Long-Lived Heavy Charged Particle Search

- Gauge-mediated SUSY-breaking models -

Pedro Mercadente* Hitoshi Yamamoto (U. of Hawaii)

Fermilab, February 15, 1999

Gauge-mediated SUSY-breaking models

 $LSP = gravitino (\tilde{G})$

NLSP = stau $(\tilde{\tau}^{\pm})$ or neutralino

If $\tilde{\tau}$ is the NLSP

 \rightarrow Long-lived heavy charged particle for a large area of parameter space.

$$c\tau = 10 \text{km} \times \left[\frac{\sqrt{F}}{10^7 \text{GeV}}\right]^4 \left[\frac{100 \text{GeV}}{m_{\tilde{\tau}}}\right]^5$$

 \sqrt{F} : dynamical SUSY breaking scale

If $\sqrt{F}~\stackrel{\sim}{>}~10^7$ GeV, then $\tilde{\tau}$ mostly do not decay in the detector.

 \rightarrow look like heavy muons

$$\begin{pmatrix} \tilde{\tau}_L \\ \tilde{\tau}_R \end{pmatrix} \xrightarrow{\text{mix}} \begin{pmatrix} \tilde{\tau}_1 \\ \tilde{\tau}_2 \end{pmatrix} \text{ (mass eigenstates)}$$
$$\tilde{\tau}_1 \text{ : the lighter of the two}$$

('our' $ilde{ au}^{\pm}$)

Decay mode:

 $\tilde{\tau} \to \tau \tilde{G}$

A clean production mode at LC: stau pair creation

$$e^+e^-
ightarrow ilde{ au}^+ ilde{ au}^-$$

Combined LEP limit on $\tilde{\tau}(\sim \tilde{\mu})$

 $m_{ au} <$ 87 GeV (90% c.l.)

At a linear collider, use

- $\sqrt{S} = 500 \text{ GeV}, \int Ldt = 50 \text{ fb}^{-1}$
- $\delta p/p = 5 \times 10^{-5} p$ (GeV) (Large detector scenario: 2m radius TPC)
- ISAJET (Includes initial-state radiation (ISR) & beamstrahlung)

Signature: looks like $e^+e^- \rightarrow \mu^+\mu^-$ but heavy.

Tools for signal detection:

- Total production cross section (w.r.t. $\sigma_{\mu\mu}$)
- Kinematics: $m^2 = E_{\text{beam}}^2 p^2$
- TOF ($\sigma_T = 50 \text{ ps}$)
- dE/dx (5% resolution)
- Cerenkov ($1 < \beta \gamma < 8$)

 $(\sigma_{\mu\mu}=500~{
m fb}^{-1})$

Backgrounds:

• π, K, p, e

Require hits in muon chamber

• Two-photon events: $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ Tau pairs: $e^+e^- \rightarrow \tau^+\tau^-$, $\tau \rightarrow \mu\nu\nu$

 $|p| > 0.5 E_{ t beam}$, $|(P_{ t tot})_z| < 0.25 E_{ t beam}$

• Radiative $\mu\mu$: $e^+e^- \rightarrow \mu^+\mu^-\gamma$

No photons detected anywhere

•
$$e^+e^- \rightarrow \mu^+\mu^-$$

Effect of beamstrahlung+ISR on p_{μ} $(e^+e^- \rightarrow \mu^+\mu^-)$ ISAJET @500 GeV Ecm

$$m^2 = \sqrt{E_{\text{beam}}^2 - p^2}$$
$$(E_{\text{beam}} = 250 \text{ GeV})$$

$$m^2 = \sqrt{E_{\text{beam}}^2 - p^2}$$
$$(E_{\text{beam}} = 250 \text{ GeV})$$

With momentum smearing

TOF

Time resolution of ~ 50 ps possible using scintillator.

Flight path \sim 8 ns (varies from 6 ns to \sim 12 ns - depends on the dip angle and curvature of the track)

Can the correct bunch identified?

No other tracks except for $\tilde{\tau}$'s \rightarrow bunch identification may not be reliable.

ightarrow Take modulo bunch spacing (1.4 ns) (-0.15 < Δt < 1.25 ns) Δt : $t_{\text{meas}} - t_{\text{expected}}(\mu)$

$$m^2 = \sqrt{E_{\text{beam}}^2 - p^2}$$
$$(E_{\text{beam}} = 250 \text{ GeV})$$

With TOF cut on both tracks $\Delta t > 0.12 \text{ ns } (\sim 1\% \text{ of each } \mu \text{ survives})$

dEdX

Identifies heavy charged particles for $\beta\gamma<1.0$ (or equivalently, $m>\frac{E_{\rm beam}}{\sqrt{2}}=$ 177 GeV)

 $\log_{10}(\beta\gamma)$

If the relativistic rise is significant (depends on the dEdx truncation cut), dEdx may be able to give double-valued solution for $\beta\gamma > 1$.

Cerenkov device

BaBar DIRC can measure β for $1 < \beta \gamma < 8$.

The lower end matches well with the upper end of dEdx.

 \rightarrow dEdx and Cerenkov (DIRC) allows us to cover essentially the entire kinematic range.

Summary

- LC has an advantage over hadron machines: Kinematic mass reconstruction in $e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-$.
- If the cross section is as large as expected from gauge-mediated models, the kinamatic reconstruction alone is quite adequate.
- In order to set more stringent upper limit on the production cross section, one needs TOF, dEdx, Cerekov device or combinations there of.
- dEdx is effective for $m_{\tilde{\tau}} \stackrel{\sim}{>} E_{\text{beam}}/\sqrt{2}$.
- TOF can cover most of the kinamatic range. May need bunch identification for actual mass determination.
- Cerenkov (DIRC or RICH) can be used to cover $1 < \beta \gamma < 8$ for mass determination.

To-do list

- More detailed study of dEdx technique.
- Study of intermediate-lifetime cases (i.e. a large fraction decay inside detector).
- Study of short-lifetime cases (i.e. vertex detector).
- Tau polarization ($ilde{ au}_R$ or $ilde{ au}_L$)