Linear Collider, Physics and Status

presented by H. Yamamoto Tohoku University

KEK, March 1, 2004

Reference: 'GLC project' (the roadmap report) http://lcdev.kek.jp/RMdraft

GLC parameters

- Max c.m. energy : 500 GeV, upgradable to ~ 1 TeV.
- Luminosity : $1 \sim 3 \times 10^{34}$ /cm²s \rightarrow 500 fb⁻¹ over 2-4 years.
- Start physics running around 2015.

	warm	cold
	(NLC/GLC)	(Tesla)
#bunch/train	192	2820
#train/s	150 Hz	5 Hz
bunch sp.	1.4 ns	337 ns
train length	269 ns	950 μs
gap/train	6.6 ms	199 ms

Readout/DAQ tougher for cold. Bunch identification easier for cold.

Higgs Studies

Plot $\ell\ell$ recoil mass (Higgs not directly measured). Decay-independent measurements of Higgs mass, production rate. Detecting Higgs decays \rightarrow absolute Brs, background reduction($ee \rightarrow ZZ$).

SM Higgs Sensitivity

- 5σ discovery in ~ 1 day.
- LHC : 5σ in ~ 1 year.
 GLC starts 5-8 years later →
 'discovery machine' after one week.
- 500 fb⁻¹ \rightarrow 10⁵ Higgs detected in clean environments.

Determination of Higgs Parameters

- $\sigma_{m_h} = 40$ MeV (decay-independent) ($m_h = 120$ GeV with 500 fb⁻¹)
- Spin by energy scan of $e^+e^- \rightarrow ZH$. ($m_h = 120$ GeV with 20 fb⁻¹/point)

• CP by angular distributions in $e^+e^- \rightarrow ZH$.

• ZZH, WWH couplings to a few % by $ee \rightarrow ZH$ and $ee \rightarrow \nu \bar{\nu} H(W \text{ fusion}), e^+e^-H(Z \text{ fusion})$.

• Higgs total width to 5% by $Br(H \rightarrow WW)$ and $\Gamma(H \rightarrow WW)$ (from the WWH coupling obtained above)

- Couplings to b, c, τ by $Br(H \to f\bar{f})$. (b, c-tagging by vertexing essential)
- Coupling to t by $ee \rightarrow t\bar{t}H$.

• Higgs self coupling by $ee \rightarrow ZHH$ and $\nu \bar{\nu} HH$.

 $t\bar{t}H$ require a large E_{cm} (error bars: 1000 fb⁻¹)

ZHH

 $e^+e^-
ightarrow ZHH, tar{t}H$ $tar{t}H$

Higgs Coupling Sensitivities

 $\sqrt{s}=300~{
m GeV}$ (b,c, au,W,Z), 500 GeV (H), 700 GeV (t).

SM Higgs : coupling \propto particle mass.

Supersymmetric Particles

- GLC can pair-create many sparticles in variety of models.
- Precision measurements of masses and mixings.
- Determine qunatum numbers: spin, hypercharge etc.
- Beam polarization can be useful above and often reduce backgrounds.

For example,

$$e^+e^-
ightarrow ilde{\mu}_R^+ ilde{\mu}_R^-, \quad ilde{\mu}_R^\pm
ightarrow \mu^\pm ilde{\chi}_1^0$$
 or $e^+e^-
ightarrow ilde{\chi}_1^+ ilde{\chi}_1^-, \quad ilde{\chi}_1^\pm
ightarrow W^\pm ilde{\chi}_1^0$

Detection of Smuon

 $e^+e^- o ilde{\mu}^+_R ilde{\mu}^-_R, ~~ ilde{\mu}^\pm_R o \mu^\pm ilde{\chi}^0_1$

Signal: $\mu^+\mu^-$ + nothing ($\tilde{\chi}^0$'s) Plot the acolinearity of $\mu^+\mu^-$.

Right-handed e^- beam reduces the W^+W^- background.

Smuon Pair Production

Determination of masses of $ilde{\mu}_R$ and χ^0

From the (end point of) μ^{\pm} spectrum.

Smuon Pair Production

Determination of $ilde{\mu}_R$ spin

Angular distribution of $\tilde{\mu}_R$ w.r.t. beam axis. a) With double solutions. b) Wrong solution removed (found to be flat).

 $\sin^2 \theta \quad o \quad ilde{\mu}_R \, \operatorname{spin} \, = \, 0.$

Similar analyses for $e^+e^-
ightarrow {\tilde \mu}^+_R {\tilde \mu}^-_R$ and ${\tilde \chi}^+_1 {\tilde \chi}^-_1$

Determination of SUSY Parameters Example:

Charginos $\tilde{\chi}^+_{1,2}$ are mixture of Wino and Higgino:

$${
m Mass \ term} = (ilde W^+ \, ilde H^+) egin{pmatrix} M_2 & \sqrt{2} m_W \coseta \ \sqrt{2} m_W \coseta \ \mu \end{pmatrix} egin{pmatrix} ilde W^- \ ilde H^- \end{pmatrix}$$

With e_R^- beam:

- only \tilde{H}^{\pm} component of $\tilde{\chi}_1^+$ contribute to $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ creation.
- depends on \tilde{B} in $\tilde{e}_R^+ \tilde{e}_R^-$ creation.

Perform global fit $(M_1, M_2, \tan\beta, \mu)$ to

 $\sigma(e^+e^-_R
ightarrow ilde e^+_R ilde e^-_R
ightarrow ilde \chi^+_1 ilde \chi^-_1)\,,\quad m_{ ilde \chi^0_1}\,,\quad m_{ ilde \chi^+_1}\,.$

Determination of SUSY Parameters (cont'd)

 $\sqrt{s}=500 GeV$, 50 fb $^{-1}$

Serves as a test of GUT relation (or other mechanisms).

Large Extra Dimensions

 $e^+e^- \rightarrow \gamma G$ (G: gravitational Kaluza-Klein mode) Single γ and missing energy

Top Studies (top factory)

 $e^+e^-
ightarrow tar{t}$

5 fb⁻¹/point $\rightarrow \sigma_{m_t} \sim 50$ MeV (LHC: $1 \sim 2$ GeV) Detailed study of top production/decays. (New generation, new decay modes, CP violations)

LC detector (GLC)

- Pixel-based vertex detector.
- High B-field (≥ 3T) (For *p*-resolution.
 Also, squeeze pair background)
- ECAL&HCAL within B-field.
- Flux-return as muon detector. (catches hadronic shower tail)

'Large' design (Tesla) (gas-based central tracker)

'Small' design (NLC Small Version) (Silicon-based central tracker)

Endcap_Hcal

Tracking Requirement $(e^+e^- \rightarrow ZH \text{ recoil mass})$

 $\delta(1/p) \sim 2 \times 10^{-4}$ (typ. LHC) is not enough. Needs at least 4 times better p resolution.

Vertexing Requirement $(H \rightarrow b\bar{b}, c\bar{c})$

State of the art vertexing is needed.

Calorimeter Requirement ($e^+e^- \rightarrow WWX, ZZX, W, Z \rightarrow 2$ jets)

 $\delta E/E = 0.60/\sqrt{E}$ (jet) is needed for W/Z separation.

 $\delta E/E = 0.30/\sqrt{E}$

LC Detector

- Resolutions far better than LHC are required in order to realize the basic physics goals of LC.
- The clean environment of LC makes them possible.
- Detector R&D's, however, are needed.
- Machine technology choice expected in 2004 (warm/cold). Be prepared for both for now.

International LC Organization

Define LC : Parameter Sub-committee

- R. Heuer (chair), F. Richard, S. Komamiya,
 D. Son, M. Oreglia
- The report has come out.
- Parameters:
 - 1. Initial max c.m. energy = 500 GeV.
 - 2. $\mathcal{L} = 1 \sim 3 \times 10^{34} / \text{cm}^2 \text{s}.$
 - 3. 500 fb $^{-1}$ in 4 years.
 - 4. Energy scanable.
 - 5. 2 IR's. One accomodates $\gamma\gamma$ option.
 - 6. Upgradable to ~ 1 TeV.

Technology choice : TRC

- G. Leow (chair). Large overlap with the acc. sub-comm. (TRC is older)
- Reviewed 4 options : Tesla, GLC-X/NLC, CLIC, GLC-C.
- The second report delivered in 2003. Ranked R&D's needed : R1-R4.
- **R1:** Demontration of feasibility of machine.
- R2: Finalize design and ensure reliability.
- R3: R&D's for production.
- R4: Technology/cost optimization.

TRC R1 Scores

	Tesla	GLC-X/NLC	
RF freq.	1.3 GHz (L)	11.4 GHz (X)	
RF temp.	SC ('cold')	room temp. ('warm')	
Acc. grad.	35 MV/m	50 MV/m	
$E\mathrm{cm}_{\mathrm{max}}$	0.8 TeV	1.0-1.3 TeV	
R1 cleared?			
Modulator	yes	yes	
Klystron	yes	yes	
RF distribution	yes	yes	
Acc. structure	yes(500 GeV) no(800 GeV)	no	

Technology choice : ITRP (Wise-person's Committee)

- Charged by ILCSC to 'choose' technology by the end of 2004.
- Headed by Barry Barish.
 - 4 members from each region, 12 total. Nominated by each region considering -
 - International statue,
 - Experience with large-scale experiments,
 - Acc. phycisists, Theorists.
- Started working.

Organization Model

- 'Globalization committee' started July 2001 by Sugawara (then the director of KEK). Report delivered Dec 2002 :
 - GLCC (global linear collider center) to be formed by treaties among nations.
 - Pre-GLCC to be formed by agreements among labs before GLCC to do real works.
- A system to do real design work after the choice by the Wise-person's comm. is envisaged : pre-GDO (global design organization) to generate CDR and then TDR of LC.
- pre-GLCC \sim pre-GDO : the name is to be unified.
- pre-GDO task force (chair: S. Ozaki) was formed and started its work to define pre-GDO.

Conclusions

- A Linear Collider will sweep the TeV energy scale with precision measurements.
- It will dig deep into the underlying physics through determinations of quantum numbers, coupling constants and other physics parameters.
- Its great sensitivities make it also a discovery machine.
- Cross fertilization of LHC and LC require concurrent running.
- Detectors with resolutions much better than ever achieved are required for the goals.
- International efforts are gearing up to meet the challenges.