A Status Report on Asymmetric B-Factories

Hitoshi Yamamoto

Univeristy of Hawaii

February 2000, Fermilab

In order to study CPV at e^+e^- colliders (ΨK_S):

- 1. High luminosity. $\sim 10^8 \ B\bar{B}$ pairs ($\sim 100 \ {
 m fb}^{-1}$)
- 2. Good charged particle tracking \rightarrow Cylindrical Drift Chamber
- 3. Flavor-tagging
 - Lepton identification
 - e: EM calorimeter
 - μ : muon chambers
 - π/K separation
 - \rightarrow Cerenkov device
- 4. Vertexing (measure $t_{sig} t_{tag}$)
 - \rightarrow Silicon trackers

$$< e^+e^-$$
 B-factory accelerators>
 $e^+e^- \rightarrow \Upsilon 4S \rightarrow B^0 \overline{B}{}^0$ or B^+B^-
Symmetric energies (CESR)
 $E_{e^-} = E_{e^+} = \frac{M_{\Upsilon 4S}}{2} = 5.29 GeV$

Asymmetric energies (PEP-II, KEK-B)

$$E_e - E_e +$$

 Υ 4*S* (and *B*'s) is moving in the lab frame. → *B* decay time measurements

$$E_{CM} = 2\sqrt{E_{e^+}E_{e^-}} = M_{\Upsilon 4S}$$

$$\begin{cases} E_{\Upsilon 4S} = E_{e^-} + E_{e^+} \\ P_{\Upsilon 4S} = E_{e^-} - E_{e^+} \end{cases}$$

$$\rightarrow \qquad \beta_{\Upsilon 4S} = \frac{P_{\Upsilon 4S}}{E_{\Upsilon 4S}} = \frac{E_{e^-} - E_{e^+}}{E_{e^-} + E_{e^+}}$$

Beam separation

Want collision to occur only at one location

 \rightarrow Need for beam separation (avoid parasitic crossings)

CESR: Pretzel orbit Interweaving e^+e^- orbits within a single ring Crossing angle = ± 2.3 mrad

PEP-II: Separation by bending magnet

 $E_{e^+} \neq E_{e^-}$

 $\rightarrow e^+, e^-$ beams bend differently

Head-on collision

KEK-B: Finite-angle crossing Crossing angle = ± 11 mrad

Large crossing angle

 \rightarrow Beam instability

→ Luminosity reduction (geometrical) Looks OK for now.

Crab crossing (KEK-B)

In case finite-angle crossing causes problems

□ Without crab cavities

 → complete overlap of beams (No geometrical luminosity loss.
 Suppresses beam-beam instability)

PEP-II (SLAC)

KEK-B (KEK, Japan)

machine	CESR	PEP-II	KEK-B		
detector	CLEO	BaBar	Belle		
circumference (km)	0.768	2.199	3.016		
# of rings	1	2	2		
$E_{e^+}(GeV)$	5.3	3.1	3.5		
$E_{e^-}(GeV)$	5.3	9.0	8.0		
$eta_{\Upsilon 4S}$	~ 0	0.49	0.39		
$\delta E/E$	$6 imes 10^{-4}$	$7 imes 10^{-4}$	$7 imes10^{-4}$		
$\Delta t_{\sf bunch}$	14ns	4.2 <i>ns</i>	2ns		
bunch size (w)	500μ	181μ	77μ		
" (h)	10μ	5.4μ	1.9μ		
$^{\prime\prime}$ (l)	1.8cm	1.0 <i>cm</i>	0.4 <i>cm</i>		
crossing angle(mrad)	±2.3	0	± 11		
Luminosity $(cm^{-2}s^{-1})$	$1.5 imes 10^{33}$	$3 imes 10^{33}$	$10 imes 10^{33}$		
$\#B\bar{B}/s$	1.5	3	10		
achievements so far					
Lum(peak)	8×10^{32}	$15 imes 10^{32}$	10.5×10^{32}		
$\int Ldt$ (fb ⁻¹)	9.2	1.7	0.72		

Benchmarks

Luminosity

Daily Recorded Luminosity

Problems and Issues

Belle

- 1. Synchrotron radiation (SR) background
 - Readout chips (VA1) of Innermost SVD started to die.
 - * Traced to SR from steering magnets $(E_c < 10 \text{ keV}).$
 - * Put 20μ m-thick Au foil around the Be pipe. (Be pipe was 'bare' before)
 - * Cover VA1's with 300μ m-thick Au.
 - * Replaced SVD1.0 with SVD1.2 ('spare'). (Summer 1999)
 - Excess hits in CDC.
 - Probably the backscattering from downstream HER.
 - * Replaced the suspect beampipe (Al \rightarrow Cu).
 - No SR background is noticeable at present.
 (i.e. the bkg is dominated by lost particle)

2. Vacuum leaks and other glitches.

- BPM near IP leak fixed.
- Movable mask leak being redesigned. (arcs and heating)
- Magnet coil burn out.

These typically cost $1 \sim 2$ weeks each.

- 3. Current issues
 - Blowup of LER vertical beamsize.
 - * $\sigma_y \rightarrow \times 2$ at 350 ma.
 - * Suspect: SR-induced photoelectrons (or ECE - electron cloud effect)
 - * Permanent magnets around beampipe did not have a dramatic effect.

- Crab cavity.

- * 1st full prototype in 2000.
- * Installation in 2003.

Problems and Issues

BaBar

- 1. Vacuum leak at SR mask.
 - At Cu-SS joint.
 - Replaced.

2. Beam background

- Dominated by lost-particle.
- Extrapolation: SVT limit at 30 fb⁻¹.
- Will improve with time (bake-out)
- Not compromising data taking for now.

Belle Detector

1. Silicon Vertex Detector (SVD)

3 layers of double sided silicon sensors

- **2. Central Drift Chamber (CDC)** 50 anode layers (18 stereo), 3 cathode layers
- **3. Aerogel Cherenkov Counter (ACC)** 960+228 cells, n = 1.01 - 1.03

4 5

2 3

4. Time Of Flight Counter (TOF) 4cm thick scintillator, 128 φ-segmentation

- 5. Electromagnetic Calorimeter (ECL) 6624+1152+960 CsI(Tl) crystals
- 6. KL and Muon Detector (KLM) 14 layers of glass RPC in iron yoke
- 7. Superconducting Solenoid 1.5 Tesla
- 8. Extreme Forward Calorimeter (EFC) 320 BGO crystals attached on the final focus quad.

Physics Performagnces

 $B \to J/\Psi X$

Belle: J/ ψ in $\mu\mu$ / *ee* channels

Events / 10 MeV/c 2 bin

Vertexing: Belle

Matching eff. = 97% (Bhabha) / 96.7% for hadron

<Full reconstruction on $\Upsilon 4S >$

 $B \to f_1 \cdots f_n$

Energy and absolute momentum of *B* in the $\Upsilon 4S$ frame are known:

$$E_B = E_{\text{beam}} = 5.290 \text{ GeV}$$

 $\vec{P}_B = \sqrt{E_{\text{beam}}^2 - M_B^2} = 0.34 \text{ GeV/c}$

\rightarrow Move to the $\Upsilon 4S$ rest frame and require that candidates satisfy

$$E_{\text{tot}} = E_{\text{beam}}, \quad |\vec{P}_{\text{tot}}| = |\vec{P}_B|$$

where

$$E_{\text{tot}} \equiv \sum_{i=1}^{n} E_i, \quad \vec{P}_{\text{tot}} \equiv \sum_{i=1}^{n} \vec{P}_i$$

Instead of E_{tot} and $|\vec{P}_{tot}|$, we often use $\Delta E \equiv E_{tot} - E_B$ (energy difference) $M_{bc} \equiv \sqrt{E_{beam}^2 - \vec{P}_{tot}^2}$ (beam-constrained mass)

 $B^+ \to J/\Psi K^+$

 $B^0 \to J/\Psi K_S$

D reconstruction (with help of PID devices): Belle

D^0 / D^+ lifetime measurement - vertex reconstruction in x-y: Belle

BaBar
$$D^{*+} \rightarrow D^0 \pi_s^+$$
, $D^0 \rightarrow K^- \pi^+$

Effect of IP constraint for π_s^+

Test of Kaon ID with D^*

$$D^{*+} \rightarrow D^{0} \pi^{+}$$
$$\searrow K^{-} \pi^{+}$$

- $\cdot \mid M(D)-1.865 \mid \le 0.030$
- P(D*)/Eb(CM) >0.5
- $\cdot \mid \cos \theta k \mid \leq 0.8$
- $\cdot\,$ reject if K-p inversed comb in the D mass window

$\boldsymbol{B}^{-} \rightarrow \boldsymbol{D}^{0} \boldsymbol{\pi}^{-}$ combined

 $Mb(D*+\pi-(combined))$

Test of flavor tagging: Belle

Algorithm

Lepton tag: high $p^{c.m.}$ (> 1.1 GeV) lepton to tag $b \rightarrow clv$ decay, and if it fails, Kaon tag: charge sum of the charged Kaons to tag $b \rightarrow c \rightarrow s$ decay

Performance check

Use $B^0 \rightarrow D^{(*)} l^+ \upsilon$ decay sample as CP side, remaining particles as tagging side. ~200 events

	E (%)	wrong tag(%)	effective $\varepsilon(\%)$
Lepton tag	8 ± 1 (11.9)	1 ± 10 (8.2)	7 ± 3 (8.3)
Kaon tag	31 ± 3 (28.2)	21 ± 7 (15.2)	10 ± 5 (13.7)
Sum	40 ± 3 (40.1)	$18 \pm 6 (13.1)$	16 ± 6 (21.8)

(): Monte Carlo estimation

Belle: B lifetime & mixing

Lifetime fit:

Fixed parameters: $\beta \gamma = 0.425$ $x_{\rm d} = 0.723$

Belle: $\mathbf{B} \rightarrow \mathbf{K}^* \gamma$ signal candidates

Summary

- Both PEP-II and KEK-B exceeded $L = 10^{33}$ /cm²s, and are operating steadily.
- Integrated luminosity of $5 \sim 10 \text{ fb}^{-1}$ by this summer for each detector is realistic.
- Components of both detectors are functioning reasonably well.
- Beam backgrounds are more or less under control.
- If no major obtacles occur, $\sigma_{\sin 2\beta}$ of 0.2~0.3 is expected by this summer from each experiment.

Acknowledgement: Thanks to all at KEK/Belle and SLAC/BaBar who made so much progress and also to Nakao-san whose Belle physics plots I borrowed with minor editings.