Results on CP Violation from B-factories

- Recent Results from Babar and Belle -

Hitoshi Yamamoto Tohoku University

November 10, 2003. Ochanomizu U.

Plan:

- 1. $\sin 2(\phi 1/eta)$ by $(car c)K_{S,L}$ modes
- 2. $\sin 2(\phi 1/\beta)$ by $b \to s$ penguin modes
- 3. $\sin 2(\phi_2/\alpha)$ by $\pi\pi$ modes
- 4. Modes related to ϕ_3/γ
- 5. Future prospects

CPV in **B** Meson System

$$\mathcal{L}_{qW}(x) = rac{g}{\sqrt{2}} \sum\limits_{i,\,j=1,3} m{V_{i\,j}} \; ar{u}_{iL} \; \gamma_\mu d_{jL} \; W^\mu$$

 $u_i = (u, c, t)$, $d_i = (d, s, b)$, and V = CKM matrix (unitary): e.g: orthogonality of *d*-column and *b*-column:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$

$$egin{aligned} lpha/\phi_2 &\equiv rg\left(rac{V_{td}V_{tb}^*}{-V_{ud}V_{ub}^*}
ight), \ eta/\phi_1 &\equiv rg\left(rac{V_{cd}V_{cb}^*}{-V_{td}V_{tb}^*}
ight), \ eta/\phi_3 &\equiv rg\left(rac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}
ight), \end{aligned}$$

e^+e^- B-Factories

 $e^+e^-
ightarrow \Upsilon(4S)
ightarrow B^0ar{B}^0, B^+B^-$

B 's nearly at rest in the $\Upsilon(4S)$ frame: $\beta_B\sim 0.06$

10-Nov-03	PEPII(BaBar)	KEKB(Belle)	CESR(CLEO2.x)
type	asymmetric	asymmetric	symmetric
#ring	double	double	single
$E_{ m beam}$ (GeV)	9(e ⁻)/3.1(e ⁺)	$8(e^-)/3.5(e^+)$	5.29(e^{\pm})
$eta_{\Upsilon(4S)}$ in lab.	0.49	0.39	0
full xing angle	0 mrad	22 mrad	4.6 mrad
$\mathcal{L}_{ m max}(imes 10^{33}/ m cm^2 s)$	6.6	10.6	1.25
$\int \mathcal{L} dt$ (recd. fb $^{-1}$)	141.2	160.0	13.7
off resonance	9%	9%	1/3

Basic design: Vertexing(Si)-Central tracker(DC)-PID-SC coil -EM calorimeter(CsI)-Muon system(RPC)

BaBar detector

• PID=DIRC(Cerenkov) • PID=Aerogel+TOF

Belle detector

Measurement of $\sin 2(\phi_1/\beta)$ at asym. B-factories

$$\Delta t \equiv t_{CP} - t_{tag} \sim \frac{\Delta z}{\beta \gamma c}$$

(t: decay time in the B rest frame)

CP-side Reconstruction and Flavor Tagging Belle(78 fb⁻¹)/BaBar(82 fb⁻¹)

mode	CP	N_{evt}	purity	
ΨK_S	_	1278/1144	0.96/0.96	Flavor tagging:
$\Psi' K_S$	_	172/150	0.93/0.97	lepton ($b ightarrow \ell^- X$)
$\chi_{c1}K_S$	_	67/80	0.96/95	K^\pm $(b ightarrow c ightarrow s)$
$\eta_c K_S$	_	122/132	0.71/0.73	$\Lambda~(b ightarrow c ightarrow s)$
CP-	total	1639/1506	0.94/0.94	low-energy π^\pm (D^{*+})
ΨK_L	+	1230/988	0.63/0.55	high-energy tracks
ΨK^{*0}	+/-	89/147	0.92/0.81	

Full B Reconstruction (When all B decay products are detected)

 $B \to f_1 \cdots f_n$

(In the $\Upsilon 4S$ frame) $E_B = 5.28$ GeV and $|\vec{P}_B| = 0.35$ GeV/c are known. Use energy-momentum conservation:

•
$$E_B = \Sigma_i^n E_i \rightarrow \Delta E \equiv E_B - E_{\text{beam}}$$

• $\vec{P}_B = \Sigma_i^n \vec{P}_i \rightarrow M_{bc} \equiv \sqrt{E_{\text{beam}}^2 - P_B^2}$

(In the lab. frame: no need to boost) $q_{\Upsilon} = (E_{\Upsilon}, \vec{P}_{\Upsilon}), \quad q_B = (E_B, \vec{P}_B)$

•
$$M_{ES} = \sqrt{s/2 + \vec{P}_{\Upsilon} \cdot \vec{P}_B)^2 / E_{\Upsilon}^2 - \vec{P}_B^2}$$

• $\Delta E = (q_{\Upsilon} \cdot q_B) / \sqrt{s} - \sqrt{s}$

 $M_{bc} = M_{ES}$ if masses are correct.

Charmonium $K_{S,L}$ Mode Reconstruction

BaBar

Belle

 $q=+1~{\rm Tag}$ side is B^0 , $\qquad \xi_f:{\rm CP}$ eigenvalue. -1 for $J/\Psi K_S$

We observed:

If the tagside is B^0 , the $J/\Psi K_S$ side tends to decay later than the tagside.

If the tagside is \overline{B}^0 , the $J/\Psi K_S$ side tends to decay later than the tagside. :Inconsistent with observation.

 $\rightarrow CP$ violation

Asymmetry is opposite for CP + and -.

Flavor-tagged $\Upsilon(4S) \rightarrow B^0 \bar{B}^0$

General expression for the decay time distribution.

$$\begin{cases} B_H = pB^0 - q\bar{B}^0 \\ B_L = pB^0 + q\bar{B}^0 \end{cases}, \qquad \begin{array}{c} B_i(t) = B_i e^{-i\omega_i t} \\ (\omega_i = m_i - i\frac{\gamma}{2}) \end{array} \quad (i = H, L) \end{cases}$$

(Assume CPT and $\gamma_H = \gamma_L \equiv \gamma$)

 $\left|\Gamma(\Delta t) \propto e^{-\gamma |\Delta t|} \left[1 + q(S \sin \delta m \Delta t + A \cos \delta m \Delta t)\right]\right|$

$$\Delta t \equiv t_{
m signal} - t_{
m tag}
onumber \ q = +, -$$
 for $B^0, ar{B}^0$ tag

$$oldsymbol{S}\equivrac{2\,{
m Im}\lambda}{|\lambda|^2+1}, \quad oldsymbol{A}\equivrac{|\lambda|^2-1}{|\lambda|^2+1}, \quad \lambda\equivrac{qar{A}}{pA}$$

f : CP Eigenstate

In SM, we expect (phase convention: $CP|B^0
angle=|ar{B}^0
angle$)

$$\frac{q}{p} = e^{-2i\phi_1} \quad \rightarrow \quad \left|\frac{q}{p}\right| = 1$$

 $|\lambda| \neq 1 (A \neq 0)$ means $|A(\bar{B}^0 \to f)| \neq |A(B^0 \to f)|$: (direct CPV)

If $CP|f\rangle = \xi_f|f\rangle$, and the decay is CP invariant $((CP)S(CP)^{\dagger} = S)$,

Results on Charmonium- $K_{S,L}$ Analyses

 $S: \Delta t \leftrightarrow -\Delta t$ asymmetry $A: q+ \leftrightarrow q-$ area asymmetry

 $\sin 2(\phi_1/\beta) = \begin{cases} 0.733 \pm 0.057(\text{stat}) \pm 0.028(\text{sys}) & \text{(Belle)} \\ 0.741 \pm 0.067(\text{stat}) \pm 0.034(\text{sys}) & \text{(BaBar)} \end{cases}$

(World average) $\sin 2(\phi_1/\beta) = 0.736 \pm 0.049$

Direct CPV (Belle, BaBar combined) $A_{Belle}(\equiv -C_{BaBar}) = -0.052 \pm 0.047$

No indication of direct CPV.

Unitarity triangle

All regions cross at one point!

CP contents in $\Psi K^{*0}(o K_S\pi^0)$

 $B \text{ (spin-0)} \rightarrow \Psi \text{ (spin-1) } K^{*0} \text{ (spin-1)}$ 3 polarization states: helicities = (++, --, 00)

 $egin{aligned} & o A_{\parallel} = rac{1}{2}(H_{++} + H_{--}), \quad A_0 = H_{00}, \quad A_{\perp} = rac{1}{2}(H_{++} - H_{--}) \ & A_{\parallel}, A_0 \colon CP +, \quad A_{\perp} \colon CP - \end{aligned}$

Full angular analysis of the isospin-related modes $[\Psi K^{*0}(K^+\pi^-),\Psi K^{*+}(K^+\pi^0,K^0\pi^+)]$

(ΨK^{*0} used as incoherent sum of $CP\pm$ in the previous analysis)

$\Psi K^{*0} \Delta t$ Full Angular Analysis (Belle 78fb⁻¹)

$$rac{d\Gamma}{dec{ heta} d\Delta t} \propto e^{-rac{|\Delta t|}{ au_B}} \mathop{\scriptstyle \sum}\limits_{i=1}^6 g_i(ec{ heta}) a_i(\Delta t) \ ec{ heta} \equiv (\cos heta_t, \phi_t, \cos heta')$$

Information on $\cos 2\phi_1$ (as well as on $\sin 2\phi_1$) thourgh interference of $A_{\parallel/0}$ and A_{\perp} : (B. Kaiser)

$$a_{5/6} = q [\operatorname{Im}(A_{\parallel/0}^* A_{\perp}) \cos \delta m \Delta t - \operatorname{Re}(A_{\parallel/0}^* A_{\perp}) \cos 2\phi_1 \sin \delta m \Delta t]$$

 $\left\{egin{array}{l} g_5 = \sin^2 heta'\sin2 heta_t\sin\phi_t\ g_6 = rac{1}{\sqrt{2}}\sin2 heta'\sin2 heta_t\cos\phi_t\end{array}
ight.$

$\Psi K^{*0}(ightarrow K_S\pi^0)$ Results (Belle)

Unbinned likelihood fit to $(\vec{\theta}, \Delta t)$ distribution.

$\sin 2\phi_1$ floated:

 $\sin 2\phi_1 = 0.13 \pm 0.51 \pm 0.06$, $\cos 2\phi_1 = 1.40 \pm 1.28 \pm 0.19$.

 $\sin 2\phi_1 = 0.82$ fixed:

 $\cos 2\phi_1 = 1.02 \pm 1.05 \pm 0.19$.

$B \rightarrow D^{*+}D^{*-}$ CP Fractions

frac(CP-) = 0.063 ± 0.055 ± 0.009 (BaBar)
Consistent with HQET+Factoriization (Rosner).

 $B \rightarrow D^{*+}D^{*-} (\Delta t, \theta_t)$ Fit (BaBar)

$$f(\theta_t, \Delta t) = e^{-\frac{\Delta t}{\tau_B}} [G(\lambda_i; \theta_t) + q(S(\lambda_i; \theta_t) \sin \Delta m \Delta t - C(\lambda_i; \theta_t) \cos \Delta m \Delta t)]$$

 $\lambda_{-}(CP-)$ fixed in fit.

 $egin{aligned} {
m Im} \lambda_+ &= 0.05 \pm 0.29 \pm 0.10 \ |\lambda_+| &= 0.75 \pm 0.19 \pm 0.02 \end{aligned}$

If no Penguin (SM): ${\rm Im}\lambda_+=-\sin 2eta,\; |\lambda_+|=1$

 $\mathrm{Im}\lambda_+$: > 2σ from $\sin 2\beta$

Time-dependent CPV of $b \rightarrow s$ penguin modes

$$ar{B}^0
ightarrow egin{cases} \phi K_S \ K^+K^-K_S({
m no} \ \phi, D0, \chi_{c0}) \ \eta'K_s \end{cases}$$

In SM, expect
$$S \sim -\xi_f \sin 2\phi_1$$
, $A \sim 0$

Deviation therefrom \rightarrow new physics in $b \rightarrow s$ (e.g. the W-loop replaced by a charged Higgs loop)

Continuum Suppression

Most rare modes: background is dominated by continuum $e^+e^- \rightarrow q\bar{q}$ 2-jet events.

- Event shape variables: Fox-Wolfram R_l , thrust, etc. continuum: skinny, $B\bar{B}$: spherical.
- Angle(B candidate axis, axis of the rest) continuum: aligned, $B\overline{B}$: uniform.
- Angle(*B*, beam) continuum: $1 + \cos^2 \theta$, *B*: $\sin^2 \theta$.
- Fisher: $F = \sum_i c_i X_i$ (above+ X_i energy flow etc.) Adjust c_i to maximize the separation.

Belle ϕK_S (140 fb⁻¹)

r: tagging purity

Belle ϕK_S (140 fb⁻¹)

r: tagging purity

Belle $b \rightarrow s$ Penguins Results

$(140 {\rm fb}^{-1})$	$\sin 2\phi_1"(-\xi_f S)$	A
ϕK_S	$-0.96\pm0.50^{+0.09}_{-0.11}$	$-0.15 \pm 0.29 \pm 0.07$
$K^+K^-K_S(\text{non res.})$	$+0.51\pm0.26\pm0.05^{+0.18}_{-0}$	$-0.17 \pm 0.16 \pm 0.04$
$\eta' K_S$	$+0.43 \pm 0.27 \pm 0.05$	$-0.01 \pm 0.16 \pm 0.04$
$J/\Psi K_{S/L}~{ m etc.}$	0.736 ± 0.049	~ 0

 $CP(K^+K^-K_S) = +$ mostly (the last sys errors).

BaBar $b \rightarrow s$ Penguins

 $S_{\eta'K_S} = 0.02 \pm 0.34 \pm 0.03$ $C_{\eta'K_S} = 0.10 \pm 0.22 \pm 0.03$ $S_{\phi K_S} = +0.45 \pm 0.43 \pm 0.07 \ C_{\phi K_S} = +0.38 \pm 0.37 \pm 0.12$

$$S_{\eta'K_S}=S_{\phi K_S}="\sin 2eta"(SM)$$

CP content of $K^+K^-K_S$ (Belle)

	Signal yield (evts)	𝔅(90% U.L.)(×10 ^{−6})
$K^+K^-K^+$	565 ± 30	$33.0\pm1.8\pm3.2$
$K^0K^+K^-$	149 ± 15	$29.0\pm3.4\pm4.1$
$K_SK_SK^+$	66.5 ± 9.3	$13.4\pm1.9\pm1.5$
$K_SK_SK_S$	$12.2\substack{+4.5 \\ -3.8}$	$4.3^{+1.6}_{-1.4}\pm 0.75$
$K^+K^-\pi^+$	93.7 ± 23.2	$9.3 \pm 2.3 (< 13)$
$K^0K^-\pi^+$	26.8 ± 16.6	$8.4 \pm 5.2 (< 15)$

(Belle 79 fb $^{-1}$)

 $K^+K^-K^+$

 $K_SK_SK^+$

 $(K^{+}K^{-})K_{S} \text{ system:}$ $\bullet L_{(K^{+}K^{-})-K_{S}} = L_{K^{+}-K^{-}} \equiv L \text{ (}B \text{ is spinless)}$ $\bullet CP(K^{+}K^{-}) = + \text{ (any } L \text{, since } C = P)$ $\bullet CP(K^{+}K^{-}K_{S}) = \underbrace{CP(K^{+}K^{-})}_{+}\underbrace{CP(K_{S})}_{+}(-)^{L} = (-)^{L}$

Even/odd $L_{K^+-K^-} \rightarrow \text{even/odd} \ CP(K^+K^-K_S)$

On the other hand,

Expect $B \to K\bar{K}K$ to be dominated by $b \to s$ penguin. In fact: since no $b \to s$ penguin (odd s/\bar{s}) in $K\bar{K}\pi$ (even s/\bar{s}),

$$F \equiv rac{\Gamma_{b o u}^{3K}}{\Gamma_{ ext{total}}^{3K}} \sim rac{\mathcal{B}(K^+K^-\pi^+)}{\mathcal{B}(K^+K^-K^+)} \left(rac{f_K}{f_\pi}
ight)^2 an^2 heta_c = 0.022 \pm 0.005$$
 $(F = 0.023 \pm 0.013 ext{ using } K_S K^-\pi^+ ext{ and } K_S K^-K^+)$

We can assume 3K modes are 100% due to $b \rightarrow s$ penguin.

Then,

$$ar{B}^0(bar{d})
ightarrow inom{s}{ar{d}} + inom{(sar{s})}{(uar{u})}
ightarrow egin{array}{c} K^-(sar{u}) \ K^+(ar{s}u) \ ar{K}^0(sar{d}) \end{array} \ u \leftrightarrow d, \ ar{u} \leftrightarrow egin{array}{c} inom{l}{ar{d}} \ everywhere \ (isospin) \ inom{l}{ar{u}} \end{array} \ B^-(bar{u})
ightarrow inom{s}{ar{u}} + inom{(sar{s})}{(dar{d})}
ightarrow ar{K}^0(sar{d}) \ K^0(ar{s}d) \ K^0(ar{s}d) \ K^-(sar{u}) \end{array}$$

 $ar{B^0} o K^+ K^- ar{K^0}$ and $B^- o ar{K^0} K^0 K^-$ have the same rate and the same kinematic configuration.

$$\mathrm{also}: \quad (ar{K}^0 K^0)_{Leven} o K_S K_S, K_L K_L \,, \quad (ar{K}^0 K^0)_{Lodd} o K_S K_L \,.$$

$$\frac{CP(K^+K^-\bar{K}^0)+}{CP(K^+K^-\bar{K}^0)\text{any}} = \frac{K^+K^-\bar{K}^0(L_{K^+K^-}\text{even})}{K^+K^-\bar{K}^0(L_{K^+K^-}\text{any})} = \frac{\bar{K}^0K^0K^-(L_{\bar{K}^0K^0}\text{even})}{\bar{K}^0K^0K^-(L_{\bar{K}^0K^0}\text{any})}$$

$$= \frac{2(K_S K_S K^-)}{(K^+ K^- \bar{K}^0)} = \begin{cases} 0.86 \pm 0.15 \pm 0.05 & \text{(incl. } \phi K_S) \\ 1.04 \pm 0.19 \pm 0.06 & (\phi K_S \text{ removed}) \end{cases}$$

$b \rightarrow s$ Penguin Δt Analyses Summary

Average of sss modes: (if such has any meaning) more than 2σ away from $(c\bar{c})X_s$ mode.

Time-dependent CPV analysis of $\pi^+\pi^-$

$$egin{aligned} rac{d\Gamma}{d\Delta t} &\propto e^{-rac{|\Delta t|}{ au_B}} \left[1+q(m{S}_{\pi\pi}\sin\delta m\Delta t+m{A}_{\pi\pi}\cos\delta m\Delta t)
ight. \ &m{S}_{\pi\pi} = rac{{
m Im}\lambda}{|\lambda|^2+1}, \quad m{A}_{\pi\pi} = -m{C}_{\pi\pi} = rac{|\lambda|^2-1}{|\lambda|^2+1}. \ &egin{aligned} &m{S}_{\pi\pi} |^2+|m{C}_{\pi\pi}|^2 \leq 1 \end{aligned}$$

 $S_{\pi\pi} = \sin 2(\phi_2/\alpha)$ IF SM no penguin polution $A_{\pi\pi} = 0$ IF no direct CPV

Belle $\pi^+\pi^- \Delta t$ Fit

- Use the same flavor tagging as the ϕ_1 analysis.
- Unbinned likelihood fit for Δt distribution.
- $K^-\pi^+$ asymmetry known (~ 0). \rightarrow Its shape is known.

$$(q + \text{area}) > (q - \text{area}) \rightarrow A_{\pi\pi} > 0.$$

• Left-right asymmetry $\rightarrow S_{\pi\pi}$. (opposite signs for $q\pm$)

$$egin{aligned} S_{\pi\pi} = -1.23 \pm 0.41 ^{+0.08}_{-0.07} \ A_{\pi\pi} = +0.77 \pm 0.27 \pm 0.08 \end{aligned}$$

Statical errors estimated by 'pseudo experiments' (Gives more consevative errors in general than the fit output.)

Belle $\pi^+\pi^-$ Result

Feldman-Cousin

CPV $(S_{\pi\pi}, A_{\pi\pi})$ at 3.4 σ . Direct CPV $(A_{\pi\pi})$ at 2.2 σ .

$$\lambda = e^{-2i\phi_2}rac{1+|P/T|e^{i(\delta+\phi_3)}}{1+|P/T|e^{i(\delta-\phi_3)}}$$

Assuming, $\phi_3 = \pi - \phi_1 - \phi_2$, $\phi_1 = 23.5^\circ$ (Belle, BaBar), and $|P/T| = 0.15 \sim 0.45$ (th. av.~ 0.3) fit for ϕ_2 and δ :

$$ightarrow 78 < \phi_2 < 152^\circ$$

 $\delta \sim -100^{\circ}$: large strong phase

BaBar $\pi^+\pi^- \Delta t$ Analysis

BaBar (81 fb $^{-1}$)

$S_{\pi\pi} = 0.02 \pm 0.34 \pm 0.05 \ C_{\pi\pi} = -0.30 \pm 0.25 \pm 0.04$

No indication of CPV (indirect or direct).

$$ho^{\pm}\pi^{\mp}~\Delta t$$
 Analyses (BaBar)

Two final states : $\rho^+\pi^-$ and $\rho^-\pi^+ \to (S,C)$ for each.

Total integrated yield asummetry A: $\rho^+\pi^- \leftrightarrow \rho^-\pi^+$ (regardless of tag) (different from A_{CP} or from A(Belle) = -C(BaBar))

Parametrize as

 $f_{\rho^{\pm}}(\Delta t) = (1 \pm \mathbf{A})e^{-\frac{\Delta t}{\tau_B}} \left[1 + q\left\{(\mathbf{S} \pm \Delta \mathbf{S})\sin\delta mt - (\mathbf{C} \pm \Delta \mathbf{C})\cos\delta mt\right\}\right]$

$\rho^{\pm}\pi^{\mp}$ Results (BaBar)

 $egin{aligned} A_{
ho\pi} &= -0.18 \pm 0.08 \pm 0.03 \ S_{
ho\pi} &= & 0.19 \pm 0.24 \pm 0.03 \ \Delta S_{
ho\pi} &= & 0.15 \pm 0.25 \pm 0.03 \ C_{
ho\pi} &= & 0.36 \pm 0.18 \pm 0.04 \ \Delta C_{
ho\pi} &= & 0.28 \pm 0.18 \pm 0.04 \end{aligned}$

From all these, one can extract usual A_{CP} :

$$egin{aligned} &A_{CP}(ar{B}^0 o
ho^+ \pi^-) = -0.62^{+0.24}_{-0.28} \pm 0.06 \ &A_{CP}(ar{B}^0 o
ho^- \pi^+) = -0.11^{+0.16}_{-0.17} \pm 0.04 \end{aligned}$$

Slightly more than 2σ of DCPV.

$D^{(*)}\pi$, Δt Analyses ($2eta+\gamma$, BaBar)

$D^{(*)}\pi \ \Delta t$ Distributions (BaBar)

Tag: lepton+K. lepton tags are shown.

$D^{(*)}\pi$ Results (BaBar)

Include tag-side $b \rightarrow u$ interference (K-tag only):

$$q2r\sin(2\beta+\gamma-\delta)+2r'\sin(2\beta+\gamma+q\delta')$$

Same order as the original CPV effect.

Partial $D^*\pi$:

 $2r_* \sin(2eta + \gamma) \cos \delta_* = -0.063 \pm 0.024 \pm 0.017$ $2r_* \cos(2eta + \gamma) \sin \delta_* = -0.004 \pm 0.037 \pm 0.020$ Full $D^{(*)}\pi$:

 $2r\sin(2eta+\gamma)\cos\delta = -0.022 \pm 0.038 \pm 0.021$ $2r\cos(2eta+\gamma)\sin\delta = 0.025 \pm 0.068 \pm 0.035$ $2r_*\sin(2eta+\gamma)\cos\delta_* = -0.068 \pm 0.038 \pm 0.021$ $2r_*\cos(2eta+\gamma)\sin\delta_* = 0.031 \pm 0.070 \pm 0.035$ Implication of $D^{(*)}\pi$ Analysis on γ (BaBar) BaBar result on $Br(D_s^{(*)+}\pi^-) + SU(3)$ $r = 0.021^{+0.004}_{-0.005}, \quad r_* = 0.017^{+0.005}_{-0.007}.$

> Fit $sin(2\beta + \gamma)$ and δ , δ_* : $sin(2\beta + \gamma) > 0.76$ (90% *C.L.*)

Note: with $\sin 2\beta = 0.735$ $\sin(2\beta + \gamma) > 0.76$ means $-3^{\circ} < \gamma < 97^{\circ}$

B ightarrow DK for ϕ_3/γ

 $B^- \rightarrow D_{CP}K^-$

Interference of $B^-
ightarrow D^0 K^- / B^-
ightarrow ar{D}^0 K^-$

$$r\equiv rac{|B|}{|A|}=0.1$$
-0.2

 $\sim 10\%$ asymmetry expected. Depends on strong phase δ .

#c = 1 in final state \rightarrow no penguin polution. Eventually extract γ .

$B^{\pm} \rightarrow D_{CP} K^{\pm}$ (Belle 78 fb⁻¹)

 D^0h^- : assign π mass to h^- . Signal at $\Delta E = -49$ MeV.

PID (π/K separation) important.

 $B^- \rightarrow D_{CP}K^-$ (BaBar 81.2 fb⁻¹)

 $B^{\pm} \rightarrow D_1 K^{\pm}$

$B^- \rightarrow D_{CP}K^-$ Parameters

Rate asymmetry :

$$A_{1/2} = rac{\mathcal{B}(B^- o D_i K^-) - \mathcal{B}(B^+ o D_i K^+)}{\mathcal{B}(B^- o D_i K^-) + \mathcal{B}(B^+ o D_i K^+)} = rac{\pm 2r \sin \phi_3 \sin \delta}{1 + r^2 \pm 2r \cos \phi_3 \cos \delta}$$

Ratio of Cabibbo suppression factors, D_i vs D^0 :

$$egin{aligned} R_i &= rac{CS_{Di}}{CS_{D^0}} \ (i=1,2) \,, \quad CS_X = rac{\Gamma(B^- o XK^-) + c.c.}{\Gamma(B^- o X\pi^-) + c.c.} \ (X=D_i,D^0) \ R_{1/2} &= 1 + r^2 \pm 2r \cos \phi_3 \cos \delta \ (& ext{Error at } O(r^2) ext{ if } K^-\pi^+ ext{ is used for } D^0 \ (ext{DCSD}).) \end{aligned}$$

Sensitivity to r at $O(r^2)
ightarrow r$ cannot be obtained by fit to $A_{1/2}$ and $R_{1/2}$.

However,

$$A_2 \sim -A_1 ~~O(r)\,,~~~rac{A_1-A_2}{2} \sim 2r \sin \phi_3 \sin \delta ~~O(r^2)$$
Also, $A_1 R_1 = -A_2 R_2$

$B^{\pm} \rightarrow D_{CP} K^{\pm}$ Results

	CP+	CP-
Belle	$A_1 = 0.06 \pm 0.19 \pm 0.04$	$A_2 = -0.19 \pm 0.17 \pm 0.05$
(<i>DK</i>)	$R_1 = 1.21 \pm 0.25 \pm 0.14$	$R_2 = 1.41 \pm 0.27 \pm 0.15$
BaBar	$A_1 = 0.17 \pm 0.23 \pm 0.08$	
(<i>DK</i>)	$R_1 = 1.06 \pm 0.26 \pm 0.17$	
$\boxed{Belle(DK^*)}$	$A_1 = -0.02 \pm 0.33 \pm 0.07$	$A_2 = 0.09 \pm 0.50 \pm 0.04$

From DK results,

$$2r\sin\phi_3\sin\delta=rac{A_1-A_2}{2}=0.15\pm0.12\,.$$

$B \rightarrow$ non-charm Rate Asymmetries

Direct CPV by tree-penguin interference.

e.q. for $K^-\pi^0$:

Statistically more favorable than DK modes, but theoretically challenging.

Future: use theoretical models (PQCD, QCD factorization, Charming penguin, etc.) for A_{CP} and Br's to extract ϕ_3 .

$B \rightarrow$ non-charm Rate Asymmetries

 $A_{CP} \equiv rac{\Gamma(ar{B}
ightarrow ar{f}) - \Gamma(B
ightarrow f)}{\Gamma(ar{B}
ightarrow ar{f}) + \Gamma(B
ightarrow f)}$

 A_{CP} by HFAG (Heavy Flavor Averaging Group) 2003 Winter

RPP#	Mode	PDG2002 Avg.	BABAR	Belle	CLEO	A_{CP} Avg.
86	$K^0\pi^+$	-0.05 ± 0.14	$-0.17 \pm 0.10 \pm 0.02$	$0.02 \pm 0.09 \pm 0.01$	$0.18 \pm 0.24 \pm 0.02$	-0.05 ± 0.07
87	$K^+\pi^0$	-0.10 ± 0.12	$-0.09 \pm 0.09 \pm 0.01$	$-0.02 \pm 0.19 \pm 0.02$	$-0.29 \pm 0.23 \pm 0.02$	-0.10 ± 0.08
88	$\eta' K^+$	-0.02 ± 0.07	$0.04 \pm 0.05 \pm 0.01$	$-0.02 \pm 0.07 \pm 0.01$	$0.03 \pm 0.12 \pm 0.02$	0.02 ± 0.04
92	ωK^+			$-0.21 \pm 0.28 \pm 0.03$		-0.28 ± 0.19
117	ϕK^+	-0.05 ± 0.20	$-0.05 \pm 0.20 \pm 0.03$			-0.05 ± 0.20
120	ϕK^{*+}	$-0.43^{+0.36}_{-0.31}$	$0.16 \pm 0.17 \pm 0.04$			0.16 ± 0.17
131	$\pi^+\pi^0$		$-0.03^{+0.18}_{-0.17}\pm0.02$	$0.30\pm0.30^{+0.30}_{-0.06}$		0.05 ± 0.15
143	$\omega \pi^+$	-0.21 ± 0.19	$-0.01^{+0.29}_{-0.31}\pm0.03$		$-0.34 \pm 0.25 \pm 0.02$	-0.21 ± 0.19
88	$K^+\pi^-$	-0.09 ± 0.06	$-0.10 \pm 0.05 \pm 0.02$	$-0.06\pm0.09^{+0.09}_{-0.01}$	$-0.04 \pm 0.16 \pm 0.02$	-0.05 ± 0.05
89	$K^0\pi^0$		$0.03 \pm 0.36 \pm 0.09$			0.03 ± 0.37
99	$K^+ \rho^-$		$0.19 \pm 0.14 \pm 0.11$			0.19 ± 0.18
103	$K^{*+}\pi^-$				$0.26\substack{+0.33+0.10\\-0.34-0.08}$	$0.26^{+0.33}_{-0.34}^{+0.10}_{-0.08}$
115	ϕK^{*0}	0.00 ± 0.27	$0.04 \pm 0.12 \pm 0.02$			0.04 ± 0.12
53	$K^*\gamma$	-0.01 ± 0.07	$-0.044 \pm 0.076 \pm 0.012$	$-0.022\pm0.048\pm0.017$	$-0.08 \pm 0.13 \pm 0.03$	-0.03 ± 0.04

(In PDG 2002 New since PDG2002)

$B \rightarrow$ non-charm Rate Asymmetries (New)

A_{CP}	BaBar	Belle
$K^+\pi^-$		$-0.07 \pm 0.06 \pm 0.01$
$K^+\pi^0$		$0.23\pm0.11^{+0.01}_{-0.04}$
$K^0\pi^+$		$0.07\substack{+0.09+0.01\\-0.08-0.03}$
$\pi^+\pi^0$		$-0.14\pm0.24^{+0.05}_{-0.04}$
$\eta\pi^+$	$-0.51^{+0.20}_{-0.18}\pm0.01$	
ηK^+	$-0.32^{+0.22}_{-0.18}\pm0.01$	
$\omega\pi^+$	$0.04 \pm 0.17 \pm 0.01$	$0.48^{+0.23}_{-0.20}\pm0.02$
ωK^+	$-0.05 \pm 0.16 \pm 0.01$	$0.06^{+0.20}_{-0.18}\pm0.01$
ϕK^+	$0.039 \pm 0.086 \pm 0.011$	$0.01 \pm 0.12 \pm 0.05$
$ ho^0\pi^+$	$-0.17 \pm 0.11 \pm 0.02$	
$ ho^+\pi^0$	$0.23 \pm 0.16 \pm 0.06$	
$ ho^+K^-$	$0.28 \pm 0.17 \pm 0.08$	$0.22\substack{+0.22+0.06\-0.23-0.02}$
$K^+\pi^-\pi^0$		$0.07 \pm 0.11 \pm 0.01$
$\pi^+\pi^-\pi^+$	$-0.39 \pm 0.33 \pm 0.12$	
$K^+\pi^-\pi^+$	$0.01 \pm 0.07 \pm 0.03$	
$K^+K^-K^+$	$0.02 \pm 0.07 \pm 0.03$	

New since HFAG03, Winter:

Remarks on $B \rightarrow$ non-charm Rate Asymmetries

- Some modes are penguine-dominated. $(K^0\pi^+,~\eta'K^+) \rightarrow A_{CP} \sim 0.~{
 m OK}.$
- $A_{CP}(\eta \pi^+) = -0.51 \pm 0.20$ significant? $\eta \pi^+, \eta K^+, \eta' \pi^+$ are thoretically expected to have large A_{CP} . Interesting to see more stat.
- Theoretical uncertainties are still large.

A_{CP}	exp.	PQCD	QCDF	Charming Penguin
$K^+\pi^-$	-0.08 ± 0.04	$-0.129\sim -0.219$	0.05 ± 0.09	0.21 ± 0.22
$K^+\pi^0$	0.00 ± 0.07	$-0.100\sim-0.173$	0.07 ± 0.09	0.22 ± 0.13
$K^0\pi^+$	0.02 ± 0.06	$-0.006 \sim 0.0015$	0.01 ± 0.01	0.0

Models do not agree well, except for $K^0\pi^+$ (penguin dom.).

Future Prospects

 e^+e^- machines

- CLEO-c : 30M $D\bar{D}$'s (now running).
- Belle/BaBar : 3-400 fb⁻¹ each by 2005 (×5 more than presented today)
- Proposed :

	Super-Belle	Super-BaBar	now
$I_{\mathrm{beam}}(A)$	3.5/8	9.6/22	1/1.5
$\mathcal{L}(/cm^2s)$	$10^{35 \sim 36}$	10^{36}	10^{34}
Starts	~ 2007	~ 2010	
sensitivities	(1yr)	(1yr)	
$\sigma_{\sin 2\phi_{ m 2eff}}$	0.060	0.032	0.2
$\sigma_{\sin(2\phi_1+\phi_3)}$	0.077	0.030	0.3
$\sigma_{\phi_3}(DK)$	$\sim 10^{\circ}$	$\sim 2.5^{\circ}$	-
$N(X_s u ar{ u})$		160	
N(au u)		350	

General Purpose Detectors at Hadron Machines

- 1. Tevatron Run2. (CDF, D0)
 - 150 pb⁻¹ now \rightarrow 4-5 fb⁻¹ by LHC (2007)
 - With 2 fb⁻¹ (+ B_s , Λ_b physics) $\sigma_{\sin 2\beta} \sim 0.06$ (~B-factory now, different sys.) $\sigma_{A_{CP}(K^+\pi^-)} \sim 1 \sim 10\%$.
- 2. LHC. (ATLAS, CMS)
 - \bullet B-physics while intensity is not too high.
 - $\sigma_{\sin 2lpha_{
 m eff}} \sim 0.09~(\#\pi^+\pi^- \sim 2.3K)$ Not as good as BTeV/LHCb.
 - $#(B \rightarrow \mu\mu) \sim 30$ $#(B \rightarrow s\mu\mu) \sim 5K$ As good as BTeV/LHCb

Dedicated B-Facilities at Hadron Machines

BTeV at Tevatron $p\bar{p}$ at $E_{CM} = 2$ TeV Approved by lab. Pending P5 panel. 2009 \rightarrow LHCb at LHC pp at $E_{CM} = 14$ TeV Under construction. $2007 \rightarrow$

BTeV/LHCb Sensitivities/1yr(10⁷**s)**

(#events sinsitivity)

		LHCb		BTeV
$\sigma_{bar{b}}$		$500 \mu b$		$100\mu b$
$\# b \overline{b}$		10^{12}		$1.5 imes10^{11}$
$B_d ightarrow J/\Psi K_S$	119 <i>K</i>	$\sigma_eta\sim 0.6^\circ$	168K	$\sigma_{\sin 2eta} \sim 0.017$
$B_d o ho^0 \pi^0$			0.78K	$\sigma_lpha\sim4^\circ$
$\left\{egin{array}{l} B_d ightarrow \pi^+\pi^- \ B_s ightarrow K^+K^- \end{array} ight.$	$27K \\ 35K$	$\sigma^*_{lpha}\sim 510^\circ$	14.6K $18.9K$	$\sigma_A \sim 0.03 \ \sigma_A \sim 0.02$
$B_s ightarrow D_s K$	8K	$\sigma_\gamma \sim 10^\circ$	7.5K	$\sigma_{\gamma-2\chi}\sim 8^{\circ}$
$B_s o J/\Psi \phi$	128K	$\sigma_{2\delta\gamma}\sim 2^\circ$		
$B_s o J/\Psi \eta/\eta'$			12.6K	$\sigma_{\sin 2\chi} \sim 0.024$

* Requires SU(3) modeling.

pros: B_s , PID, long decay lengths

Summary

- CPV in charmonium $K_{S,L}$ modes firmly established. $\sin 2(\phi_1/\beta) = 0.736 \pm 0.049$ cosistent with SM.
- Hint of deviation of " $\sin 2\phi_1$ " (ϕK_S) from SM by Belle, but not by BaBar.
- HInt of direct CPV in $\pi^+\pi^-$ by Belle, but not by BaBar.
- Hint of direct CPV in $\rho^+\pi^-$ (BaBar).
- Accuracy of ϕ_3/γ by $D^{(*)}\pi$ modes is becoming meaningful.
- Sensitivity in A_{CP} of DK modes is approaching interesting region.
- No clear direct CPV in rate asymmetries A_{CP} , except for some hint in $\eta \pi^+$.