High Luminosity B-Factory

Overview - KEK-B version

Luminosity: 10^{35} /cm²s

Hitoshi Yamamoto

University of Hawaii/Tohoku University

Snowmass July 4, 2001

- 1. Physics
- 2. Machine
- 3. Detector/IR

Physics

What can be done with 10^{35} /cm²s, and how competitive is it?

What are the requirements on the detector performances to take advantage of the luminosity?

 $\begin{array}{c} 10^{35}/\text{cm}^2\text{s} \to 1\text{ab}^{-1}/\text{yr} \ (10^7\text{s}) \\ 10^9 \text{ B pairs/yr} \\ (10^{10} \text{ B's/5yrs}) \end{array}$

Competitive edges of Super-KEKB -with respect to the hadron machines-

- **1.** π^0 detection efficiency
- 2. Smaller background in general

To take advantage, it requires

- Hermeticity (incl. π^0) Full-reconstruction tagging
- Good vertexing Suppress continuum backgrounds Suppress combinatoric backgrounds.

Practically, $\sigma_z \propto r_{\text{beampipe}}$ Use a smaller beampipe radius. Continuum Full reconstruction tagging

Reconstruct as many *B*'s as possible and look at the rest of the event for a signal.

- **1**. Everything left is from a *B* meson.
- 2. Particularly useful when ν 's are involved.

Semileptonic decays ($b \rightarrow u \ell \nu$), $B \rightarrow \mu \nu, \tau \nu$, $b \rightarrow s \nu \overline{\nu}$ etc.

3. Estimated tagging efficiency \sim 0.004 (Lee and Shipsey).

Total number of tagged *B*'s $\sim 4 \times 10^7/5$ yrs.

4. Tagging background and its effects?

Continuum suppression by z vertex separation

 $e^+e^- \rightarrow B_1B_2$

 Δz distribution:

$$\propto \exp\left(-\frac{|\Delta z|}{L_0}\right)$$

 $L_O(B \text{ mean decay length}) \sim 211 \mu(Belle)$

 $e^+e^-
ightarrow q \overline{q}$ (continuum)

 Δz distribution (assume gaussian):

$$\propto \exp\left(-\frac{\Delta z^2}{2\sigma_{\Delta z}^2}
ight)$$

 $\sigma_{\Delta z} \sim 100 \mu$

Discovery sensitivity improvement:

 $\#\sigma$ probability of background fluctuate up to the signal.

$$\#\sigma = \frac{N_{\rm sig}}{\sqrt{N_{\rm bkg}}}$$

The improvement factor for $\#\sigma$ with a Δz cut is then

fig. merit =
$$\frac{\epsilon_{sig}}{\sqrt{\epsilon_{bkg}}}$$
 (discovery)

Does not depend on $N_{\rm sig}/N_{\rm bkg}$ before the vertex separation cut.

Discovery sensitivity improvement:

 $x \equiv \sigma_{\Delta z}$ improvement factor

x = 1 : $\sigma_z \sim 100 \ \mu m$

x = 1 is not enough to be effective. x = 2 would be very effective. Example: Can we find $B^- \rightarrow K^{*0}K^$ if Br is 1/20 of $\rho^0 \pi^-$? CLEO 2.5: $\rho^0 \pi^-$ S/N ~ 20/20 @ 5 fb⁻¹ Assume factor of 4 reduction in bkg by PID cut.

> $\rightarrow K^{*0}K^{-}$ S/N $\sim 1/5$ @ 5 fb⁻¹ $\rightarrow K^{*0}K^{-}$ S/N $\sim 10/50$ @ 50 fb⁻¹

Significance = $10/\sqrt{50} = 1.4\sigma$: Not a signal.

With $\sigma_{\Delta z} \rightarrow 1/2$ and 1% tail,

Significance $\rightarrow 1.4 \times 5.2 = 7.3\sigma$: Clear signal.

 $K^{*0}K^-$ is an important mode to understand FSI, annihilation diagram, and $b \rightarrow d$ penguin.

There are many important modes at this Br level: $B^+ \rightarrow D^+K_S$: clean annihilation mode. $B^+ \rightarrow D^0K^+$: ADS method for γ , etc. etc. Many of them play critical roles in direct CP studies.

Machine (Super-KEKB)

Can we achieve 10^{35} /cm²s ? (25× now)

Basic strategy: Extrapolation from the current KEK-B configuration (ref. a talk by Onishi in M2)

- 1. Machine configuration
- Relevant issues:
- 3. Injection

2. Beam lifetime

4. Implications

Machine configuration for Super-KEKB

Variety of options are being studied.

A possible candidate:

- 1. \times 3 increase of design currents $I_{HER}/I_{LER} = 1.1A/2.6A \rightarrow 3A/10A$ (luminosity $\sim \times 10$)
- 2. Present LER current limit: LER(e^+) vertical blowup due to the electron cloud effect (ECE). \rightarrow LER = e^- , HER = e^+ (i.e. switch them)
- 3. Use antechambers for $HER(e^+)$ (for ECE)
- 4. RF: 509 MHz (same as KEKB) \rightarrow 5000 bunches max. (Another possibility is 1.5 GHz \rightarrow 15000 bunches max. A new mahicne, not an upgrade)
- 5. Crab crossing optional (\sim 25% increase in luminosity)

Beam lifetime

Sources:

1. Residual gas. (dominant now, a few 100 min) Same vacuum pressure \rightarrow same lifetime. (for the same ring acceptance)

More current \rightarrow more gas desorption. \rightarrow need a beefed-up vacuum system.

2. Touschek (LER). ($au_{Tous} \sim$ 9 hrs now) (depends on the energy acceptance - 1.2% assumed)

Touschek rate $\sim \begin{cases} & \text{Bunch current} \\ & 1/\text{emittance} \end{cases}$

→ Increase emittance, (reduce β_y^*). $\epsilon_x = 18nm \rightarrow 54nm.$ ($\beta_y^* = 5mm \rightarrow 3mm$, also $\epsilon_y/\epsilon_x = 5\% \rightarrow 1\%$.). → increase the energy acceptance.

3. Collision (radiative Bhabha) (not dominant now)

Becomes dominant at Super-KEKB $\tau_{col} \sim$ 100 min.

Machine parameters

Smaller $\beta_y^* \rightarrow \text{smaller } \sigma_z$ (hour-glass effect) $\sigma_z = 5.6 \text{mm} \rightarrow 3 \text{mm}.$

	KEKB (now)		Super-KEKB	
	$LER(e^+)$	$HER(e^{-})$	$LER(e^{-})$	$HER(e^+)$
energy(GeV)	8	3.5	8	3.5
nbunch	1153	1153	5120	5120
$I_{ ext{beam}}(\mathbf{A})$	0.73	0.55	10	3
$I_{\mathrm{bunch}}(mA)$	0.63	0.48	1.95	0.58
$\epsilon_x(nm)$	18	24	54	54
ϵ_y/ϵ_x	0.055	0.041	0.01	0.01
β_x^* (cm)	59	63	33	33
$\beta_{u}^{*}(\mathbf{mm})$	7	7	3	3
$\sigma_z^{'}$ (mm)	5.6	5.6	3	3
crossing(mRad)	22		30	
L(10 ³³ /cm ² s)	3		75	

Injection

Apart from the uprade to inject e^+ at 8 GeV,

If the same injection rates as now:

$$\begin{cases} \frac{dI}{ds}(e^+) = 1.5 \text{mA/s} \\ \frac{dI}{ds}(e^-) = 3 \text{mA/s} \end{cases}$$

Injection time:
$$\begin{cases} I(e^+) = 3A \rightarrow 34 \text{min} \\ I(e^-) = 10A \rightarrow 56 \text{min} \end{cases}$$

Beam lifetime ~ 100 min:

If no improvement in the injection rates, majority of time will be spent injecting. (one beam is decaying while another is being injected)

Lifetime $\sim \times 1/3$, currents $\sim \times 3$ $\sim \times 10$ injection rates to obtain the same efficiency. (Is it possible?)

Implications for detector/IR deaigns

- 1. Greater luminosity \rightarrow greater rates (great!) \rightarrow Detector elements, trigger, DAQ should take it.
- 2. ×3 increase of LER bunch current (0.66 \rightarrow 1.95mA) ×2 decrease of bunch length (6 \rightarrow 3 mm) \rightarrow 3²2^{3/2} = 25× heating of the IP beampipe.
- 3. Possibly larger vacuum pressure.
 Possibly shorter Touschek lifetime.
 → Larger particle background.
- 4. Stronger synchrotron radiation. \rightarrow SR heating and SR background at the IP beampipe.
- 5. Possibly larger crossing angle. \rightarrow More diffcult for SR and particle background masks.
- 6. Smaller β_y^* \rightarrow final quads closer to IP (space constraint)
- 7. Injection background.

Detedctor/IR Issues

I. IR design for Super-KEKB

- Reduce particle background.
- Reduce SR background.
- Reduce HOM heating, image-current heating.
- Better cooling.
- (Mechanical strength FEA).

Good vertexing resoution \rightarrow Assume r=1cm.

Particle Background

Some design guidelines

- Massive masks around the inner vertex detectors.
 - 1. At least \sim 10cm of path for particles hitting the mask. \rightarrow r=1cm cylindrical tunnel on each side of IP along the incoming beam. The length limitted by crossing angle and the beam-

stay-clear.

- 2. Integrated design of the heavy mask and SVD support.
- Systematic covering of upstream beampipes with heavy masks.
- Movable mask placements. Beta phase: not just wrt IP also other weak spots.

Possible r=1cm IP beampipe design

Simulation (by Karim Trabelsi)

1. Assume 1 nTorr (same as now) The r=1cm configuartion.

Lyr 1	r= 1.5cm	1.9 MRad/yr
Lyr 2	r= 2.2cm	1.0 MRad/yr
Lyr 3	r= 4.3cm	0.25 MRad/yr
Lyr 4	r = 6.2 cm	0.09 MRad/yr

• Occupancy \sim unity for Lyr 1 (Si strip) \rightarrow pixel (for Lyr 1-2 at least)

Radiation damage?

2. For r=1.5cm

(optimized: e.g. longer inner masks)

Lyr 1	r=2.2cm	0.17 MRad/yr
Lyr 2	r=4.3cm	0.04 MRad/yr
Lyr 3	r=6.2cm	0.02 MRad/yr

(KEKB upgrade in 2002 summer is to r=1.5cm)

Synchrotron Radiation Background

• Incoming HER beam.

- 1. Sawteeth for outer-x wall. Surface scatt. \rightarrow tip scatt. ($\sim 1/100$)
- Use left-side SR mask
 3mm high for 22mRad crossing.
 (if 30mRad, it should be higher → HOM!)
- 3. Will be dominated by QC1 SR backscattered from the right-side particle mask (Simulation).

5 kRad/yr (yoff = 0mm at QC1) 670 kRad/yr (yoff = 3mm at QC1) needs software orbit tracking. \rightarrow Real-time alarm. • Incoming LER beam.

Lower E_c , lower power than HER. \rightarrow in general no severe problems.

- 1. No masks (outer-x). In order to reduce HOM resonances.
- 2. From Q's, weak bends and steerings:
 - \rightarrow Online orbit tracking alarm just in case.
- Outgoing HER at QCSR.

Large offset (~4cm) $\rightarrow E_c \sim$ 40keV, 100kW. Backscattering from the SR dump (now 8m away)

- 1. If no mask: Expect 60 kRad/yr. \rightarrow Move the Cu absorber further away.
- 2. With a mask: bkg small. One has to avoid HOM resonances. (risky but possible - next slide)

Resonant HOM

1. Simmulation can predict dangerous modes:

 e^+/e^- RF phase-shift machine study.

Period = $31.61 \pm 0.2^{\circ}$ (TM011: 31.54° expected)

2. Avoid high-Q resonances:

Mask covers only π ('open geometry') \rightarrow only one mode with Q > 1000 to worry about.

Beampipe heating and cooling

• Image current heating.

Au coating, r=1cm, I=20cm \rightarrow 500 W !

• Incoherent HOM \sim 1000 W !

Avoid resonances — simulation works!

Needs liquid coolant (probably should be water).
 (Double-wall Be beampipe with 0.5mm cooling channel)

If H2O: With 1.5 I/min, outer Be up 14 deg. inner Be up 16 deg wrt to outer. A bit high, but not a desaster (faster flow). Can the pixel detector be put inside the beampipe?

1. Needs to be electrically shielded

Au coated thin Be?

2. Image heat = 500W, HOM heat = 1000W

Needs to be actively cooled.

3. Needs water coolant (\sim 0.5mm thick channel).

Back to the current design.

II. Vertexing

• High occupancy.

Probably needs a pixel detector. (Monolithic CMOS sensor?)

• Radius as small as possible.

Install on the beampipe.

• Short shaping time.

 $1\mu s(now) \rightarrow 0.5\mu s(2002) \rightarrow 0.25\mu s$ (Super-KEKB)?

II. Other Detector Components

• CDC (Drift chamber).

2002: 2 inner layers \rightarrow small-cell chamber CDC will probably 'survive' for Super-KEKB. The entirely new small-cell chamber (with faster electronics)?

• CsI(Tl) calorimeter.

Slow $(1\mu s) \rightarrow$ Replace with pure CsI? (cost!). Wave form sampling?

• KLM (muon chamber).

RPC is not fast. Already suffers from inefficiency due to local deadtime.

 \rightarrow replace with wire chambers? (keep the structure)

III. DAQ

• Expected L1 trigger rate:

Physics: 1kHz +Background: 5 kHz typical

• Event size.

30kB/ev (now) \rightarrow 100 kB/ev (Super-KEKB) (pixel, wave-form sampling for CsI)

• Data flow rate:

500MB/s (typical), 1GB/s (max)

DAQ considerations:

1. Pipelining needed.

Asynchronous (a la BaBar) or synchronous (a la CDF)? 2 ns crossing interval \rightarrow use asynchronous.

2. Prototyping of pipeline:

Based on AMT (Atlas muon TDC), now being worked on.

3. Readout from pipeline:

GbE promissing. + VME?, PCI?, USB2/Firewire? etc.

4. Event building:

Full, partial, or no event building?

- 5. Storage.
 - Disk, tape?

Summary:

- 1. The strength of Super-B-factory is its background rejection capabilities.
- 2. Also, modes that involves π^0 's should be studied.
- 3. A good vertexing and hermeticity are essential. (for background reduction in particular)
- 4. The competitiveness should be evaluated with realistic estimations of backgrounds in mind.
- 5. The only way to achieve $\times 1/2$ reduction in vertex resolution seems to be to reduce the beampipe radius by $\times 1/2$. (material reduction has a limit)
- 6. With a smaller beampipe radius, careful designs are needed for SR backgrounds, particle backgrounds, and cooling of the IR components.