Study of $\tilde{\tau}$ in Gauge-Mediated SUSY Breaking Models

- Heavy Long-lived Charged Particles -

Pedro Mercadente Kenichi Mizukoshi* Hitoshi Yamamoto (* 'LCD fellow')

Berkeley, March, 2000

Gauge-mediated SUSY-breaking models

$$LSP = gravitino (\tilde{G})$$

 ${\sf NLSP}={\sf stau}\;(ilde{ au}^\pm)$ or neutralino

If $\tilde{\tau}$ is the NLSP

→ Long-lived heavy charged particle for a large area of parameter space.

$$c au = 10 \mathrm{km} imes \left[\frac{\sqrt{F}}{10^7 \mathrm{GeV}} \right]^4 \left[\frac{100 \mathrm{GeV}}{m_{ ilde{ au}}} \right]^5$$

 \sqrt{F} : dynamical SUSY breaking scale

If $\sqrt{F} \stackrel{\sim}{>} 10^7$ GeV, then $\tilde{\tau}$ mostly do not decay in the detector.

ISAJET simulation
(Includes initial-state radiation (ISR)
& beamstrahlung)

•
$$\sqrt{S}=$$
 500 GeV, $\int Ldt=$ 50 fb $^{-1}$

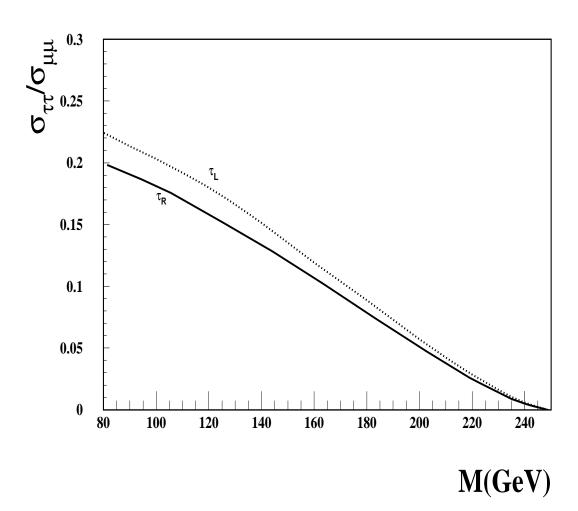
Signature: looks like $e^+e^- \rightarrow \mu^+\mu^-$ but heavy.

Tools for signal detection:

- Kinematics: $m^2=E_{\rm beam}^2-p^2$ $\delta p/p=5\times 10^{-5}p({\rm GeV})$ (Large detector scenario: 2m radius TPC)
- TOF ($\sigma_T = 50$ ps)
- dE/dx (5% resolution)

$$e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^- \quad (\sqrt{s} = 500 \text{ GeV})$$

The production cross section is quite model-independent.



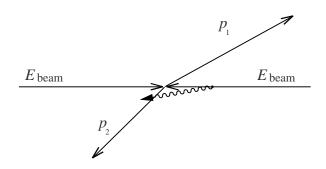
$$(\sigma_{\mu\mu} = 500 \ {
m fb}^{-1})$$

Backgrounds:

- π, K, p, e Require hits in muon chamber
- Two-photon events: $e^+e^- \rightarrow e^+e^-\mu^+\mu^-$ Tau pairs: $e^+e^- \rightarrow \tau^+\tau^-$, $\tau \rightarrow \mu\nu\nu$ $|p|>0.5E_{\rm beam}$, $|(P_{\rm tot})_z|<0.25E_{\rm beam}$
- Radiative $\mu\mu$: $e^+e^- \to \mu^+\mu^-\gamma$ No photons detected anywhere
- $e^+e^- \rightarrow \mu^+\mu^-$

Kinematic mass reconstruction

Initial-state radiation and beamsstrahlung $(E_{beam} = 250 \text{ GeV})$



Assume single photon emission along the beam line.

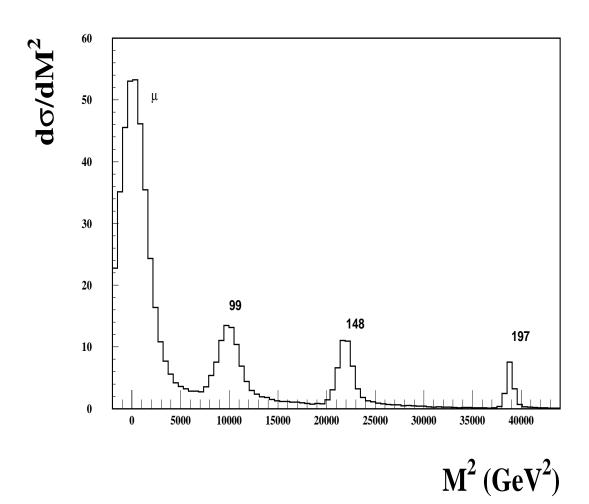
$$m_i^2 = \left(\frac{\sqrt{\hat{s}}}{2\gamma + \beta p_{zi}}\right)^2 - |\vec{p_i}|^2$$

$$\hat{s} = s(1 - |\Delta|), \quad \beta = \frac{\Delta}{2 - |\Delta|}$$

$$\Delta = \frac{p_{ztot}}{E_{beam}}$$

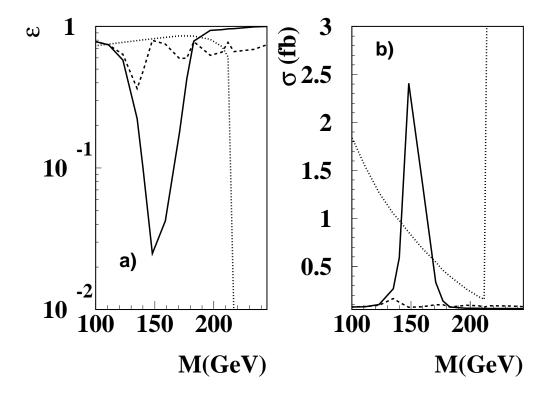
 \widehat{s} : invariant mass squared of p_1 and p_2

Mass measurements of $e^-e^+ \rightarrow \mu(\tilde{\tau})^-\mu(\tilde{\tau})^+$



With momentum smearing

Efficiency and $\sigma_{\tilde{\tau}^+\tilde{\tau}^-}$ upper limit $(E_{\rm beam}=250~{\rm GeV},~50~{\rm fb}^{-1})$



..... kinematic mass estimation

--- TOF

--- dEdx

Lifetime Measurement

- For kinematic identification and dEdx, need ~1m of track.
- IF decays to τ , it cannot be μ .
 - \rightarrow identifiable down to \sim 1cm.
- Try both of the above cases.

Simplified (but realistic) analysis:

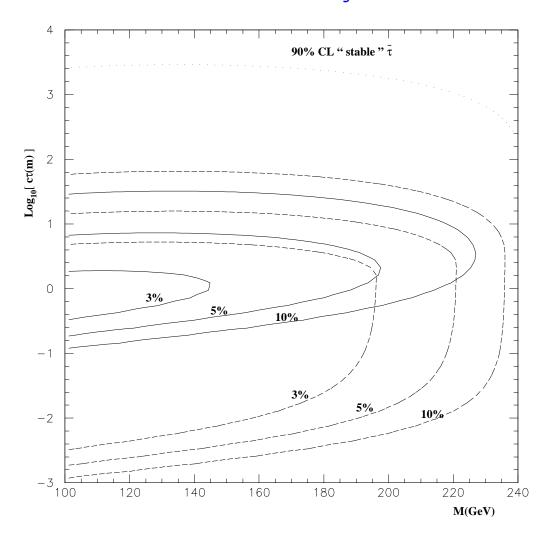
- 1. Count decays in two regions.
 - n_1 : $r > r_{\text{max}}$
 - n_2 : $r_{min} < r < r_{max}$

Measure $\frac{n_1}{n_2}$ to extract lifetime. $(r_{\min} = 1 \text{m or } 1 \text{cm})$

2. For given total number of decays, the best sensitivity is for $n_1/n_2 \sim 4$. \rightarrow adjust the boundary (r_{max}) as long as $r_{\text{max}} < 2$ m.

(Assume all tracks perp to beam)

Lifetime Sensitivity



..... Lower limit when no decay in detector --r>1cm

--- r > 1m



To-do:

- * Tau polarization in $\tilde{\tau}$ decay.
 - \rightarrow $\tilde{\tau}$ mixing angle.