B Factories

- search for the origin of CP violation -

Hitoshi Yamamoto

Univeristy of Hawaii

March 2001, Tohoku University

B-factory:

 e^+e^- collider running on $\Upsilon 4S$

 $\Upsilon 4S$ (made of $b\overline{b}$ quark pairs) $\rightarrow B^0\overline{B}{}^0$, B^+B^-

Main goal: Study of *CP* violation.

$< e^+e^-$ B-factory accelerators>

 $e^+e^- \rightarrow \Upsilon 4S(10.58 GeV) \rightarrow B^0 \overline{B}{}^0$ or B^+B^-

B pairs nearly at rest in $\Upsilon 4S$

Symmetric energies (CESR at Cornell)

$$E_{e^-} = E_{e^+} = \frac{M_{\Upsilon 4S}}{2} = 5.29 GeV$$

$$E_e - E_e +$$

 $\Upsilon 4S$ (and B's) is moving in the lab frame. $\rightarrow B$ decay time measurements (Why? Later.)

$$E_{CM} = 2\sqrt{E_{e^+}E_{e^-}} = M_{\Upsilon 4S}$$

$$\begin{cases} E_{\Upsilon 4S} = E_{e^-} + E_{e^+} \\ P_{\Upsilon 4S} = E_{e^-} - E_{e^+} \end{cases}$$

$$\rightarrow \qquad \beta_{\Upsilon 4S} = \frac{P_{\Upsilon 4S}}{E_{\Upsilon 4S}} = \frac{E_{e^-} - E_{e^+}}{E_{e^-} + E_{e^+}}$$

Beam separation

Charge in each beam bunch cannot be too large \rightarrow many bunches

Want collision to occur only at one location → beam separation (avoid parasitic crossings)

CESR: Pretzel orbit Interweaving e^+e^- orbits within a single ring Crossing angle = ± 2.3 mrad

PEP-II: Separation by bending magnet

 $E_{e^+} \neq E_{e^-}$

 $\rightarrow e^+, e^-$ beams bend differently

Head-on collision

KEK-B: Finite-angle crossing

Crossing angle = ± 11 mrad

Large crossing angle

 \rightarrow Beam instability

→ Luminosity reduction (geometrical)
 Looks OK for now.

Crab crossing (KEK-B: installation in a few years)

In case finite-angle crossing causes problems

□ Without crab cavities

□ With crab cavities

→ complete overlap of beams
 (No geometrical luminosity loss.
 Suppresses beam-beam instability)

PEP-II (SLAC)

KEK-B (KEK, Japan)

machine	CESR	PEP-II	KEK-B	
detector	CLEO	BaBar	Belle	
circumference (km)	0.768	2.199	3.016	
# of rings	1	2	2	
$E_{e^+}(GeV)$	5.3	3.1	3.5	
$E_{e^-}(GeV)$	5.3	9.0	8.0	
$eta_{\Upsilon4S}$	~ 0	0.49	0.39	
$\delta E/E$	$6 imes 10^{-4}$	$7 imes 10^{-4}$	$7 imes 10^{-4}$	
$\Delta t_{\sf bunch}$	14ns	4.2 <i>ns</i>	2ns	
bunch size (w)	500μ	181μ	77μ	
" (h)	10μ	5.4μ	1.9μ	
$^{\prime\prime}$ (l)	1.8cm	1.0cm	0.4 <i>cm</i>	
crossing angle(mrad)	±2.3	0	± 11	
Luminosity $(cm^{-2}s^{-1})$	$1.5 imes 10^{33}$	$3 imes 10^{33}$	10×10^{33}	
$\#B\bar{B}/s$	1.5	3	10	
achievements so far				
Lum(peak)	12×10^{32}	31×10^{32}	38×10^{32}	
$\int Ldt$ (fb ⁻¹)	xxx	31.0	24.0	

1 fb^{-1} \sim 10^6 $B\bar{B}$ pairs

Benchmarks

Luminosity

Belle

Introduction to CP violation

Symmetry in physical laws

- Parity (mirror inversion) as an example -

- Suppose motion A satisfies a law of physics.
- Reflect A in the mirror, and think that the motion in the mirror (B) is actually happening.
- Does B satisfy the same law of physics?

If YES, and so for all motions that satisfy the law, then the law of physics is **symmetric** under parity, or it **conserves** parity.

> Symmetry \leftrightarrow Conservation (Naether's theorem)

Parity symmetry and conservation of parity (Quantum mechanics)

Transition amplitude $S_{f,i}$ from state *i* to state *f*:

$$S_{f,i} = \langle f|S|i\rangle$$

Parity inverted states:

$$|Pi\rangle \equiv P|i\rangle$$
, $|Pf\rangle \equiv P|f\rangle$.

If S operator is invariant under (commute with) P $PSP^{\dagger} = S$ $\rightarrow S_{Pf,Pi} = \langle f | P^{\dagger} \underbrace{S}_{PSD^{\dagger}} P | i \rangle = \langle f | S | i \rangle = S_{f,i}$

Namely, the parity-inverted process occurs at the same rate, and the physics is thus **symmetric under parity**.

If $PSP^{\dagger} = S$ and *i* and *f* are eigenstates of *P*:

$$P|i\rangle = \eta_i|i\rangle, \quad P|f\rangle = \eta_f|f\rangle, \quad (\eta_{i,f} = \pm 1)$$
$$S_{f,i} = \langle f| \underbrace{S}_{PSP^{\dagger}} |i\rangle = \eta_f \eta_i \langle f|S|i\rangle = \eta_f \eta_i S_{f,i}$$

Namely, $S_{f,i} = 0$ unless $\eta_i = \eta_f$: \rightarrow parity quantum number is conserved.

 $P \text{ conservation } \stackrel{PSP^{\dagger}}{\longleftrightarrow} \stackrel{= S}{\longrightarrow} \text{Symmetry under } P$

CP symmetry: similarly formulated.

 K^0 - \overline{K}^0 system: the only place CPV (CP Violation) have been seen (before B^0 meson).

1964, K_L (as well as K_S) $\rightarrow \pi^+\pi^-(CP+)$

This is CPV because:

 $Br(K_S \to \pi\pi) \sim 1 \Rightarrow$ natural to identify $K_S = K_1(CP+), \quad K_L = K_2(CP-)$

• If $K_L = K_2$ really,

$$K_2(CP-) \rightarrow \pi^+\pi^-(CP+)$$

(CPV in decay- or - direct CPV)

• If $K_L \neq K_2$, $\rightarrow CP+$ component in K_L

$$K_2(CP-) = K_L - \epsilon_0 K_S$$

$$\stackrel{t}{\rightarrow} c_1 K_L + c_2 K_S (CP \text{ mixture })$$

(CPV in mixing- or - indirect CPV)

Either case, both $K_L \& K_S \to \pi^+ \pi^-$ is CPV

A neutron is a physical state <u>and</u> not a CP^{N} eigenstate. But it does not mix (evolve) as far as we know.

 \Rightarrow not CPV

All CPV effects so far are consistent with the hypothesis that

CPV in the $K^0\mathchar`-\ensuremath{\bar{K}}^0$ system is purely indirect (mixing) with

 $\epsilon_0 = (2.26 \times 10^{-3}) e^{i44^\circ}$

Direct CPV in K found by:

KTeV(*Fermilab*) *NA*48(*CERN*)

Hypothetical intereaction that causes indirect *CPV*: **'Superweak'** (Wolfenstein, 1964)

We now have a 'real' theoretical model of *CPV*: **the Standard Model**

Standard-Model quark-W Interaction

$$L_{\text{int}}(t) = \int d^3x \left(\mathcal{L}_{qW}(x) + \mathcal{L}_{qW}^{\dagger}(x) \right)$$
$$\mathcal{L}_{qW}(x) = \frac{g}{\sqrt{8}} \sum_{i, j=1,3} V_{ij} \, \bar{U}_i \, \gamma_{\mu} (1 - \gamma_5) D_j \, W^{\mu}$$
$$U_i(x) \equiv \begin{pmatrix} u(x) \\ c(x) \\ t(x) \end{pmatrix}, \quad D_j(x) \equiv \begin{pmatrix} d(x) \\ s(x) \\ b(x) \end{pmatrix}$$
$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Cabibbo-Kobayashi-Masukawa (CKM) matrix (Unitary)

Experimentally, ${\cal V}$ has a hierarchical structure. Approximately,

$$|V_{ij}| \sim \begin{pmatrix} 1 & \lambda & \lambda^3 \\ \lambda & 1 & \lambda^2 \\ \lambda^3 & \lambda^2 & 1 \end{pmatrix}$$
$$\lambda \sim 0.22$$

Transformation of L_{int} under CP

exchanges particle $(n) \leftrightarrow$ antiparticle (\bar{n}) *CP*: flips momentum sign $(\vec{p} \leftrightarrow -\vec{p})$ (a) keeps the spin *z*-component (σ) the same

Such *CP* operator in Hilbert space is not unique:

$$\mathcal{CP}a_{n,\vec{p},\sigma}^{\dagger}\mathcal{P}^{\dagger}\mathcal{C}^{\dagger} = \eta_{n}a_{\bar{n},-\vec{p},\sigma}^{\dagger}$$

 η_n : 'CP phase': arbitrary, depends on n(for antiparticle: $\eta_{\bar{n}} = (-)^{2J} \eta_n^*$, J = spin)

The choice of η_n amounts to choosing a specific operator in Hilbert space among those satisfying (a).

Then, a pure algebra leads to

$$\mathcal{CP} \ \bar{u}(x)\gamma_{\mu}(1-\gamma_{5})d(x)W^{\mu}(x) \ \mathcal{P}^{\dagger}\mathcal{C}^{\dagger}$$
$$= \eta_{u}\eta_{d}^{*}\eta_{W}^{*} \left(\bar{u}(x')\gamma^{\mu}(1-\gamma_{5})d(x')W_{\mu}(x')\right)^{\dagger}$$
$$x' \equiv (t, -\vec{x})$$

\mathcal{L}_{qW} transforms as (taking $\eta_W = 1$)

$$\mathcal{CP} \mathcal{L}_{qW}(x) \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} = \frac{g}{\sqrt{8}} \sum_{i,j=1,3} \eta_{U_i} \eta_{D_j}^* V_{ij} \left(\bar{U}_i(x') \gamma^{\mu} (1-\gamma_5) D_j(x') W_{\mu}(x') \right)^{\dagger}$$

IF $\eta_{U_i}\eta^*_{D_j}$ can be chosen such that

$$\eta_{U_i}\eta_{D_j}^*V_{ij} = V_{ij}^*$$
,

then, $\mathcal{CP} \mathcal{L}_{qW}(x) \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} = \mathcal{L}_{qW}^{\dagger}(x')$

Namely,
$$\mathcal{L}_{qW} \stackrel{CP}{\leftrightarrow} \mathcal{L}_{qW}^{\dagger}$$

 $\rightarrow L_{int}(t)$ becomes invariant under *CP*:

$$C\mathcal{P} L_{\text{int}}(t) \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} = \int d^{3}x \ C\mathcal{P} [\mathcal{L}_{qW}(x) + \mathcal{L}_{qW}^{\dagger}(x)] \mathcal{P}^{\dagger} \mathcal{C}^{\dagger} = \int d^{3}x \ [\mathcal{L}_{qW}^{\dagger}(x') + \mathcal{L}_{qW}(x')] = L_{\text{int}}(t)$$

 \rightarrow S matrix is invariant under CP

Condition for CP Invariance

The CP invariance condition (2) is equivalent to

rotate the quark phases to make $V_{i,j}$ all real.

Can the CKM matrix be made real by rotating quark phases?

Count the degrees of freedom

3×3 complex matrix	18
Unitarity condition $V^{\dagger}V = I$	-9
Quark relative phases	-5
Eular angles (real)	-3
Complex phase	1

One irreducible complex phase \rightarrow CP violation (Kobayashi, Masukawa)

One complex phase \rightarrow Unitarity Triangle

e.g: orthogonality of *d*-column and *b*-column:

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

$$\boldsymbol{\alpha} \equiv \arg\left(\frac{V_{td}V_{tb}^*}{-V_{ud}V_{ub}^*}\right), \ \boldsymbol{\beta} \equiv \arg\left(\frac{V_{cd}V_{cb}^*}{-V_{td}V_{tb}^*}\right), \ \boldsymbol{\gamma} \equiv \arg\left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right)$$

(Another notation: $\alpha \equiv \phi_2$, $\beta \equiv \phi_1$, $\gamma \equiv \phi_3$)

If the CKM matrix is real, the triangle is a line.

How does the CKM unitarity triangle look?

Experimental inputs:

- 1. $|V_{ub}/V_{cb}|$ (by b
 ightarrow ue
 u)
- 2. $B^0 \overline{B}^0$ mixing $\rightarrow |V_{td}|$
- 3. ϵ_K (from Kaon system)

Many people have performed a fit. One recent example: Ciuchini et.al.:

Normalized to the bottom length of the triangle. (two bands for each are 68% and 95% c.l.)

Three bands cross at one point \rightarrow already a triumph of the standard model.

If the K-M model of CP violation is correct, \rightarrow CP Violation (*CPV*) in *B* meson decays

1. CPV in mixing. (neutral B)

Particle-antiparticle imbalance in physical neutral B states $(B_{a,b})$: $|\langle B^0|B_{a,b}\rangle|^2 \neq |\langle \bar{B}^0|B_{a,b}\rangle|^2$ Expected to be small.

2. *CPV* in decay. (neutral and charged *B*) Partial decay rate asymmetries.

$$|Amp(B \to f)| \neq |Amp(\bar{B} \to \bar{f})|$$

 $(Amp(B^0 \rightarrow f))$: instantaneous decay amplitude.) Difficult to analyse \rightarrow 2nd-round measurements.

3. *CPV* by mixing-decay interference. (neutral *B*) When both $B^0 \& \overline{B}^0$ can decay to the same final state *f*:

the inteference results in

$$\Gamma_{B^0 \to f}(t) \neq \Gamma_{\bar{B}^0 \to \bar{f}}(t) \,.$$

Most promissing.

Mixing-decay interference

Eigenstates of mass & decay rate (assume CPT):

(*)
$$\begin{cases} B_a = pB^0 + q\bar{B}^0 \\ B_b = pB^0 - q\bar{B}^0 \end{cases}$$

 B_a (mass: m_a , decay rate: γ_a) B_b (mass: m_b , decay rate: γ_b)

In good approximation, $\gamma_a = \gamma_b (\equiv \gamma)$ \rightarrow decay rate decuople from the arguments below. (Also, p, q becomes pure phases)

Time evolution:

 $B_a o B_a e^{-im_a t}, \qquad B_b o B_b e^{-im_b t}.$

Solving (*) for B^0 and \overline{B}^0 , the time evolutions of pure B^0 or \overline{B}^0 at t = 0 are

$$\begin{cases} B^{0} \rightarrow B^{0} \cos \frac{\delta m}{2} t - \frac{q}{p} \overline{B}^{0} i \sin \frac{\delta m}{2} t \\ \overline{B}^{0} \rightarrow \overline{B}^{0} \cos \frac{\delta m}{2} t - \frac{p}{q} B^{0} i \sin \frac{\delta m}{2} t \end{cases},\\ (\delta m \equiv m_{a} - m_{b}) \end{cases}$$

Amplitude for pure
$$B^0$$
 or \overline{B}^0 at $t = 0$
to decay to f at t :
$$\begin{cases} A_{B^0 \to f}(t) = A \cos \frac{\delta m}{2} t - \frac{q}{p} \overline{A} i \sin \frac{\delta m}{2} t \\ A_{\overline{B}^0 \to f}(t) = \overline{A} \cos \frac{\delta m}{2} t - \frac{p}{q} A i \sin \frac{\delta m}{2} t \end{cases},$$
$$A \equiv Amp(B^0 \to f), \quad \overline{A} \equiv Amp(\overline{B}^0 \to f). \end{cases}$$

The probability that a pure $B^0(\overline{B}{}^0)$ at t = 0 decays to a final state f at t: (for f: CP eigenstate):

$$\Gamma_{B^{0}(\bar{B}^{0})\to f}(t) = e^{-\gamma t} |pA|^{2} \left[1 \pm \Im\left(\frac{q\overline{A}}{pA}\right) \sin \delta m t \right]$$

 $\rightarrow \ensuremath{\textit{CPV}}$ by def.

The Time-dependent asymmetry is

$$A_{CP}(t) = \Im\left(\frac{q\overline{A}}{pA}\right)\sin\delta m t$$

How to prepare ('tag') pure B^0/\bar{B}^0 on $\Upsilon 4S$?

Since \overline{B}^0 decays to $e^- + X$ but not $e^+ + X$ (X: something), look at the other side:

$$\Upsilon 4S \to \begin{cases} B^0 \to f\\ \bar{B}^0 \to e^- X \end{cases}$$

If the other side decays to e^- , then f came from B^0 - ?

In reality, $B^0 \overline{B}{}^0$ pair is created in a coherent L = 1state which is asymmetric. The time evolution in the $\Upsilon 4S$ system is (with a simple algebra)

$$\Upsilon 4S \to (B^0 \overline{B}{}^0 - \overline{B}{}^0 B^0)$$
$$\to e^{-\gamma t} (B^0 \overline{B}{}^0 - \overline{B}{}^0 B^0)$$

If one finds one side to be \overline{B}^0 at t, then the other side is pure B^0 at the same time t,

then it will evolve as before.

 $ightarrow \Gamma_{B^{0}(\bar{B}^{0})
ightarrow f}(t)$ applies to $\Upsilon 4S$ with

 $t \rightarrow \Delta t \equiv t(f) - t(tag),$ (and $e^{-\gamma t} \rightarrow e^{-\gamma |\Delta t|}$)

The gold-plated mode $f = \Psi K_S$

What is $\Im \frac{q\bar{A}}{pA}$ for this mode?

q/p is obtained by diagonalizing $H_{\text{eff}} = \begin{pmatrix} \langle B^0 | H | B^0 \rangle & \langle B^0 | H | \bar{B}^0 \rangle \\ \langle \bar{B}^0 | H | B^0 \rangle & \langle \bar{B}^0 | H | \bar{B}^0 \rangle \end{pmatrix}$

$$\langle \bar{B}^{0}|H|B^{0}\rangle : \bar{B}^{0} \qquad \underbrace{\frac{b \quad V_{tb} \quad t \quad V_{td}^{*} \quad d}{W}}_{\overline{d} \quad V_{td}^{*} \quad \overline{t} \quad V_{tb} \quad \overline{b}} B^{0}$$

$$\rightarrow \frac{q}{p} = \frac{\langle \bar{B}^0 | H | B^0 \rangle}{|\langle \bar{B}^0 | H | B^0 \rangle|} = -\frac{V_{td} V_{tb}^*}{V_{td}^* V_{tb}}$$

$$f = \Psi K_S$$

$$\frac{\bar{A}}{A} = \frac{\langle K_S | \bar{K}^0 \rangle \langle \Psi \bar{K}^0 | H | \bar{B}^0 \rangle}{\langle K_S | K^0 \rangle \langle \Psi K^0 | H | B^0 \rangle} = \frac{-q_K^*}{p_K^*} \frac{V_{cb} V_{cs}^*}{V_{cb}^* V_{cs}}$$

With a similar procedure to the B case,

$$\frac{q_K}{p_K} = -\frac{V_{cd}V_{cs}^*}{V_{cd}^*V_{cs}}.$$

Combinig all,

$$\frac{q\bar{A}}{pA} = \left(\frac{V_{cd}V_{cb}^*}{-V_{td}V_{tb}^*}\right)^* / \left(\frac{V_{cd}V_{cb}^*}{-V_{td}V_{tb}^*}\right)$$

With the definition of the angle β :

$$\beta = \arg\left(\frac{V_{cd}V_{cb}^*}{-V_{td}V_{tb}^*}\right)$$
$$\rightarrow \Im\frac{q\bar{A}}{pA} = -\sin 2\beta \quad (\Psi K_S)$$

$$\Upsilon 4S \rightarrow \begin{cases} B_1 \rightarrow \Psi K_S (t_1) \\ B_2 \rightarrow e^{\mp} X (t_2) \end{cases}$$
$$\Gamma_{e^{\mp}, \Psi K_S} (\Delta t) = N(1 \mp \sin 2\beta \sin \delta m \Delta t)$$
$$(\Delta t \equiv t_1 - t_2)$$

Total area is the same for B^0/\bar{B}^0

ightarrow need to measure Δt

 \Rightarrow Asymmetric *B*-factory

(moving B's \rightarrow decay vertexes $\rightarrow \Delta t$)

[At CLEO, $B^0 \overline{B}{}^0$ are nearly at rest]

- SVD: Silicon vertex detector. resolution \sim 100 μ m (*B* lifetime = 200 μ m)
- CDC: charged particle tracking
- PID: π/K separation
- TOF: π/K separation
- Cal: electron/photon detection
- KL/ μ : K_L /muon detection

<Full reconstruction on $\Upsilon 4S$ >

 $B \to f_1 \cdots f_n$

Energy and absolute momentum of *B* in the $\Upsilon 4S$ frame are known:

$$E_B = E_{\text{beam}} = 5.290 \text{ GeV}$$

 $|\vec{P}_B| = \sqrt{E_{\text{beam}}^2 - M_B^2} = 0.34 \text{ GeV/c}$

\rightarrow Move to the $\Upsilon 4S$ rest frame and require that candidates satisfy

$$E_{\text{tot}} = E_{\text{beam}}, \quad |\vec{P}_{\text{tot}}| = |\vec{P}_B|$$

where

$$E_{\text{tot}} \equiv \sum_{i=1}^{n} E_i, \quad \vec{P}_{\text{tot}} \equiv \sum_{i=1}^{n} \vec{P}_i$$

Instead of E_{tot} and $|\vec{P}_{tot}|$, we often use $\Delta E \equiv E_{tot} - E_B$ (energy difference) $M_{bc} \equiv \sqrt{E_{beam}^2 - \vec{P}_{tot}^2}$ (beam-constrained mass)

Also use

- $\Psi' K_S$, $\chi_{c1} K_S$, $\eta_c K_S$ ($\xi_f = -1$)
- $\Psi \pi^0$, ΨK_L ($\xi_f = +1$)
- Tagging by $\mu^\pm\text{, }K^\pm\text{, }\pi^\pm$

 ξ_f : *CP* of the final state (sign in front of sin 2β)

Result on $\sin 2\beta$ ($\equiv \sin 2\phi_1$)

 $\sin 2\beta = 0.58^{+0.32}_{-0.34}(stat)^{+0.09}_{-0.10}(sys)$

In terms of the unitarity triangle)

The Belle result is consistent with the standard model.

Other experiments:

Experiment	year	$\sin 2eta$
BaBar	2001	$0.34 \pm 0.22 \pm 0.05$
CDF $(p\bar{p})$	2000	$0.79_{-0.44}^{+0.41}$
Aleph (Z^0)	2000	$0.93^{+0.64+0.36}_{-0.88-0.24}$

Prospects for Belle

- Reduce the beampipe size $\rightarrow \times 2$ improvement of vertex resolution (2002).
- Collect $\sim 30 \text{ fb}^{-1}$ per year for a few years.
- Installation of crab cavities, ante-chambers (2004?)
- Measure angles α/ϕ_2 and γ/ϕ_3 . ($\pi^+\pi^-$, DK, $D^*\pi$ modes etc.)
- Measure the sizes of the unitarity triangle better.

General prospects in B-physics

- CDF/D0 (Fermilab $p\bar{p}$) will join the game in 2002.
- HERA-B may join the game soon.
- LHC detectors (LHC-b and ATLAS, CMS) will start in 2006.
- BTeV (Fermilab) will start in 2008

EXtrapolation of $\sin 2\beta$ sensitivities (rough, irresponsible guesses)

Assumed linear increase of luminosity with time.