Measurements of ϕ_3 at SuperKEKB

Hitoshi Yamamoto

Tohoku University

SuperKEKB workshop. KEK, Jan 29, 2002.

- **1.** Definition of ϕ_3 .
- 2. Mixing-decay inteference: $D^{(*)+}\pi^-$
- 3. + angles: $D^{*+}\rho^-$ mode 4. Direct CPV in $D^{(*)}K^{(*)}$
- 5. $K\pi, \pi\pi$ modes

V_{CKM} is unitary: e.g. orthogonality of d- and b-column:

In general models, there are 5 phase differences for 6 quarks \rightarrow 5 elements of V can be set to real always.

For example ('our phase convention')

$$m{V} = egin{pmatrix} m{V}_{ud} & m{V}_{us} & m{V}_{ub} \ m{V}_{cd} & m{V}_{cs} & m{V}_{cb} \ m{V}_{td} & m{V}_{ts} & m{V}_{tb} \end{pmatrix} & m{V}_{i,j}: ext{real} \ m{V}_{i,j}: ext{complex}$$

In SM (in our phase convention), $V_{cs}, V_{tb} \sim$ real :

$$V \sim egin{pmatrix} 1 - rac{\lambda^2}{2} & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - rac{\lambda^2}{2} & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \ \end{pmatrix}$$
 (Wolfenstein) $(A,
ho, \eta, \lambda : ext{real.} \quad \lambda \sim 0.22)$

Noting that $V_{cd}\sim -\lambda < 0$, $\phi_3 = rg V_{ub}^*$ in our phase convention.

$B ightarrow D^{(*)+} \pi^-$

Mixing \rightarrow non-*CP* final state Sachs (1985), Dunietz, Rosner PRD34 (1986) 1404.

General time-dependent decay amplitudes (Flavor-specific final states)

Assume $\gamma_a = \gamma_b$ ($B_{a,b}$: mass eigenstates)

$$\begin{split} A_{B^{0} \to f}(t) &= e^{-\frac{\gamma}{2}t} a \left(\cos \frac{\delta m t}{2} - \rho \, i \sin \frac{\delta m t}{2} \right) \quad \text{('favored')} \\ A_{\bar{B}^{0} \to \bar{f}}(t) &= e^{-\frac{\gamma}{2}t} \bar{a} \left(\cos \frac{\delta m t}{2} - \bar{\rho} \, i \sin \frac{\delta m t}{2} \right) \quad \text{('favored')} \\ A_{B^{0} \to \bar{f}}(t) &= e^{-\frac{\gamma}{2}t} \bar{a} \left(\bar{\rho} \cos \frac{\delta m t}{2} - i \sin \frac{\delta m t}{2} \right) \quad \text{('suppressed')} \\ A_{\bar{B}^{0} \to f}(t) &= e^{-\frac{\gamma}{2}t} a \left(\rho \cos \frac{\delta m t}{2} - i \sin \frac{\delta m t}{2} \right) \quad \text{('suppressed')} \end{split}$$

$$\label{eq:relation} \rho \equiv \frac{q\,\bar{b}}{p\,a}\,, \quad \bar{\rho} \equiv \frac{p\,b}{q\,\bar{a}}\,, \qquad \begin{array}{l} a \equiv Amp(B^0 \to f) \\ \bar{a} \equiv Amp(\bar{B}^0 \to \bar{f}) \\ b \equiv Amp(B^0 \to \bar{f}) \\ \bar{b} \equiv Amp(\bar{B}^0 \to f) \end{array},$$

 $D^{(*)}\pi$ flavor-tagged decay time difference analysis

Assume |p/q| = 1.

$$ar{
ho}=re^{i(2\phi_1+\phi_3+\delta)}\,,\qquad
ho=re^{-i(2\phi_1+\phi_3-\delta)}\,.$$

(In unit of $|A(B^0
ightarrow D^- \pi^+) A(B^0
ightarrow \ell^+)|^2$)

$$\begin{aligned} (1) \ \Gamma(D^{+}\pi^{-},\ell^{-}) &= \frac{e^{-\gamma_{+}|t_{-}|}}{4\gamma_{+}} [(1+r^{2}) - (1-r^{2})\mathbf{c}_{\delta m t_{-}} - 2r \ \boldsymbol{\xi} \ \mathbf{s}_{\delta m t_{-}}] \\ (2) \ \Gamma(D^{-}\pi^{+},\ell^{+}) &= \frac{e^{-\gamma_{+}|t_{-}|}}{4\gamma_{+}} [(1+r^{2}) - (1-r^{2})\mathbf{c}_{\delta m t_{-}} + 2r \ \boldsymbol{\xi}' \ \mathbf{s}_{\delta m t_{-}}] \\ (3) \ \Gamma(D^{+}\pi^{-},\ell^{+}) &= \frac{e^{-\gamma_{+}|t_{-}|}}{4\gamma_{+}} [(1+r^{2}) + (1-r^{2})\mathbf{c}_{\delta m t_{-}} + 2r \ \boldsymbol{\xi} \ \mathbf{s}_{\delta m t_{-}}] \\ (4) \ \Gamma(D^{-}\pi^{+},\ell^{-}) &= \frac{e^{-\gamma_{+}|t_{-}|}}{4\gamma_{+}} [(1+r^{2}) + (1-r^{2})\mathbf{c}_{\delta m t_{-}} - 2r \ \boldsymbol{\xi}' \ \mathbf{s}_{\delta m t_{-}}] \\ (c_{x} \equiv \cos x \ , \quad s_{x} \equiv \sin x) \end{aligned}$$

 $t_-\equiv t_{
m sig}-t_{
m tag}, \quad r\sim 0.02 \ \xi\equiv \sin(2\phi_1+\phi_3+\delta)\,, \quad \xi'\equiv \sin(2\phi_1+\phi_3-\delta)$

 r^2 is very small. \rightarrow two obtainable parameters: asymmetries between positive and negative t_- give (an advantage of a e^+e^- B-factories)

 $r\xi = r\sin(2\phi_1+\phi_3+\delta)\,, \quad ext{and} \quad r\xi' = r\sin(2\phi_1+\phi_3-\delta)\,.$

r cannot be obtained by the fit. Needs to come from theory or separate measurement.

An experimental possibility to measure r (Rosner)

$$Br(B^- o D^- \pi^0) = rac{1}{2} Br(ar{B}^0 o D^+ \pi^-) r^2 \sim 6 imes 10^{-7}$$

At 300 (3000) fb⁻¹: $\#(B^- \to D^- \pi^0) = 6 \times 10^{-7} \cdot 3 \times 10^8 \cdot \underbrace{0.05}_{det.eff.} = 9$ (90)

Requires SuperKEKB.

t_{-} distributions (unit = τ_B) ($\delta = 0$ for simplicity)

Smaller asymmetry in the favored modes (3) \leftrightarrow (4)

Asymmetry in the suppressed ('mixed') modes: $(r=0.02,\ x=\delta m/\gamma=0.71)$

$$A_s \equiv rac{(1)-(2)}{(1)+(2)} \sim -rac{2r}{x} \xi \sim -0.057\, \xi$$

Asymmetry in the favored ('unmixed') modes:

$$A_f \equiv rac{(3)-(4)}{(3)+(4)} \sim rac{2rx}{2+x^2} \, \xi \sim 0.011 \, \xi$$

The favored modes has 5 times stat, but 5 times less asym. $\rightarrow \sqrt{5}$ times less in $\#\sigma$.

Most of the info is in the suppressed modes.

Crude statistics estimates for $D^{(*)}\pi$

 $\sigma_{\xi} = 0.1
ightarrow \sigma_{A_s} = 0.0057
ightarrow N_s = 30 K$ (of the suppressed modes)

We need $6 \times 30K = 180K$ total tagged $D\pi$'s for $\sigma_{\xi} = 0.1$

Belle preliminary: 3.7 fb⁻¹ \rightarrow 282 \pm 25 lepton-tagged $D^*\pi$'s (partial reconstruction)

No-bkg equivalent: $\left(\frac{282}{25}\right)^2 \sim 127$

300 (3000) fb⁻¹ \rightarrow 10K(100K) to be compared with 180K needed for $\sigma_{\xi} = 0.1$.

- Need to improve background.
- Need to improve tagging efficiency.
- Fitting Δt improves stat. power (×2?)
- Add various modes (<u>exclusive</u> and partial).

 $\sigma_{\sin(2\phi_1+\phi_3)}\sim (4 \, {
m to} \, 5) imes \sigma_{\sin 2\phi_1}$

$B \rightarrow D^{*+} \rho^{-}$

Mixing \rightarrow non-CP eigenstate + angular correlation

London, Sinha, Sinha, hep-ph/0005248.

Similar to $B \to D\pi$ (needs to be flavor-tagged): (Measures $2\phi_1 + \phi_3$)

ightarrow asymmetry in each $\lambda \sim 0.02$

Angular correlation in $B ightarrow D^* ho$

(helicity basis)

 $H_{\pm,0}$: time-dependent helicity amplitudes $(\Omega=(\chi, heta_1, heta_2)).$

$$g_{+1}=rac{1}{2}e^{i\chi}\sin heta_1\sin heta_2\,,\quad g_0=\cos heta_1\cos heta_2\,,\quad g_{-1}=rac{1}{2}e^{-i\chi}\sin heta_1\sin heta_2$$

New ingredients in $D^*\rho$:

Interference between different polarization states. Time dependent decay amplitude to $\Omega = (\chi, \theta, \psi)$:

$$egin{aligned} &A_{B^0
ightarrow f}(\Omega,t) = \sum\limits_{\lambda} e^{-rac{\gamma}{2}t} \, a_\lambda \left(\cosrac{\delta m\,t}{2} -
ho_\lambda\,i\sinrac{\delta m\,t}{2}
ight)g_\lambda(\Omega) \ &A_{ar B^0
ightarrow ar f}(\Omega,t) = \sum\limits_{\lambda} e^{-rac{\gamma}{2}t}\,ar a_\lambda \left(\cosrac{\delta m\,t}{2} - ar
ho_\lambda\,i\sinrac{\delta m\,t}{2}
ight)g_\lambda(\Omega) \ &A_{B^0
ightarrow ar f}(\Omega,t) = \sum\limits_{\lambda} e^{-rac{\gamma}{2}t}\,ar a_\lambda \left(ar
ho_\lambda\,\cosrac{\delta m\,t}{2} - i\sinrac{\delta m\,t}{2}
ight)g_\lambda(\Omega) \ &A_{ar B^0
ightarrow f}(\Omega,t) = \sum\limits_{\lambda} e^{-rac{\gamma}{2}t}\,a_\lambda \left(
ho_\lambda\,\cosrac{\delta m\,t}{2} - i\sinrac{\delta m\,t}{2}
ight)g_\lambda(\Omega) \end{aligned}$$

$$ho_\lambda = r_\lambda e^{i(2\phi_1+\phi_3+\delta_\lambda)}\,, \quad ar
ho_{-\lambda} = r_\lambda e^{-i(2\phi_1+\phi_3-\delta_\lambda)}\,, \quad (\lambda=\pm 1,0)$$

 $\rho_{\lambda}, \bar{\rho}_{\lambda}$: defined as before for each helicity state λ . (also use CP relations between B and \bar{B})

Statistics for $D^*\rho$

CLEO: 6 fb⁻¹ \rightarrow 197 \pm 15 (*K* π mode) signal events. $\sim \times 2$ including $K\pi\pi^0$, $K3\pi$.

300 fb⁻¹ \rightarrow 20K events. With the high- p_t lepton tag efficiency of 12%, we have 2.4K tagged $D^*\rho$.

This is compared with 10K (bkg-free equivalent for 300 fb⁻¹) of $D^*\pi$ partial reconstruction analysis. Or compared with 180K needed for $\sigma_{\xi} = 0.1$.

 \rightarrow Number of events is $\sim \frac{1}{4}$ of $D^*\pi$, but more paramters to measure.

Comments:

- Partical reconstruction cannot be used. This may not be too big a problem since partial reconstruction efficiency is not that good.
- Need to tackle with the systematics of non-resonant component of ρ .
- Also check the sys. of ρ mass dependence of amplitudes.
- Definitely a SuperKEKB mode.

Direct CPV in $D^{(*)}K^{(*)}$

Classification of $ar{B}^0 ightarrow DK$

$Amp(B^0 ightarrow D^+K^-)$	$= \lambda_c T_c$
$Amp(ar{B^0} o D^0 ar{K^0})^{*}$	$= \lambda_c C_c$
$Amp(ar{B}^0 o ar{D}^0 ar{K}^0)$	$=\lambda_u C_u$
$Amp(ar{B}^0 o D_s^- \pi^+)$	$=\lambda_u T_u$

T: tree, C: color-suppressed (T, C: depends on $b \rightarrow c$ or $b \rightarrow u$)

$$\lambda_c = V_{cb}V_{cs}^*\,,\quad \lambda_u = V_{ub}V_{us}^*\,.$$

Classification of $B^- \to DK$

$$egin{aligned} Amp(B^- &
ightarrow D^0 K^-) &= \lambda_c T_c + \lambda_c C_c \ Amp(B^- &
ightarrow ar{D}^0 K^-) &= \lambda_u C_u + \lambda_u A \ Amp(B^- &
ightarrow D^- ar{K}^0) &= \lambda_u A \ Amp(B^- &
ightarrow D_s^- \pi^0) &= rac{1}{\sqrt{2}} \lambda_u T_u \end{aligned}$$

А

$B \rightarrow DK$ Modes

Final state: one charm, one strange.

• No penguine contaminations

Penguine should have even number of charms. (True for charged and neutral *B*)

• Neutral *B* has no annihilations

Annihilations should have even number of stranges.

• All tree diagrams (no complications by loops)

Final-state Rescatterings

Final-state rescattering can occur:

$$ar{B^0} o D^+ K^-(T_c) o D^0 ar{K^0}(C_c) \ ar{B^0} o D^-_s \pi^+(T_u) o ar{D^0} ar{K^0}(C_u)$$

We define T_c , C_c , T_u , C_u including rescattering effects.

Then,

$$Amp(B^- o D^0 K^-) = \lambda_c T_c + \lambda_c C_c \ = Amp(ar{B}^0 o D^+ K^-) + Amp(ar{B}^0 o D^0 ar{K}^0)$$

is still true, which is nothing but the isospin relation for $H_{\rm eff}$ having $|1/2, -1/2\rangle$ structure: (good to all orders as long as $m_u = m_d$)

Final-state Rescatterings - annihilation

Final-state $D^- \bar{K}^0$ can be reached by

$$B^-
ightarrow D^-_s \pi^0
ightarrow D^- ar K^0$$

We thus define A including the rescattering effect:

 $Amp(B^- o D^- ar K^0) = \lambda_u A$

 $\lambda_u A$ in $B^- \to \bar{D}^0 K^-$ has exactly the same rescattering contribution:

 \rightarrow No modification needed for the classification expressions.

Gronau-London-Wyler (GLW) method

$$a\equiv A(B^- o D^0K^-)=\lambda_c(T_c+C_c)\ b\equiv A(B^- o ar{D}^0K^-)=\lambda_u(C_u+A)$$

Detect D^0 in CP eigenstates: $D^0_{CP}: CP$ eigenstate. e.g. $K_S \pi^0, K^+ K^- \cdots$

Separate out the strong final-state-interaction phase: b relative to $a:e^{i\delta}$

$$egin{aligned} D_{1,2} &= rac{1}{\sqrt{2}} (D^0 \pm ar{D}^0) ~~(CP\pm)\,, \ &A(B^- o D_{1,2}K^-) = rac{1}{\sqrt{2}} (a \pm b\, e^{i\delta}) \ &A(B^+ o D_{1,2}K^+) = rac{1}{\sqrt{2}} (a^* \pm b^* e^{i\delta}) \end{aligned}$$

For $D_{CP} = D_1$ (w/ phase convention: $a = a^*$)

 $\Gamma(B^- \to D_1 K^-) \neq \Gamma(B^+ \to D_1 K^+)$: direct CPV

Measure |a|, |b|, $A(B^- \rightarrow D_1K^-)$, and $A(B^+ \rightarrow D_1K^+)$. Reconstruct the two triangles $\rightarrow \phi_3$. CP asymmetry expected: $A_{cp} \equiv rac{\Gamma[B^- o D^0_{CP}K^-] - \Gamma[B^+ o D^0_{CP}K^+]}{\Gamma[B^- o D^0_{CP}K^-] + \Gamma[B^+ o D^0_{CP}K^+]}$ $rac{|b|}{|a|} \sim rac{(ext{color factor})}{rac{C_u}{T_c + C_c}} rac{(ext{CKM factor})}{rac{\lambda_u}{\lambda_c}} \sim 0.08$ $o A_{cp}$ is of order 10%.

Relevant D^0 decay modes:

· · · · · · · · · · · · · · · · · · ·	1		
	$K_S\pi^0$	$1.06\pm0.11\%$	CP-
	$K_S ho^0$	$0.60\pm0.09\%$	CP-
CP eigenstates	$K_S\phi$	$0.84\pm0.10\%$	CP-
	K^+K^-	$0.43\pm0.03\%$	CP+
	$\pi^+\pi^-$	$0.15\pm0.01\%$	CP+
calibration	$K^-\pi^+$	$3.83\pm0.12\%$	

 $r \sim 0.08$: if known from external input (experiment, theory):

Measure

$$egin{aligned} &\Gamma_1^- \equiv \Gamma(B^- o D_1 K^-) = 1 + r^2 + 2r\cos(\phi_3 - \delta) \ &\Gamma_2^- \equiv \Gamma(B^- o D_2 K^-) = 1 + r^2 - 2r\cos(\phi_3 - \delta) \ &\Gamma_1^+ \equiv \Gamma(B^+ o D_1 K^+) = 1 + r^2 + 2r\cos(\phi_3 + \delta) \ &\Gamma_2^+ \equiv \Gamma(B^+ o D_2 K^+) = 1 + r^2 - 2r\cos(\phi_3 + \delta) \ & ext{ in unit of } \Gamma(B^- o D^0 K^-). \end{aligned}$$

FSI phase of D^0 decay does not matter.

Ambiguity: the equations are symmetric under

$$egin{cases} \phi_3 & o & n\pi + \delta \ \delta & o & -n\pi + \gamma \ \end{pmatrix} ext{or} egin{cases} \phi_3 & o & n\pi - \delta \ \delta & o & n\pi - \phi_3 \ \end{pmatrix} \quad (n: ext{integer})$$

$A_{cp}: CP+$ vs CP-

$$egin{aligned} A_1 &\equiv rac{\Gamma_1^- - \Gamma_1^+}{\Gamma_1^- + \Gamma_1^+} = & rac{2r\sin\delta\sin\phi_3}{1 + r^2 + 2r\cos\delta\cos\phi_3} \ A_2 &\equiv rac{\Gamma_2^- - \Gamma_2^+}{\Gamma_2^- + \Gamma_2^+} = -rac{2r\sin\delta\sin\phi_3}{1 + r^2 - 2r\cos\delta\cos\phi_3} \ \end{pmatrix}, egin{aligned} A_1 &\sim -A_2 \ ext{ order } r \ ext{ of iteself} \end{aligned}$$

For r=0.08, $A_1=-A_2$ within $\pm 0.01.$

We also note: $rac{A_1-A_2}{2}~(ext{average of}~A_1~ ext{and}~-A_2)=2r\sin\delta\sin\phi_3$ to order r^2 of itself.

Fit result for ϕ_3 and δ (300 fb⁻¹) Assuming that r is known.

 $Inputs: \ \phi_3=1.8\,,\delta=0.4 \ \sigma(\Gamma's)=10\% \ (extsf{100} extsf{ events each})$

8-fold ambiguity

 $\sigma_{\phi_3} \sim 0.3 \ (\sim 0.1 \, \, {
m for} \, \, 3000 {
m fb}^{-1})$

Problem:

How to measure $B = Amp(B^- \to \overline{D}^0 K^-)$? $B^- \xrightarrow{b} \overline{D}^0 K^-$ but also $B^- \xrightarrow{a} D^0 K^ \hookrightarrow K^+ \pi^- \hookrightarrow K^+ \pi^- (DCSD)$

The ratio of the two amplitudes ($\equiv r_{DCSD}$):

$$r_{DCSD} = { {a} \over {b} \over {1} } { {Amp(D^0
ightarrow K^+ \pi^-) \over {Amp(D^0
ightarrow K^- \pi^+) \over {0.088 \pm 0.020} } \sim 1 \ { \sim 1 \over {0.08} } { ({
m CLEO } 94) }$$

Phase of r_{DCSD} not known \rightarrow difficult to measure |b|. (Difficult to detect $D^0 \rightarrow X_s^- \ell^+ \bar{\nu}$) The interference of DCSD and B-amplitude causes CP asymmetry of order unity in the wrong-sign $K\pi$ modes:

ADS method to extract ϕ_3

Measure $B^- \rightarrow DK^-$ in two decay modes of D: wrong-sign flavor-specific modes or CP eigenstates, say $K^+\pi^-$ and $K_S\pi^0$ (and their conjugate modes).

$$egin{array}{ll} \Gamma[B^- o (K^+ \pi^-) K^-] & \Gamma[B^+ o (K^- \pi^+) K^+] \ \Gamma[B^- o (K_S \, \pi^0) K^-] & \Gamma[B^+ o (K_S \, \pi^0) K^+] \end{array}$$

Assume we know |A| and D branching fractions \rightarrow 4 unknowns:

$$\phi_3\,,\quad \delta_{K^-\pi^+}\,,\quad \delta_{K_S\pi^0}\,,\quad r=rac{|b|}{|a|}$$

1 - 1

 \rightarrow can be solved.

Statistics: (Atwood: 300 fb⁻¹ $\rightarrow \sigma_{\phi_3} \sim 0.3$ rad. To be confirmed (probably it is too optimistic).)

Using $B o K\pi, \pi\pi$

Tree-penguin interference \rightarrow large direct *CP* asymmetries expected.

For example: $B^- \rightarrow K^- \pi^0$

Interference \rightarrow asymmetry $B^- \rightarrow K^- \pi^0$ vs $B^+ \rightarrow K^+ \pi^0$ (information on $\arg V_{ub} = -\phi_3$.)

Need to remove unknown strong FSI phase.

One historical method (SU(3) Triangle):

- Charged $B \mod s$ self-tagging.
- SU(3) breaking effect are reasonably under control. Complication by EW penguins which breaks the isospin.
- Requires substantial development in theory. Recent promissing developments:

QCD factorization (Beneke, Buchalla, Neubert, Sachrajda 2001) pQCD (Keum,Li,Sanda 2001)

Ratios of Branching Fractions vs ϕ_3/γ

 A_{CP} vs ϕ_3/γ

QCD factorization **BBNS**

Direct *CP* Violation in $K\pi$ (10.4 fb⁻¹)

$$A_{CP}\equiv rac{\Gamma(ar{B}
ightarrowar{f})-\Gamma(B
ightarrow f)}{\Gamma(ar{B}
ightarrowar{f})+\Gamma(B
ightarrow f)}$$

 $K^{\pm}\pi^{\mp}$: assume $B^0 \not\rightarrow K^-\pi^+$, $\bar{B}^0 \not\rightarrow K^+\pi^ K^{\pm}\pi^0$, $K_S\pi^{\pm}$: self-tagged by charge.

A_{CP}	Belle	(90% C.L)	Ref1	Ref2
$K^{\pm}\pi^{\mp}$	$0.044\substack{+0.186+0.018\\-0.167-0.021}$	-0.25:0.37	0.05 ± 0.10	-0.19
$K^{\pm}\pi^{0}$	$-0.059\substack{+0.222+0.055\\-0.196-0.017}$	-0.40:0.36	0.06 ± 0.10	-0.18
$K_S\pi^0$	$0.098\substack{+0.430+0.020\\-0.343-0.063}$	-0.53:0.82	0.01 ± 0.01	-0.01

Ref1: Beneke, Buchalla, Neubert, and Sachrajda, 2001 Ref2: Kuem, Li, and Sanda, 2001

- $K_S \pi^+$ is penguin-dominated ightarrow small A_{CP}
- A_{CP} : 20% error at 10 fb⁻¹ \rightarrow 4% at 300 fb⁻¹ \rightarrow 1~2% at 3000 fb⁻¹

Prospects for getting ϕ_3 by $K\pi/\pi\pi$ modes:

- At SuperKEKB, the error will be dominated by theoretical ones.
- How large? Depends on which theorists you ask.
- Best optimistic theoretical error is $\sim 10^{\circ}$.
- Worst case: even the A_{CP} sign cannot be predicted.
- Keep measuring Br's and A_{CP} 's. Understand the underlining mechanisms. \rightarrow Better theoretical precisions.

Conclusions

Assuming we need $\sigma_{\phi_3}=0.1$ -0.2 is needed for probing new physics,

- For $D^{(*)}\pi$, $D^{(*)}\rho$, and DK, 300 fb⁻¹ is not enough. SuperKEKB will do the job.
- $K\pi, \pi\pi$ modes will be limitted by thoretical uncertainty. Substantial progress in understanding decay mechanism may change the situation.