ measurements at B-factories...

$B \rightarrow K\pi$ measurements at B-factories...

 $\mathbf{K}^{\pm}\boldsymbol{\pi}^{\mp}$

 $\mathbf{K}^{\pm} \boldsymbol{\pi}^{\mathbf{0}}$

K π **puzzle** [LHCb-CONF-2011-042]

Perturbative predictions

Cheng-Wei Chiang (BAS 2011.2)

Group	A_{CP}^{0+}	A_{CP}^{-+}	
2008 ICHEP	0.050 ± 0.025	-0.098 ± 0.012	
QCDF [S4]	-0.036	-0.041	Beneke, Neubert 2003
pQCD	$-0.01\substack{+0.03\\-0.05}$	$-0.09^{+0.06}_{-0.08}$	Li, Mishima, Sanda 2005
SCET	-0.11 ± 0.14	-0.06 ± 0.08 \	Williamson, Zupan 2006

- All above predictions roughly agree with observed A_{CP}⁻⁺. But all of them have the wrong sign for A_{CP}⁰⁺!
- Take QCDF for example, though the inclusion of penguin annihilation amps brings up the K π rates and get the signs of A_{CP}(π⁻K⁺, π⁻K^{*+}, ρ⁰K⁺, π⁺π⁻) correct, they mess up with the signs of A_{CP}(π⁰K⁺, ηK⁺, ηK^{*0}, π⁰π⁰). Subleading 1/m_b corrections to C are required.

[but probably not such bad disagreement, look errors...]

Possible explanations

Cheng-Wei Chiang (BAS 2011.2)

• Within SM: large color-suppressed amplitude (C') with a sizeable strong phase relative to T' [feasible perturbatively from NLO vertex corrections and kT factorization breakdown].

Li, Mishima, Sanda 2005, 2009; CC, Zhou 2006

Baek et al 2005; Hou et al 2005

 Beyond SM: additional EW-penguin type of amplitude from new physics [feasible in, e.g., SUSY, FCNC Z' models, 4G, etc].
 Yoshikawa 2004; Buras et al 2004; Barger, CC, Langacker, Lee 2004;

Conclusions from...

Cheng-Wei Chiang (BAS 2011.2)

- The very original K π puzzle with the ratios of rates has disappeared.
- The K π puzzle with the CPA's is not seen to be a serious problem as fits within and beyond SM give similar quality.
- New physics is not strongly called for here.

The puzzle

$$\Delta_{K\pi} = A_{CP}(B^+ \to K^+ \pi^0) - A_{CP}(B^0 \to K^+ \pi^-)$$

 $= 0.121 \pm 0.022 \Rightarrow 5.8\sigma \text{ from SM}(P.Chang, EPS2011)$

Is it just matrix element calculation ?

- C and P_{EW} corrections may be high
- QCDF: large imaginary values for C and P_{EW} amplitudes
- Evidence for large P_{EW} should have been found from $B(B^+ \to \pi K)/B(B^0 \to \pi K)$ and $B(B^+ \to \rho K)/B(B^0 \to \rho K)$; not found
- Large C ⇒ breakdown of power-counting in SCET But SCET seems to hold for all other modes !
- pQCD claims that higher order corrections resolve the problem, but there is no consensus on this.

Important component: it has the interesting diagrams C and $P_{\rm EW}$

Measuring direct CPV

''Model independent'' sum rule for all four modes:
[Gronau, PLB 627, 82 (2005), Atwood & Soni, PRD 58, 036005 (1998)]

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0})\frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0})\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac$$

Measuring direct CPV

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0})\frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0})\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac$$

B factory at 50 fb⁻¹, with today's central values:

Where else to look for direct CPV ?

- CPV in charm provides a unique probe of New Physics
 - sensitive to NP in the up sector
 - SM charm physics is CP conserving to first approximation (2 generation dominance)

Cabibbo Favored (CF)

 $c \rightarrow s \bar{d} u \ (D \rightarrow K^- \pi^+)$

Singly Cabibbo Suppressed (SCS)

 $c \to s\bar{s}u \ (D \to K^-K^+)$ $c \to d\bar{d}u \ (D \to \pi^-\pi^+)$

Doubly Cabibbo Suppressed (DCS)

```
c \to d\bar{s}u \ (D \to \pi^- K^+)
```

Direct CP Violation

 $\circ~$ Consider CP conjugate decay amplitudes of mesons $M \! \rightarrow \! f$ and $\overline{M} \! \rightarrow \! \overline{f}$

$$\begin{split} A_f(M \to f) &= A_f^T e^{-i\phi_f^T} \left[1 + r_f e^{i(\delta_f - \phi_f)}\right] \\ \overline{A_f}(\bar{M} \to \bar{f}) &= A_f^T e^{-i\phi_f^T} \left[1 + r_f e^{i(\delta_f + \phi_f)}\right] \end{split}$$

 $A_{\rm f}^{\rm T}$ is a dominant tree-level amplitude with weak (CP violating) phase $\phi^{\rm T}$ $r_{\rm f}$ is relative magnitude of subleading amplitude containing new weak phase $\phi_{\rm f}$ relative strong phase $\delta_{\rm f}$

- In SM SCS D decays the subleading amplitudes are the penguins
- Direct CP asymmetry:

$$a^{\rm dir} \equiv \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} = 2r_f \sin \phi_f \sin \delta_f$$

 $\circ~$ in charged $D_{(s)}decays,$ straightforward to measure - just the rate difference:

$$a^{\text{dir}} = \frac{\Gamma(D^+ \to f) - \Gamma(D^- \to \bar{f})}{\Gamma(D^+ \to f) + \Gamma(D^- \to \bar{f})}$$

e.g., $a^{\text{dir}}(K_sK^+) = (0.09 \pm 0.63)\%$ HFAG, (at Belle: $0.16 \pm 0.6\%$)

 $\circ~$ in charged $D_{(s)}decays,$ straightforward to measure - just the rate difference:

$$a^{\text{dir}} = \frac{\Gamma(D^+ \to f) - \Gamma(D^- \to \bar{f})}{\Gamma(D^+ \to f) + \Gamma(D^- \to \bar{f})}$$

e.g., $a^{\text{dir}}(K_sK^+) = (0.09 \pm 0.63)\%$ HFAG, (at Belle: $0.16 \pm 0.6\%$)

 D⁰'s more complicated: must subtract indirect CPV contribution from time integrated CP asymmetries:

$$a_f \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\overline{D^0} \to f)}{\Gamma(D^0 \to f) + \Gamma(\overline{D^0} \to f)}$$

• The indirect CP asymmetry $a^{ind} = a^m + a^i$

a^m: CP violation in mixing CPVMIX

aⁱ: CP violation in the interference of decays with and without mixing CPVINT a^{ind} is universal - independent of final state. • at the B-factories:

$$a_f = a_f^{\text{dir}} + a^{\text{ind}}, \quad a^{\text{ind}} = a^m + a^i$$

• at CDF (due to cuts on proper decay times):

$$a_{\pi^+\pi^-} = a_{\pi^+\pi^-}^{\text{dir}} + 2.40 \, a^{\text{ind}}, \qquad a_{K^+K^-} = a_{K^+K^-}^{\text{dir}} + 2.65 \, a^{\text{ind}}$$

• at LHCb (due to cuts on proper decay times):

$$a_{K^+K^-} - a_{\pi^+\pi^-} = a_{K^+K^-}^{\text{dir}} - a_{\pi^+\pi^-}^{\text{dir}} + (0.1 \pm 0.01) a^{\text{ind}}$$

Where else to look for direct CPV ?

- Remember: need (at least) two contributing amplitudes with different strong and weak phases to get CPV.
- Singly-Cabibbo-suppressed modes with gluonic penguin diagrams very promising
 - Several classes of NP can contribute
 - ... but also non-negligible SM contribution

Difference between $A_{CP}(D^0 \rightarrow K^+ K^-)$ and $A_{CP}(D^0 \rightarrow \pi^+ \pi^-)$

- Expectation from U-spin: $A^{dir}(KK) = -A^{dir}(\pi \pi)$
- Conclusion could be softened by large U-spin violation in power corrections[Kagan]

$D^0 \rightarrow K^+ K^-$, $\pi^+ \pi^-$ measurements

Year	Experiment	CP Asymmetry in the decay mode D0 to π + π -	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2010	CDF	M.J. Morello (CDF Collab.), Preprint (CHARM 2010).	$+0.0022 \pm 0.0024 \pm 0.0011$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 2008).	$\pm 0.0043 \pm 0.0052 \pm 0.0012$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	-0.0024 ± 0.0052 ± 0.0022
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.019 \pm 0.032 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$+0.048 \pm 0.039 \pm 0.025$
19 98	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.049 \pm 0.078 \pm 0.030$
		COMBOS average	+0.0020 ± 0.0022

Year	Experiment	CP Asymmetry in the decay mode(D0 to K+K-)	$[\Gamma(D0)\text{-}\Gamma(D0bar)]/[\Gamma(D0)\text{+}\Gamma(D0bar)]$
2011	CDF	A. Di Canto (CDF Collab.), Preprint (BEAUTY 2011).	$-0.0024 \pm 0.0022 \pm 0.0010$
2008	BELLE	M. Staric et al. (BELLE Collab.), Phys. Lett. B 670, 190 (2008).	$-0.0043 \pm 0.0030 \pm 0.0011$
2008	BABAR	B. Aubert et al. (BABAR Collab.), Phys. Rev. Lett. 100, 061803 (2008).	+0.0000 ± 0.0034 ± 0.0013
2002	CLEO	S.E. Csorna et al. (CLEO Collab.), Phys. Rev. D 65, 092001 (2002).	$+0.000 \pm 0.022 \pm 0.008$
2000	FOCUS	J.M. Link et al. (FOCUS Collab.), Phys. Lett. B 491, 232 (2000).	$-0.001 \pm 0.022 \pm 0.015$
1998	E791	E.M. Aitala et al. (E791 Collab.), Phys. Lett. B 421, 405 (1998).	$-0.010 \pm 0.049 \pm 0.012$
1995	CLEO	J.E. Bartelt et al. (CLEO Collab.), Phys. Rev. D 52, 4860 (1995).	+0.080 ± 0.061
1994	E687	P.L. Frabetti et al. (E687 Collab.), Phys. Rev. D 50, 2953 (1994).	$+0.024 \pm 0.084$
•		COMBOS average	-0.0023 ± 0.0017

Dominated by CDF, especially for $D^0 \rightarrow \pi^+ \pi^-$

 K^+K^- and $\pi^+\pi^-$ values consistent with zero but have opposite sign

Formalism

- $\circ~$ so when we take $A_{RAW}(f)^*-A_{RAW}(f')^*$ the production and soft pion detection asymmetries will cancel. Moreover...
- No detector asymmetry for D^0 decays to (K^+K^-) , $(\pi^+\pi^-)$

...i.e. all the D*-related production and detection effects cancel. This is why we measure the CP asymmetry difference: very robust against systematics.

 $\Delta \mathbf{A}_{\rm CP} \equiv \mathbf{A}_{\rm CP}(\mathbf{K}^+\mathbf{K}^-) - \mathbf{A}_{\rm CP}(\boldsymbol{\pi}^+\boldsymbol{\pi}^-)$

Mass spectra

Comparison with world average

LHCb: $\Delta A_{CP} = [-0.82 \pm 0.21(stat) \pm 0.11(sys)]\%$

one order of magnitude above the naive SM expectation!

New Physics ?

is an order of magnitude enhancement of a_{dir} plausible in the SM ? [Brod, Kagan, Zupan, arXiv: 1111.5000]

The tree amplitudes

the tree amplitudes (in SU(3)_F diagrammatic notation) are

 $A^{T}(K^{+}K^{-}) = V_{cs}^{*}V_{us}(T_{KK} + E_{KK}), \quad A^{T}(\pi^{+}\pi^{-}) = V_{cd}^{*}V_{ud}(T_{\pi\pi} + E_{\pi\pi})$

- T is the "tree-amplitude" (e.g., $T_{\pi\pi} \propto f_{\pi}F_{D\to\pi}$ in naive factorization,...)
- E is the "W-exchange" annihilation topology amplitude: formally subleading in 1/m_c - power corrections

The PP data implies Rosner & Gronau; Cheng & Chiang; Grossman, AK & Nir

 $E_{KK} \sim T_{KK}, \quad E_{\pi\pi} \sim T_{\pi\pi}$

with large relative strong phases, large SU(3) breaking

signals breakdown of 1/m_c expansion - not surprising given the low charm mass scale

below will set magnitudes of tree amplitudes equal to the measured ones.

 $A^T(K^+K^-) \approx 0.8 \text{ keV}, \quad A^T(\pi^+\pi^-) \approx 0.5 \text{ keV}$

The QCD penguin amplitudes

the penguin amplitudes are

$$A^{P}(K^{+}K^{-}) = -V_{cb}^{*}V_{ub}P_{KK}, \quad A^{P}(\pi^{+}\pi^{-}) = -V_{cb}^{*}V_{ub}P_{\pi\pi}$$

weak phases (relative to trees): $-\gamma (\pi \pi)$ and $\pi - \gamma (KK)$, and $\sin \gamma \approx 0.9$

Difference of π in relative weak phases \Rightarrow

$$\operatorname{sign}[a_{K^+K^-}^{\operatorname{dir}}] = -\operatorname{sign}[a_{\pi^+\pi^-}^{\operatorname{dir}}]$$

unless SU(3)_F breaking is so large that sign of strong phases differs

in SU(3)_F symmetric limit, magnitudes would be equal. Generically, expect

$$|a_{K^+K^-}^{\rm dir}|\sim |a_{\pi^+\pi^-}^{\rm dir}|$$

Summary on Standard Model penguins

Individual power corrections considered could be enhanced a factor of a few relative to leading power.

again taking $\Delta A_{CP} \sim 4r_f$, and a renormalization scale $\mu = 1$ GeV, we find

 $\Delta A_{CP} \sim 0.3\% \ (P_{f,1}), \ \Delta A_{CP} \sim 0.2\% \ (P_{f,2})$

Of course our results are subject to very large uncertaintie:

- extraction of tree ampltiudes E_f from data
- use of N_c counting for penguin matrix elements
- the modeling of Q₁ penguin contraction matrix elements additional penguin

contractions not associated with $\log \mu$ cancellations. For example, in the partonic picture corresponding to emission of more than 1 gluon from the s and d-quark loops

a cumulative uncertainty of a factor of a few is reasonable for the LHCb measurement is plausible

Conclusion

- **A** Standard Model Explanation for the LHCb measurements of ΔA_{CP} is plausible
- well motivated New pHysics explanations for the LHCb measurement can be constructed

My own conclusion:

- Don't jump too fast to conclusion...
 - Need more data to confirm these deviations...
 and look for others !

DCPV at Belle

 Todays news from LHCb: first evidence of DCPV in charm with 580/pb of 2011 data

$$A_{CP}(D^{0} \to K^{+}K^{-}) - A_{CP}(D^{0} \to \pi^{+}\pi^{-}) = (-0.82 \pm 0.21 \pm 0.11)\% \ 3.5\sigma$$

Decay	Lumi	A _{CP} [%]
$D^+ \rightarrow \varphi \pi^+$	$955 fb^{-1}$	$+0.51 \pm 0.28 \pm 0.05_{\Delta4}$
$D^+ \rightarrow \eta \pi^+$	791 fb ⁻¹	$+1.74\pm1.13\pm0.20$
$D^+ \rightarrow \eta' \pi^+$	791 fb ⁻¹	$-0.12\pm1.12\pm0.20$
$D^0 \to K_s \pi^0$	$791 fb^{-1}$	$-0.28 \pm 0.19 \pm 0.10$
$D^0 \to K_s \eta$	$791 fb^{-1}$	$+0.54 \pm 0.51 \pm 0.16$
$D^0 \to K_s \eta'$	791 fb ⁻¹	$+0.98 \pm 0.67 \pm 0.14$
$D^+ \to K_s \pi^+$	673 fb ⁻¹	$-0.71{\pm}0.19{\pm}0.20$
$D_{s}^{+} \rightarrow K_{s}\pi^{+}$	[⊦] 673 fb ⁻¹	$+5.45 \pm 2.50 \pm 0.33$
$D^+ \rightarrow K_{s}K^+$	673 fb ⁻¹	$-0.16 \pm 0.58 \pm 0.25$
$D_{s}^{+} \rightarrow K_{s}K$	+ 673 fb ⁻¹	$+0.12\pm0.36\pm0.22$
$D^0 \to K^+ K^-$	⁻ 540 fb ⁻¹	$-0.43 \pm 0.30 \pm 0.11$
$D^0 o \pi^+ \pi^-$	540 fb ⁻¹	$+0.43 \pm 0.52 \pm 0.12$

Charm Summary BGM November 2011

My own conclusion:

- Don't jump too fast to conclusion...
 - Need more data to confirm these deviations...
 and look for others !
 - Unexpected doesn't mean New Physics
- More penguins tomorrow, maybe NP there ??