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CP Violation and Unitarity of CKM Matrix
B — DK

B — D&

B — D*p

B — Km,nm



General left-handed quark-W Interaction

Lint(t) = / z(Low(x) + L W(w))

g —
Law(@) == > Vi Ui yu(1 —4s) Dy W
1,7=1,3

u(z) d(x)
Ui(x) = c(a:)) D;(z) = (s(w))
t(x) b(x)

Vub
V = (VCd VCS Vcb> (CKM matrix)
Via Vis Va

Experimentally, V has a hierarchical structure.
Approximately,

1 X )3
Vijl~1 A 1 A2
A3 N2 1

A~ 0.22



Transformation of L+ under CP

exchanges particle (n) « antiparticle (n)
CP: flips momentum sign (p <~ —p) (a)
keeps the spin z-component (o) the same

Such CP operator in Hilbert space is not unique:

CPal . Pict = nual

n,p,o n,—p,o

nn. 'CP phase’: arbitrary, depends on n
(for antiparticle: nz = (—)%/n})

The choice of n, amounts to choosing a specific
operator in Hilbert space among those satisfying (a).

Then, a pure algebra leads to

CP u(x)v.(1 — v5)d(x)WH(x) PICT T
= iy (@) (1 = 35)d(@IW,(a))

' = (t, —7)



L,w transforms as (taking ny = 1)

CP Ly (z) PiCT

g * 7 f
=T 2 mmbVis (01 A1 = 38) D)W
i,j=1,3

IF nUin*Dj can be chosen s.t.

77Ui"72k)j%j — ‘/:;; (2) ’

then, Lint(t) becomes invariant under CP:

CP Low(x) PiCt =Ll (') (&' = (t,—&))

— CP Lint(t) PfCt
— / Az CP[Low (x) + L ()] PiCT
_ / B [L] () + Low ()]
- Lint(t)

— S operator is invariant under CP
(through Dyson series)



Condition for CP Invariance

Rewrite the condition (2):

"D,
Nu;

=2argV;;

Thus, for a given (arbitrary) matrix V;;, if the CP
phases n's can be chosen so that the phase difference
between np, and ny, is twice the arbitrary phase of V; ;,

then the physics is invariant under CP.

This is equivalent to rotate the quark phases to make
Vi; all real.

In general, there are 5 phase differences for 6 quarks
— 5 elements of V can be set to real always.

For example.,

V= <x‘?d e x‘?b> Vi« real
- d cs cb .
¢ Vi complex
Viae Vis Vi 7 P
(No unitarity condition imposed)

Any of the four red elements is not real
— CP violation



A Main Question of the CPV Study in B:
‘Is V unitary?’

e.g: orthogonality of d-column and b-column:
VuaVp + VeaVy, + ViaViy, = 0

a
o b 6 = arg —
_b >
VoV V.V ViV
$o = arg (—td t"*) , ¢ = arg (—d C"*) , ¢3 = arg (—d “b*)
_Vuqub _V;tdv;gb _‘/;d‘/;b

(3)

With our phase convention:

V, Vo
¢ = arg < ) , o1 =arg (VigVw), ¢z =arg (V)



For any complex numbers a, b, ¢, trivially

a+B8+~y=n (mod2n)

a b c
azarg<_—b>, Bzarg<_—c>, yzarg(_—a>.

— The condition a+ 8+~ =x (mod2x) holds
even if the triangle does not close.
It does not test the unitarity of Vexkwm.

It simply tests if the angles measured are
as defined in (3) in terms of Vekm.

— It is critical to measure the length of the sides.



B —- DK

Gronau-London-Wyler (GLW) method for ¢3

B~ — DgpK~
D, : CP eigenstate. e.g. Kgn®, KTK™ ..

Both D% and D° decay to a CP eigenstate.
— 2 diagrams

ub

e
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A=Amp(B~ — D°K~) B = Amp(B~ — D°K")

AV Vip ~ 0.4V,
Color-favored Color-suppressed
(a1 + ar ~ 1.24) (ax ~ 0.24)

A= Amp(BT — DOK+) B = Amp(BT — D°K™)

A= A* B = B*
(A ~ 0.22: Cabbibo factor)



Strong final-state-interaction phase:
B relative to A : ¢” (§ could be complex)

Phase convention: A = A*

¢33 =argB* =argV,

Measure 4 lengths:
Amp(B~ — D2 pK ™)
Amp(BT — DS ,KT)
Al by B~ — D°K~, D% — K—nt
| B| by B- — D°K—, D% — K+tn~

Reconstruct two triangles — ¢3



CP asymmetry expected:

(B~ — (Kgn®) K] —T[BT — (Kgr®) K]
I_[B— — (K37TO>K_] —|— F[B+ — (Ksﬂ'O)K_i_]

B
ﬁ ~ \(color factorl&CKl\/l factor)/ ~ 0.08

2 ~02 Yo g

a1 + a2 N

— agp is of order 10%.

(v can be measured even if a, = 0)

Relevant D9 decay modes:

Ksm® 1.064+0.11%|CP—
Ksp®  0.60+ 0.09%| CP—
CP eigenstates | Kg ¢ 0.84 4+ 0.10%| CP—
KTK~ 0.4340.03%|CP+
ata— 0.154+0.01%| CP+
calibration |K—nt 3.83+0.12%

DO decay FSI phase does not contribute.
— Ccan be combined.




Problem with the GLW method and Solution
[Atwood, Dunietz, Soni (ADS)]

How to measure B = Amp(B~ — D°K~)?

B~ 2 D°K- butalso B 2 DOK-
— Ktn~ s KTn~ (DCSD)

The ratio of the two amplitudes (Rpcsp):

A Amp(D° - K+77)
B \Amp(DO: K-nt)
1 0.088 &+ 0.020

0.08 (CLEO 94)

Rpcsp =

Phase of Rpcsp not known — cannot measure |Bj|.
(Difficult to detect D° — X, /D)



The interference of DCSD and B-amplitude causes CP
asymmetry of order unity in the wrong-sign Km modes:

ADS method to extract ¢s

Measure B~ — DK~ in two decay modes of D:
wrong-sign flavor-specific modes or C' P eigenstates,
say KTn~ and Kgn° (and their conjugate modes).

(B~ — (Ktn)K"] TI[BT - (K nT)KT]
(B~ — (Kgn®)K~] T[BT — (Kgnm%)KT]

Assume we know |A| and D branching fractions

— 4 unknowns:
| B
¢3 3 5K*7T+ 3 5KS7TO y
| Al

— can be solved.

Statistics: Possible at B-factories
(300 fb~! needed for oy, ~ 0.3 rad.)



Avoid using wrong-sign BT — DOKT

External input (experiment, theory):
B B
r=|=| =|=|~0.08
A A

Measure

(B~ — D1K) =14 r242rcos(¢z + 6)
M(B~ — DK )=14+7r%2—2rcos(¢sz+6)
(BT - Di1KT) =14 r?+2rcos(¢z — )
(BT — DyKT) =14 r?—2rcos(¢z — §)

in unit of M(B~ — D°K™).
— fit for ¢3 and é.

Ambiguity: the equations are symmetric under

{¢3—> nmw —+ 0 Or{¢3—>n7r—5

5 — —nm+ 5 — i — s (n : integer)



Fit result for ¢3 and J

Input:

$3=1.8,6 =0.4
o(lMs) =10% (100 events each)
(300fb~1)




Fit result for ¢3 and 9§

b3 = 2.5

1 5§=25
$3 = 1.57
| §=1.57




Statistics Estimate

1. Relative yields (compare to D° — K—nT)

o K77(3.9%)

e Di: KTK(0.43%) + nt7n=(0.15%)
= 0.58%.

o Do K,m9(1.05%)x2/3(KsBr) x 1/2(x9)
= 0.35%.

2. Yield of B— D°K~—, D° - K—nt at 3.1 fb!

e CLEO: N(D%°~) =239 at 3.1 fb~!
e Then, N(D°K~)=17.5 at 3.1 fb!

3. Yields at 300 fb—1

o N(DYK—nT)K~) = 1694
e N(D1K~) =252 (126 each for B¥)
e N(D>yK~) =152 (76 each for B¥)

Background? Needs a good vertexing to reject
continuum background.



B — DK Modes

Final state: one charm, one strange.

e NO penguine contaminations

b u,c,t s,d

9

.

Penguine should have even number of charms.
(True for charged and neutral B)

e Neutral B has no annihilations

c,u

b /s

.

\

c,u

Ql

Annihilations should have even number of stranges.



Classification of B° - DK

S .
D
C

T[+

9

Ac Ay
b b
Cc u
d — d —
d d
C u
b b
0 RO

ol
ol

T: tree, C: color-suppressed, A: annihilation
(T,C: depends on b — c or b — u)

Ae =V Vi, Au= ViV

Amp(B° — DTK™) = AT,
Amp(B° — D°K9%) = \.C.
Amp(B® — DORO) = A\Cy Y
Amp(B° — D;nT) = ATy



Classification of B~ — DK

K
b>< < N
u d

)

“ X D T RN
Amp(B~ — D°K™) = AT+ AC.  (5a)
Amp(B~ — D°K~) = \,Cu + XA  (5b)
Amp(B~ — DK% = )\, A (5¢)
Amp(B~ — D;70) = \%)\UTU (5d)



Final-state Rescatterings

Final-state rescattering can occur:
B° — DTK—(T.) — D°K°(C.)
B® — D ot (T,) — D°K°(C,)

We define T, C., T,, C, by (4) including
rescattering effects.

Then, is (5a) still true?

Amp(B~ — D°K™) = AT, + \.C.
= Amp(B® — DTK~) + Amp(B° — D°K9)

which is nothing but the isospin relation
for Hesr having |1/2,—1/2) structure:
(good to all orders as long as mq, = my)




Final-state Rescatterings - annihilation

Final-state D~ K° can be reached by
B~ — D;m° — D K"

This is a ‘long-distance’ annihilation:

" S > KO b S
—0
. . a K
b C\ d — <
u _ D_ T d _
T ¢ U > D
Y o

We thus define A by
Amp(B~ — D K°%) = \,A (5¢)
including the rescattering effect.

Then, the annihilation in B~ — D°K~ (5b) has exactly
the same rescattering contribution:

cl o
c
ol
v
c c
W) ~
o
]
| (=2
ol A w
c cl
Ol ~
o



GLW, its variant, ADS methods:

Still work after including rescattering
and annihilation effects:

A= 2(T. 4+ C,)
B =X (C,+ A)
where T,., C., C,, and A as redefined above.

Then, in particular,

ATe + Ce
r = .
A Cy+ A

A scenario:
Non observation of D~ K, — smallness of A

D0 WK, D;n°% — r



If Annihilation is small
(Jang, Ko, 1998)

Amp(B~ — D°K~) = Amp(B° — DYK?O)

A=0— {Amp(B"‘ — DOKT) = Amp(B° — DP°KDO)

Black: The original double triangle of GLW.
Red: The isospin triangle.
Blue: Measure Dl,gKjE instead of the suppressed B
amplitudes.



B — D)+ —:

Mixing — non-CP

Sachs (1985), Dunietz, Rosner PRD34 (1986) 1404.

suppressed
—0
W o7 N
gC DT
0
B
YN
(2) =0 -+
B DTt
d
-
b u
B’ c
d ~ +
3 D
Ve Via

|Amplitude ratio| r ~

ViV
Vv,

favored

0

B
Pl \
0 + —

D1t

G B

*
VUb cd

~ 0.4)\2 ~ 0.02




In unit of |[A(B® — D= nT)A(B?% — ¢1)|?

) roa ) = |

—(1 = 1) Csmt = 23'sme |

1
‘p e (14 plP)chn,e — 2Rpsh, o

e (1 o P)ch e — 2% shy o

2)r(Dnt,t)==
3 |q
—(1 - ’P|2)C6mt, — 2§p55mt}
1
(3) M(DF = 0%) = —e i [(1 + 1P [2)chy, — 2Rp sh. .
+(1 = 1) Comt. + 290/Ssm |
1
(4) (D=t 07) = ge—wltl [(1 + Ip|?)ch,.. — 2Rpsh. ¢

+(1 - |p|2)c5mt, + 25\5,056mt]

(sh, =sinh(x), s, =sin(z) e.t.c.)

=+
l+ = tsig + ttag, Y+ = Ja 5 L
_ B
p= GABY = D7) iotosts)
pA(B® = D—nt)
) = pA(B® — D¥x7) et (—261—540)

qA(B° — Dt7n—)
(6: strong phase difference: common to p&p’)

— Measures 2¢1 + ¢3



Assume v_ = (v — ) /2 =0,

p/q| =1,

and 0 = O for simplicity.

(In unit of |A(B® — D7) A(B® — ¢1)|?)

(1) T(DTn—,07) =
(2)M(D— 7T, 1) =
(3) M(DTr—,4t) =

(4) T(D~7nt,07) =

t— = tsig — ttag,

e_’y-l-'t*‘

44
e_’y-l-'t*‘

44
e_’)/-i-lt*l

44
e_’)/-i-lt*l

4y

r ~

:(1 + TQ) - (1 - TQ)C5mt, — 2T€S5mt:|

—(1 + 7“2) — (1 - TQ)C(Smt, + 27§ Somt

|
:(1 + %) + (1 = r*)Come + 2T§S5mt:|
|

(1 +72) 4 (1 — 72)Comr. — 27 € Ssmt.

0.02, ¢ =sin(2¢1 + ¢3)

Asymmetry in the suppressed modes (1) < (2)

Smaller asymmetry in the favored modes (3) « (4)

Asymmetry is essentially rate asymmetries:
(1), (2) have similar shapes
(3), (4) have similar shapes

Gain in #o by fitting t_: ~ 1.57 (study)



Integrate for t_ > 0 to see the size of asymmetries.
(In unit of [A(B® — D nt)A(B® — (1)|?/(473))

1 — 2 2¢rx

(1) F(DF7r= 7)) = (1 +7r%) -

1—|—:1022_1—|£—x2
1—17r 2frx
ot ) = 2y _

(2) F(D—7+, 0+) = (1 + #2) ratiee
(1) F(DHr 04) = (14 12) 4~ 4 2872

14+22 14 22
1 — 72 2¢rx

1—|—$2_1—|—ZC2

() (D nt,e)=(014r")+

)
T+

Asymmetry in the suppressed (‘mixed’) modes:

_OH->  2r.
= D F ) £~ —0.057¢

Asymmetry in the favored (‘unmixed’) modes:
_(3)—-4) 2rx

ISE T @ T age2t e

The favored modes has 5 times stat, but 5 times less
asym. — /5 times less in #o.

Most of the info is in the suppressed modes.



Statistics needed for D™

o¢ = 0.1 - 04, = 0.0057 — Ny = 30K
(suppressed modes)

We need 6 x 30K = 180K total tagged Dr's.

Yongheng: 3.7 fb~1 — 282 + 25 lepton-tagged D*x's
(partial reconstruction)

282\ °
No-bkg equivalent: (E) ~ 127

300 fb~1 — 10K to be compared with 180K needed.

e Need to improve background.

e Need to improve tagging efficiency.

e Add various modes (exclusive and partial).
(strong phases?)



Strong phases for D)

Recall the asymmetry term in the suppressed modes:
(1) -+ +sin(261 + ¢3 +8) - -
(2) ---—sin(2¢1 + ¢p3 —9) - - -.

In principle, real and imaginary part of p = re!(2¢:+¢:+9)
and p/ = re~1(2&+é:+9) can be measured.

_, P 2i(201+¢s)
/O’

In practice the real parts are difficult to measure.
(v ~ 0 and |p|?> ~ 1074)

But its is OK. Perform a fit for 2¢1 + ¢3 and § on the
time distributions for (1) and (2) or all four modes.

e Nonzero § — Asymmetry not prop. to sin(2¢1 + ¢3)

e § is different for every final states
(e.g. Dm different from D*r etc.) systematics?



B — D*tp~

Mixing — non-CP eigenstate 4+ angular correlation

London, Sinha, Sinha, hep-ph/0005248.

Similar to B — Dr (needs to be flavor-tagged):

(1)

(2)

(Measures 2¢1 + ¢3)

suppressed favored
—0 BO
BN AN
S— O B
0 —=0
B B
—0 -~ \ + (4) -~ \ +
25 00,

Repeats for each helicity final state.

A=+4,—,0, or |,L,0

|Amplitude ratio| r ~ 0.02

— asymmetry in each A ~ 0.02



Angular correlation in B — D*p

(helicity basis)

1 &r
[ dcg,dco,dx a
9

{4l G + (1H 2+ |H )33
HIR(H-H ) eay + S(H-H} ) 52,]253 52

FIR(H_HE — HyHE)ey + S(H_HE — H+H8)CX]82918292}



New ingredients in D*p:

Interference between different polarization states

r(B° — D*tp") =

—y4t
e Tt E [/\M/ + 2 \nComt — PANSsmt | GAIN
AN

(g» : function of angles)

The term with A = )\’ corresponds to the CP vilating
terms we have seen in Drr:

o =S (g(A*(BO — D*TpYA(B® — D*+p>\))

The interference term of p have similar size: (A &= \)
qd. .« s — = ol
o = S(S(A°(B° = Do) A(BO — D py)
FA*(B® — D*Fp ) A(B® — D*+p;)))
— If similar stat as D, simiar sensitivity to 2¢1 + ¢1.
But has more degrees of freedom to measure.

(more powerful resolving ambiguities.
but more sys. study needed)



D*p: CLEO Preliminary
3.1 fb~1. 197 4+ 15 signal events.

60

40 -

20 -

40 -

20 -

|Ho|? + |HL|?+ |H_|?=1, Hp= real

BO N D*+p—
| H | arg H(rad)
H, |0.153 £0.052+£0.013 1.36 +0.364+0.32
H_ |0.311 +£0.0484+0.036 0.194+0.234+0.13
B — D*Op—
| H | arg H(rad)
H, 10.221 £0.064 £0.035 0.98 +0.3040.08
H_ 10.290 £+ 0.066+0.038 1.124+0.26 4+ 0.09




Statistics for D*p
CLEO: 3.1 fb~! — 197 + 15 signal events.

300 fb~1 — 19K events. With the high-p; lepton tag
efficiency of 12%, we have 2.3K tagged D*p.

This is compared with 10K (bkg-free equivalent for
300 fb~1) of D*p partial reconstruction analysis. Or
compared with 180K needed for o = 0.1.

Comments:

e Partical reconstruction cannot be used.
This may not be too big a problem since
partial reconstruction efficiency is not that

good.

e Need to tackle with the systematics of non-
resonant component of p.

e AIso check the sys. of p mass dependence
of amplitudes.



How about D*K* 7

Less stat.than D*p, but asym~1.

Ve Vs Vb Vs

Amplitude ratio ~ 0.4 (compare to 0.4)\? for D*p)
(note: color-suppressed)

'suppressed' ‘favored'
—0 0
B B
7N N
D g ke, @ D’(Kr0),
0 —0
B B
N N\
2 — —0 —
@ g DKgt) ) go D (Kst®),

K*9 and K*0 should be detected as K. x° for the
interference to occur.



Sensitivity of D*K* wrt D*p
Compared to D*p, the D*K* mode has

1. x1/)? larger asymmetry.

2. (rcol A)? less statistics
rcol. COlOr suppression factor ~ 0.2
(no Br's, nor det. eff. included)

A
Thus, #o is TC;'Q ~ 1 times that of D*p.

Then, we need to include the BR's and det.eff.
the difference is

ef f(K® — K0 K, — nhn™)
eff(pt — wtm0)

1 2 2
~ 6(I(*o — K9) x g(KS — aTrT) X 5(1 morer) ~ 0.08

The equivalent stat of B — D*K* angular/time analysis
is ~1/10 of that of B — D*p.



Using B — Kn,mm for ¢s3

Tree-penguin interference
— large direct CP asymmetries expected.

For example: B— — K79

b u,c,t \ .
B b \55 u
-

VHVU’
o I e I
\
|

cl

cl

Interference — asymmetry B~ — K 7% vs BT — K70
(infromation on argV,, = —¢3.)

Need to remove unknown strong FSI phase.
One historical method:




Note:
e Charged B modes — self-tagging.

e SU(3) breaking effect are reasonably under control.
Complication by EW penguins which breaks the
isospin.

e Requires substantial development in theory.
— QCD factorization formalism:
Benecke, Buchalla, Neubert, Sachrajda hep-ph/0006124.

Probably the way to approach is to take theorist’s
predictions of branching ratios (ratios of branching
ratios) for various modes and perform a global fit.



Summary

e B — Km,mm modes are statistically most powerful,
but mired by theoretical uncertainties.

e B— DK, B— D*tn, B— D*Tp~(angular) are all in
the same ball park statistically, all worth pursuing.

e B — D*9K*0 angular analysis is not very promising
wrt. B — D*p.



