Measurements of ϕ_3 at 3 fb⁻¹

Hitoshi Yamamoto

Tohoku University

SuperKEKB physics workshop. KEK, June 19, 2003.

- 1. $D^{*+}\pi^-$ partial reconstruction
- 2. $D_{CP}K^-$ GLW method
- 3. DK^- ADS method
- 4. DK^- Dalitz analysis
- 5. Things to be done

 V_{CKM} is unitary: e.g. orthogonality of d- and b-column:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0,$$

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0,$$

$$\theta = \arg \frac{a}{-b}$$

$$\theta = \arg \frac{a}{-b}$$

$$\phi_1 \equiv \arg \left(\frac{V_{cd}V_{cb}^*}{-V_{td}V_{tb}^*}\right), \quad \phi_2 \equiv \arg \left(\frac{V_{td}V_{tb}^*}{-V_{ud}V_{ub}^*}\right), \quad \phi_3 \equiv \arg \left(\frac{V_{ud}V_{ub}^*}{-V_{cd}V_{cb}^*}\right)$$

$$\phi_1 + \phi_2 + \phi_3 = \pi \pmod{2\pi} \quad \text{regardless of unitarity}$$

$D^{*+}\pi^{-}$ Partial Reconstruction (Tim Gershon)

$$B o D^{*+} \pi^-_f$$
, $D^{*+} o (D^0) \pi_s$

Flavor tag by high momentum lepton

Usable kinematic parameters:

- p_{π_f}
- $\cos \theta_{fs}$ (π_f - π_s angle)
- $\cos \theta_s$ (π_s helicity angle)

$D^{*+}\pi^{-}$ Partial Reconstruction (78 fb⁻¹)

SAME FLAVOUR EVENTS 1490 candidates / 1110 ± 50 signal

OPPOSITE FLAVOUR EVENTS 5382 candidates / 3510 ± 80 signal

Expected sensitivities

- 78 fb⁻¹: $\sigma(2R\sin(2\phi_1 + \phi_3 \pm \delta)) \sim 0.029$
- 300 fb⁻¹: $\sigma(2R\sin(2\phi_1 + \phi_3 \pm \delta)) \sim 0.015$
- 3 ab⁻¹: $\sigma(2R\sin(2\phi_1 + \phi_3 \pm \delta)) \sim 0.005$

$$R^2 \sim rac{Br(D_s^{*+}\pi^-)}{Br(D^{*+}\pi^-)} \left(rac{f_{D^*}}{f_{D_s^*}}
ight)^2 an^2 heta_c$$

 $R = 0.022 \pm 0.007$ (now)

How much does this improve ? (theoretically and experimentally)

Systematics

- CP components in the background
 → more statistics will help (probably OK)
- Resolution functions
 → more study (probably OK)
- Vertexing biases (tag-dependent)

Tough systematics.

 \rightarrow If not simulatable, float Δt offsets. (preliminary study by Handa: ~20% worse error on $\sin(2\phi_1 + \phi_3 \pm \delta)$. $D^*\pi \ \Delta t \text{ distributions (unit} = \tau_B)$ ($\delta = 0$ for simplicity)

blue: favored modes, red: suppressed modes

Most of the sensitivity is in the suppressed modes.

CPV information: height asymmetry of two bumps (not affected by Δt bias) location of the dip (affected by Δt bias)

$D_{CP}K$ modes (Sanjay Swain)

 $D_1:K^+K^-,\pi^+\pi^-$

 $D_2:K_S\pi^0,K_S\phi,K_S\omega,K_S\eta,K_S\eta'$

$$A_i \equiv rac{(D_i K^-) - (D_i K^+)}{(D_i K^-) - (D_i K^+)} = rac{\pm 2r \sin \delta \sin \phi_3}{1 + r^2 \pm 2r \cos \delta \cos \phi_3}$$

$$R_i \equiv rac{(D_i K^- + c.c)/(D_i \pi^- + c.c)}{(D^0 K^- + c.c)/(D^0 \pi^- + c.c)} = 1 + r^2 \pm 2r \cos \delta \cos \phi_3 \quad (ext{order} \ r^2)$$

$$(ext{order} \ r^2) \quad A_1 R_1 = -A_2 R_2, \quad rac{A_1 - A_2}{2} = 2r \sin \delta \sin \phi_3$$

 $r \sim 0.1$ (or larger?)

With 78 fb⁻¹

 $egin{aligned} A_1 &= 0.06 \pm 0.19 \pm 0.04 & A_2 &= -0.19 \pm 0.17 \pm 0.05 \ R_1 &= 1.21 \pm 0.025 \pm 0.14 & R_2 &= 1.41 \pm 0.24 \pm 0.15 \end{aligned}$

- $\sigma_{A_{1,2}} \sim 0.10$ at 300 fb⁻¹, $\sigma_{R_{1,2}} \sim 0.03$ at 3 ab⁻¹ Expected up to 0.3 \rightarrow asymmetry is likely to be seen.
- $\sigma_{R_{1,2}} \sim 0.15$ at 300 fb⁻¹, $\sigma_{R_{1,2}} \sim 0.05$ at 3 ab⁻¹ This, however, cannot give r.

$$rac{R_1+R_2}{2}-1=r^2 \quad (ext{order} \,\, r^2: \mathsf{not} \,\, \mathsf{usable})$$

• The value of r needs to be input.

$DK^{(*)}$ ADS method (Manabu Saigo)

ADS (Atwood, Dunietz, Soni) method:

$$egin{aligned} &d_i: \Gamma(B^- - > D(f_i)K^-) \ &ar{d}_i: \Gamma(B^+ - > D(ar{f}_i)K^+) \end{aligned}$$

$$egin{aligned} a &\equiv \Gamma(B^+ o ar{D}^0(ar{f}_i)K^+) \ b &\equiv \Gamma(B^+ o D^0(ar{f}_i)K^+) \ r &\equiv rac{b}{a} \end{aligned}$$

$$egin{aligned} &d_i(ext{meas}) = d_i(\phi_3, \delta_i, b) \ &ar{d}_i(ext{meas}) = ar{d}_i(\phi_3, \delta_i, b) \end{aligned}$$

Eliminate δ_i (strong phase) \rightarrow $F(\phi_3, b) = 0$: a line in $\phi_3 - b$ plane 2 modes \rightarrow soluction

DK^{*+} modes

Use

$$K^+\pi^-, K_S\pi^0, K^+
ho^-, K^-+a_1^-, K_S
ho^0, K^{*+}\pi^-$$

The theoretical paper assumed

100% efficiency for all modes. No backgrounds

 $\sigma_{\phi_3} \sim 10^\circ$ at $10^8 B^+ B^-$

$$ightarrow \sigma_{\phi_3} \sim 6^\circ$$
 at 300 fb $^{-1}$

But . . .

DK^{*+} modes

Efficiency and S/N corrections

$$\epsilon(K^+\pi^-)=0.35$$
 (Belle K^+K^-)
Assume $\epsilon_{
m trk}=rac{2}{3},\ \epsilon_{\pi^0}=rac{1}{2}.$ $K^{*+} o K_S\pi^+, K^+\pi^0,\ K_S o\pi^+\pi^-$ S/N $=1/1$

Total number of DK^* events with $10^8B^+B^-$ reduces by 1/70: $\sigma_{\phi_3}\sim 50^\circ$ at 300 fb $^{-1}$ $\sigma_{\phi_3}\sim 16^\circ$ at 3 ab $^{-1}$

	Efficiency	corrections	factor	relative	to	$K^+\pi^-$
--	------------	-------------	--------	----------	----	------------

mode	N_i	$\epsilon_{ m corr}$	$N_i \epsilon_{ m corr}$
$K^+\pi^-$	83	1	83
$K_S\pi^0$	791	1/4	198
$K^+ ho^-$	224	1/3	112
$K^+a_1^-$	146	2/9	32
$K_S ho^0$	362	2/9	80
$(K^+\pi^0)\pi^-$	65 imes1/3	1/2	11
$(K_S\pi^+)\pi^-$	65 imes 2/3	2/9	10
total	1671		526

526/1671 = 0.31

DK^+ modes

Efficiency and S/N corrections

 $\epsilon(K^+\pi^-) = 0.35$ (Belle K^+K^-) Assume $\epsilon_{
m trk} = rac{2}{3}, \ \epsilon_{\pi^0} = rac{1}{2}.$ $K^{*+} o K_S \pi^+, K^+\pi^0, \ K_S o \pi^+\pi^-$ S/N = 1/1

$$rac{Br(DK^+)}{Br(DK^{*+})}=0.4$$

Total number of DK^* events with $10^8B^+B^-$ reduces by 1/45 :

$$\sigma_{\phi_3}\sim 40^\circ$$
 at 300 fb $^{-1}$ $\sigma_{\phi_3}\sim 13^\circ$ at 3 ab $^{-1}$

DK^+ Dalitz plot analysis (Anton Poluektov)

$$egin{aligned} B^+ & o DK^+, & D = ar{D}^0 + r e^{i(\delta + \phi_3)} D^0 \ B^- & o D'K^-, & D' = D^0 + r e^{i(\delta - \phi_3)} ar{D}^0 \end{aligned}$$

$$egin{aligned} A(s,t) &= Amp(D^0 o K_S \pi^+ \pi^-)(s,t) \ ar{A}(s,t) &= Amp(ar{D}^0 o K_S \pi^+ \pi^-)(s,t) = A(t,s) \ &s &\equiv M^2(K_S \pi^+), \quad t \equiv M^2(K_S \pi^-) \end{aligned}$$

$$egin{aligned} (B^+) & p^+(s,t) = |A(s,t) + r e^{i(\delta + \phi_3)} A(t,s)|^2 \ (B^-) & p^-(s,t) = |A(t,s) + r e^{i(\delta - \phi_3)} A(s,t)|^2 \end{aligned}$$

Fit $p^+(s,t)$ and $p^-(s,t)$ to extract $\delta + \phi_3$ and $\delta - \phi_3$. (Use known Dalitz amplitudes, or measure)

DK Dalitz analysis - sensitivity

Sensitivity with 10^4 detected events

$$heta=\delta-\phi_3$$

 $\sigma_{\phi_3} \sim \sigma_{ heta}$

 σ_{ϕ_3} is roughly constant for any values of ϕ_3 and δ

DK Dalitz analysis summary

- No discrete ambiguities for ϕ_3 .
- Dalitz model uncertainty $\sim 10^\circ$ now. (can be improved by measurements)
- $\sigma_{\phi_3} = 22\text{-}32^\circ$ at 300 fb $^{-1}$
- $\sigma_{\phi_3} =$ 7-10° at 3 ab⁻¹

Conclusions

- ϕ_3 can be measured in varieties of modes. (important cross check)
- Sensitivities are reasonable at 3 ab⁻¹ but marginal at 300 fb⁻¹.
- Super KEKB is needed.

Things to do

- $D^{(*)+}\pi^{(*)-}$ full reconstruction sensitivity estimation
- Errors on r for each $D^{(*)+}\pi^{(*)-}$ mode
- $D^{(*)+}\rho^{-}$ angular analysis sensitivity estimation
- More studies on S/N and efficiencies (Suppressed *DK* in particular)
- More theoretical studies on $K\pi$ and $\pi\pi$ modes