Pixel Beam Profile Monitor for Linear Collider

Hitoshi Yamamoto

Berkeley, March, 2000

Kinematic Configuration of Pair 'Background'

Lab. frame

- |E| = |B| \rightarrow no force from the co-moving bunch.
- $E(dyne/esu) = B(gauss) \sim 4 \times 10^7$

$$\rightarrow r \sim 170 \mu \text{m}$$
 for $p = 300 \text{ MeV}/c$.

$$(\sigma_z \sim 80 \mu \mathrm{m})$$

- For an incoming e^+ bunch, e^- oscillates around the beam plane. e^+ acquires a large p_t kick (vertical).
- Round beam \rightarrow no ϕ dependence, ϕ dependence $\rightarrow \sigma_y/\sigma_x$ ratio.

Hit Location on the Pair Monitor

 $\rho(\text{cm}) = \frac{p_t(\text{MeV}/c)}{3B_0(\text{Tesla})}, \quad \phi = \frac{3B_0(\text{Tesla})L(\text{cm})}{p_z(\text{MeV}/c)}$

L : distance to IP

- ρ measures p_t and ϕ measures p_z .
- For $\sqrt{s} = 500$ GeV, $N_{\text{bunch}} \sim 10^{10}$ and $\sigma_{x/y/z} = 260 \mu \text{m}/3 \text{nm}/80 \text{nm}$,

 $p_{tmax} \sim 20 \text{MeV}/c \rightarrow r = 3.3 \text{cm} (2 \text{Tesla})$

- For L = 176 cm, $p_z \sim 350$ MeV/ $c \rightarrow \phi \sim \pi$.
- Look at ϕ distribution for $r = 5 \sim 7$ cm.

Requirements for the Pair Monitor

- Detect a few 100 MeV electrons.
- 30 hits/mm²/train.
- \sim 50 kRad/year.
- \sim 70 keV threshold to reject X-rays.
- Identification of bunch in a train.
- Cover a circular area.
- Rate too high for a Si strip detector.
- CCD does not have TDC for each pixel.
- \rightarrow active pixel sensor.

Use $100 \times 100 \mu m^2$ pixel. TDC on each pixel. Gating to reduce occupancy.

One stave

3D Pixel Sensor

Drift field parallel to the plane of sensor.

- Signal pulse is about ×10 faster than typical pixel.
- $V_{\text{depletion}} \sim 5V$. Radhard.
- Flexible geometry (e.g. trapezoid).
- Active all the way to the edge (no guard ring).

3D Pixel Sensor Test Results

Prototype:

- $120\mu m$ thick
- Electrode diameter $\sim 20 \mu m$.
- Pitch: 100 or 200µm.
- 14 by 28 array.

 $100 \mu m$ pitch version

PULSE HEIGHT (mV)

Possible Timing Circuit

• Timing is defined by a low-threshold discriminator.

Hit is defined by the high-threshold.

- Latch a couting gray code bus.
- TDC value stored on each pixel (\sim 8 bits)
- Read-out time \sim 3.5 ms.

Alternative: V_{ramp} stored on a capacitor in each pixel.