dEdx Options for Linear Colliders

Hitoshi Yamamolto The Univeristy of Hawaii

Sitges LC workshop, April 1999.

- Some basics
- Gas-based trackers
 - Silicon detectors

The state-of-the-art model: Photo Absorption Ionization (PAI) model (Allison, Cobb, 1980)

- Assume single-photon exchange
 - \rightarrow related to photo absorption
- Assume non.rel. recoil electron

Single-collision cross section

(energy loss per collision T)

$$\frac{d\sigma}{dT} = \frac{\alpha}{\beta^2 \pi} \left[\frac{\sigma_{\gamma}}{TZ} \ln \frac{2m_e \beta^2 / T}{\sqrt{(1 - \beta^2 \epsilon_1)^2 + \beta^4 \epsilon_2^2}} + \frac{\Theta}{\frac{n_e}{n_e} \left(\beta^2 - \frac{\epsilon_1}{|\epsilon|^2}\right)} + \frac{1}{T^2} \int_0^T dT \frac{\sigma_{\gamma}}{Z} \right] \quad (*)$$
Cerenkov Rutherford

$\sigma_{\gamma}(T)$ photo absorption cross section

- m_e electron mass
- n_e electron density
- $\alpha = 1/137$
- β velocity of projectile
- Z atomic number of material

 $\begin{array}{ll} \epsilon_1 + i\epsilon_2 & \equiv \epsilon : \text{ dielectric constant (fn of } \sigma_{\gamma}) \\ \Theta & = \arg(1 - \epsilon^* \beta^2) \end{array}$

Logarithmic Rise and Saturation

At **low density** $\epsilon_1 \sim 1$, $\epsilon_2 \sim 0$, then in the first term of (*)

$$\ln \frac{1}{\sqrt{(1-\beta^2\epsilon_1)^2+\beta^4\epsilon_2^2}} \sim \ln \frac{1}{1-\beta^2} = \ln \gamma^2$$

At high density and for large T (=photon energy)

$$\epsilon \sim 1 - \left(\frac{\hbar\omega_p}{T}\right)^2$$
 (ω_P : plasma freq.)

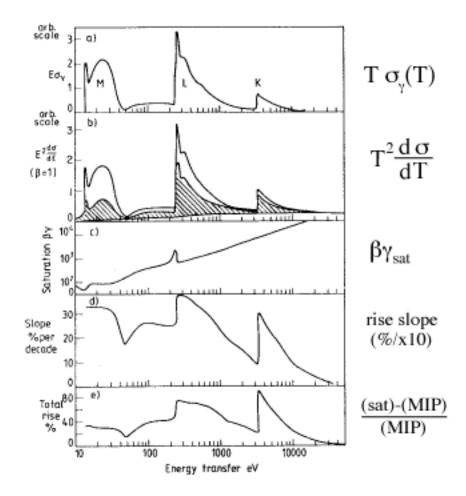
Then for $\beta \sim 1$,

$$\ln \frac{1}{\sqrt{(1-\beta^2\epsilon_1)^2+\beta^4\epsilon_2^2}} \sim \ln \frac{T^2}{(\hbar\omega_p)^2}$$

Saturates at
$$\gamma \sim \frac{T}{\hbar \omega_p}$$

Argon STP(Allison, Cobb)

T: energy loss per collision

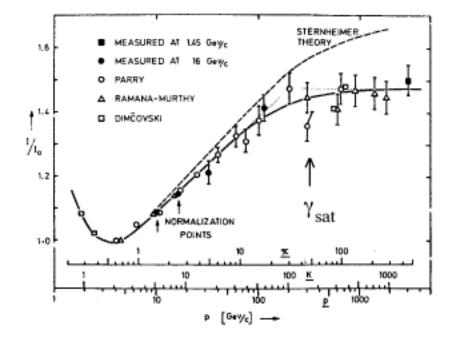


$$\gamma_{
m sat} \sim rac{I}{\hbar\omega_p}$$

$$I \equiv < T > \sim 12Z(eV)$$

(effective ionization energy)

$$\hbar\omega_p~\sim~20\sqrt{
ho(g/{
m cm}^3)}~{
m (eV)}$$



gas	Ι	$\hbar\omega_p$	$\gamma_{\sf sat}$	$p_{sat}^{\pi/K}$
	(eV)	(eV)		(GeV/c)
He	41.8	0.27	154	21/76
Ar	188	0.82	230	32/115
Xe	482	1.41	341	48/170
CH_4	41.7	0.61	68.4	10/34
C_2H_6	45.4	0.82	55.3	8/28
C_3H_8	47.1	0.96	49.1	7/24
C_4H_{10}	48.3	1.14	42.4	6/21

Saturation Point for Gasses (1 atm)

Saturation point is higher for heavier atoms. Hydro-carbons: $\gamma_{\rm sat}\sim 50.$

 $dEdx(\pi) \sim dEdx(K)$ at $p_{sat}(K) \sim 3.6p_{sat}(\pi)$.

 $\rightarrow \pi/K$ separation starts to degrade at $p_{sat}(\pi)$ and completely useless at $p_{sat}(K)$.

Bethe-Bloch Formula (Max-T improved) (PDG 1998)

$$\frac{dE}{dx} \propto \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e \beta^2 \gamma^2 T_0}{I^2} - \frac{\beta^2}{2} \left(1 + \frac{T_0}{T_{\text{max}}} \right) - \frac{\delta}{2} \right]$$
$$T_0 = \min(T_{\text{cut}}, T_{\text{max}})$$

 T_{max} : maximum kinetic energy of recoil electron.

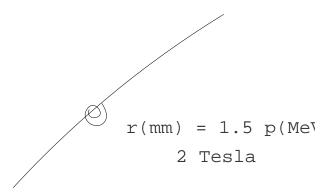
$$T_{\max} = \frac{2P^2m_e}{M^2 + m_e^2 + 2Em_e}$$

M, E, P: mass, energy, momentum of projectile.

 $T_{\max} \sim E$ for $\gamma \gg M/m_e$. \rightarrow separate track

 $T_{\rm cut}$: effective cutoff on recoil energy

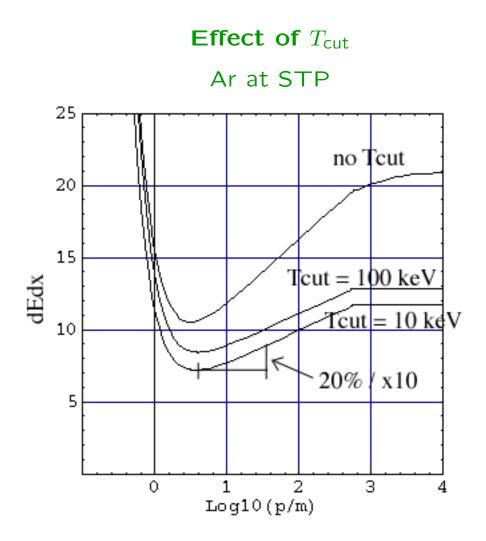
Effective Cutoff T_{cut}



 If the radius of curler is larger than order 1 mm, the hit may be rejected.
 → T_{cut} ~ a few 100 keV.

Average energy deposit:
 ~ 3 keV/cm for Ar, C₂H₄ ...
 ~ 0.35 KeV/cm for He.

 \rightarrow T_{cut} of a few 100 keV is a cut on the energy deposit on a single drift chamber cell (i.e. the measured pulse height).

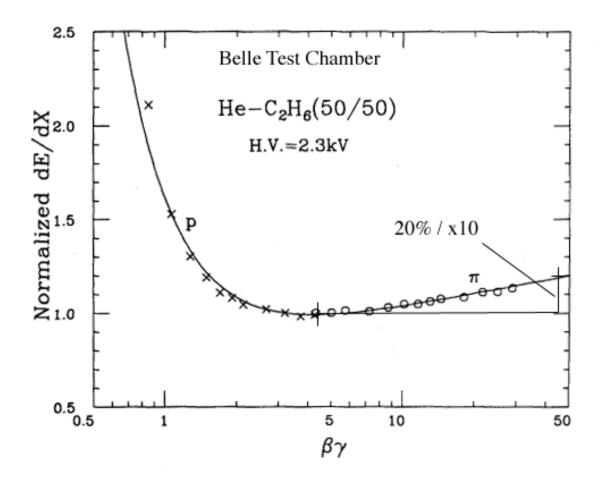


• The kink at $\log_{10} p \sim 2.7$ is due to the density effect:

$$rac{\delta}{2}\sim -\ln\gamma_{
m sat}+\lneta\gamma-rac{1}{2}$$

• The logarithmic rise reduced by about factor of 2 by T_{cut} , but no difference between $T_{cut} = 100$ keV and 10 keV.

Comparison with data



Discard top 20% of pulse heights. $(T_{\rm cut} \sim 10 \ \rm keV)$

Truncated mean dEdx

Relativistic rise is nearly independent of $T_{\rm cut}$ as long as $T_{\rm cut} \sim 10 - 100$ keV.

 \rightarrow cut on the high-side tail (Landau tail) to improve dEdx resolution.

% hits discarded	dEdx σ/μ (%)
0	8.3
10	6.1
20	5.8
30	5.7
40	5.8
50	6.0
60	6.4

CLEO 2.5 example

hit per track \sim 44.5 without truncation

dEdx resolution

Empirical formula for gas-sampling device (Walenta)

$$\frac{\sigma}{\mu}(dEdx) = 0.41n^{-0.43}(xP)^{-0.32}$$

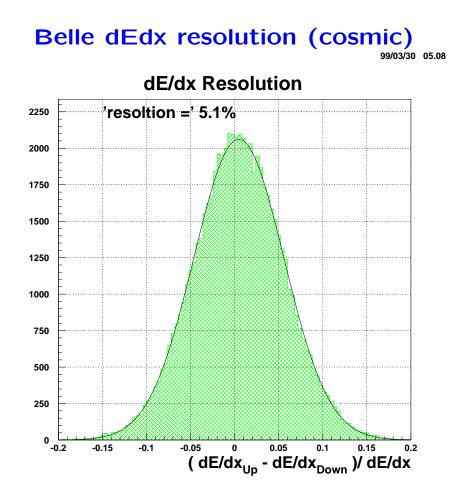
- n # sample
- x sample thickness (cm)
- *P* pressure (atm)

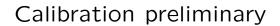
Fairly independent of the type of gas.

The Allison-Cobb obtains $n^{-0.46}$ dependence.

If each layer (xP) is independent, and simply increase the number of samples, one expects

$$rac{\sigma}{\mu} \propto n^{-0.5}$$



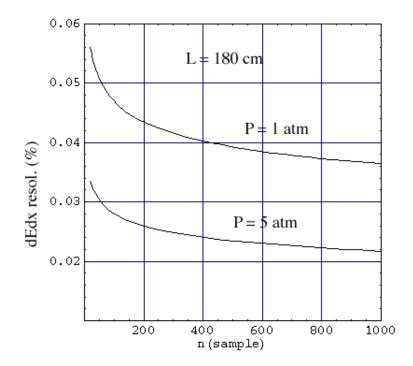


n = 52, P = 1 atm, x = 1.5 cm, \rightarrow expect 5.9%.

det.	n	x(cm)	P	exp.	meas.	
Belle	52	1.5	1 atm	6.6%	5.1% (µ)	
CLEO2	51	1.4	1 atm	6.4%	5.7% (μ)	
Aleph	344	0.36	1 atm	4.6%	4.5% (e)	
TPC/PEP	180	0.5	8.5 atm	2.8%	2.5%	
OPAL	159	0.5	4 atm	3.0%	3.1% (µ)	
MKII/SLC	72	0.833	1 atm	6.9%	7.0% (e)	

Expected and measured dEdx resolutions

Optimization: for a fixed total length, increase n: (use the scaling law)



One cannot indefinitely increase n.

• # of primary iinization n_p

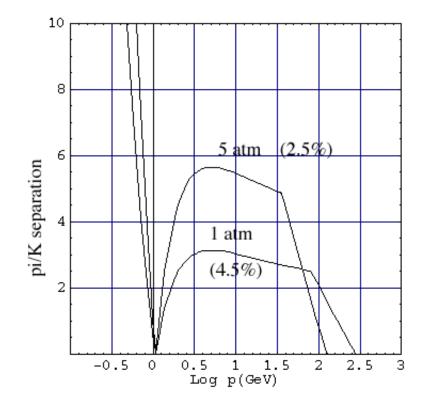
 $n_p \sim 1.5 \, Z/{
m cm}$ (Z : per molecule)

 n_p = 2/cm (He), 15/cm (CH₄), 27/cm (Ar) No gain after $n_p \sim 1$ (i.e. $x \sim$ mm)

• electronical noise

Assume 4.5% for 1 atm chamber 2.5% for 5 atm chamber .

Note: the higher the pressure, the larger the $\hbar \omega_p$ \rightarrow quicker the saturation.



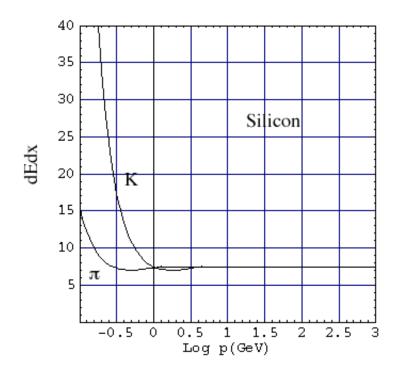
1 atm: $> 2\sigma$ for p < 0.8, 1.75 GeV/c

5 atm: > 2σ for p < 0.9, 1.25 < p < 65 GeV/c > 4σ for 1.75 < p < 50 GeV/c

dEdx in Silicon

$$\rho(\text{Si}) = 2.33 \text{ g/cm}^3 \gg \rho(\text{gas})$$
$$\hbar \omega_p(\text{Si}) \sim 35 \hbar \omega_p(\text{gas})$$
$$\gamma_{\text{sat}}(\text{Si}) = \frac{I}{\hbar \omega_p} \sim 5.4 \text{ (ref: } \gamma_{\text{min}} \sim 4)$$

 \rightarrow Essentially no logarithmic rise



dE in 5 lyrs of 0.3mm-thick Si = 0.6 MeV (\sim 1.5 m of gas) : a Si layer is **'thick'**.

dEdx Resolution in Silicon

At the mercy of landau tail.

• Babar study (Schumm)

5 lyrs Si strip, 0.3mm each Simulation based on the Vavilov model.

Discard top n pulse heights.

\overline{n}	0	1	2	3	4
σ/μ (%)	13.9	11.3	10.4	11.7	13.7

(π at 450 MeV/c)

• ALICE study (Batyunya)

2 lyrs Si strip + 2 lyrs Silicon drift Simulation based on GEANT.

Discard top 2 pulse-heights.						
$p_K(\text{GeV/c})$	0.44	0.5	0.78	0.88	0.98	
σ/μ (%)	8.6	9.1	10.4	10.6	10.6	

(Kaon)

π/K Separation by Silicon

 $4{\sim}5$ layers of Silicon layers 0.3mm each $\rightarrow \sim 11\%$ resolution near MIP.

Assume $n^{-0.43}$ and $x^{-0.32}$ dependence

$$rac{\sigma}{\mu}(dEdx) \sim 0.14 \; n^{-0.43} x ({
m mm})^{-0.32}$$

Model detector (small): n = 6, x = 0.3mm. dEdx resolution ~ 9.7%.

 $> 2\sigma \pi/K$ separation for p < 0.65 GeV/c.

- Adequate for slow and stable $\tilde{\tau}$ search.
- But no good for high-P D reconstruction etc.

Dynamic range required to go down to 100 MeV/c: $\sim 20 \times MIP$.

Summary

- The scaling law n^{-0.43}x^{-0.32} works reasonably.
 Some but not much margin of imporvement beyhond the prediction.
- At 1 atm and L = 180 cm, 4.5% resolution is realistic, 4% maybe tough. $\pi/K > 2\sigma$ sep. up to 100 GeV.
- At 5 atm, 2.5% is achievable, but $\pi/K > 2\sigma$ sep. up to 65 GeV, > 4σ up to 50 GeV/c.
- The 'blind spot' near 1 GeV/c is 0.95 GeV/c wide for 1 atm, 0.35 GeV/c for 5 atm.
- Number of sampling: larger the better up to around 1000.
- Gas: in general heavier atom the better.
- No relativistic rise for Si: effective only for p < 0.65 GeV/c. The resolution of 10% is readily achievable and adequate for heavy charged particle searches.
- Dynamic range upto 20 MIP is needed.