Improved Vertexing for Belle (and also for NLC)

Hitoshi Yamamoto DOE review, September 1999

Two Fronts

(A) Strip detector upgrade

Radhardization of readout chip

Process: $1.2\mu m \rightarrow 0.8\mu m$ VA1(1.2 μ) (old) limit ~ 200 KRad VA1(0.8 μ) (new) limit ~ 1 MRad

VA1(0.8 μ) will be installed as SVD1.5 in 2000.

 $VA1(0.6\mu)$ under study (SVD 2.0?)

(B) Pixel detector R&D

Physics benefits of better vertex resolution (apart from the obvious improvement in $\sigma_{\Delta z}$)

- Combinatorics
 - Inclusive (e.g. $K^{*0} \rightarrow K^{-}\pi^{+})$ ◦ $B \rightarrow D^{0}D^{-}, D^{+}D^{-}, D^{0}K^{-}$ etc. ♠

- Charm vertex \rightarrow tag-side z resolution. \blacklozenge
- Vertical *B* travel: $\rightarrow \Delta z \rightarrow \Delta t$

Currently, the correction makes the resolution worse (crude calculation). \blacklozenge

• Continuum suppression by $\Delta z \blacklozenge$

Continuum suppression by z vertex separation

 $e^+e^- \rightarrow B_1B_2$

 Δz distribution:

$$\propto \exp\left(-\frac{|\Delta z|}{L_0}\right)$$

 $L_O(B \text{ mean decay length}) \sim 211 \mu(Belle)$

 Δz distribution (assume gaussian):

$$\propto \exp\left(-rac{\Delta z^2}{2\sigma_{\Delta z}^2}
ight)$$
 $\sigma_{\Delta z} \sim 125 \mu$

Discovery sensitivity improvement:

 $\#\sigma$ probability of background fluctuate up to the signal.

$$\#\sigma = \frac{N_{\rm sig}}{\sqrt{N_{\rm bkg}}}$$

The improvement factor for $\#\sigma$ is then

fig. merit =
$$\frac{\epsilon_{sig}}{\sqrt{\epsilon_{bkg}}}$$
 (discovery)

Does not depend on $N_{\rm sig}/N_{\rm bkg}$ before the vertex separation cut.

Discovery sensitivity improvement:

$$x\equiv rac{L_0}{\sigma_{\Delta z}}~~\sim 2$$
 for Belle, BaBar

 L_0 : B mean decay length (211 μ for Belle)

Example: Can we find $B^- \to K^{*0}K^$ if Br is 1/20 of $\rho^0\pi^-$?

CLEO 2.5: $ho^0\pi^-$ S/N \sim 20/20 @ 5 fb^{-1}

Assume factor of 4 reduction in bkg by a loose particle ID cut.

 $ightarrow K^{*0}K^{-}$ S/N \sim 1/5 @ 5 fb⁻¹ $ightarrow K^{*0}K^{-}$ S/N \sim 10/50 @ 50 fb⁻¹

Significance = $10/\sqrt{50} = 1.4\sigma$: Not a signal.

With $\sigma_{\Delta z} - > 1/2$ and 1% tail,

Significance $\rightarrow 1.4 \times 5.2 = 7.3\sigma$: Clear signal.

 $K^{*0}K^-$ is an important mode to understand FSI, annihilation diagram, and $b \rightarrow d$ penguin.

There are many important modes at this Br level: D^+K_S , D^0K^+ , $K^*\eta'$... Many of them play critical roles in direct CP studies.

Factor of 2 improvement in $\sigma \Delta z$ resolution can be achieved by (rough calculation)

- $R_{\text{beampipe}} \text{ 2cm} \rightarrow \text{1cm}.$
- 1/2 reduction of material (Si, support, beampipe).
- Keeping the same $\sigma_{\text{measurement}}$.

In general,

- σ_{measure} counts for high-P tracks (P > 2 GeV).
- Material reduction is important.
- R_{beampipe} reduction is <u>essential</u>.

Full MC study needed. 🔶

Studies needed:

- Beam background control and IR design (incl. beampipe).
- Detector thin and tolerant of radiation/noise hits

Possible detector candidates for inner layers: (e.g. 2 inner layers out of 5 total for vertexing)

Silicon strip
 Pixel

Pros and cons of the pixel solution

Cons:

- Requires substantial R& D to apply to Belle (A few pixel detectors working in HEP experiments)
- Readout electronics adds to the material budget if hybrid design. (readout chip could be as thin as a few 10's of μ; will see)

Pros:

1. Measures true 3D points \rightarrow noise hit tolerance

Assume 40 real hits on a $1 \times 3 \text{ cm}^2$ sensor. (pitch: 50μ)

occupancy	point hit	3 pitches/hit
pixel:	$3 imes10^{-4}$	$3 imes 10^{-3}$
strip:	20%	60%

Needs realistic track finding simulation. 🔶

- 2. Low capacitance per channel ($\ll 1 \text{ pF}$) \rightarrow low noise
- 3. Low leakage current per channel (\sim fA) \rightarrow low noise Low noise partially translates to radiation tolerance.

A study on a thin silicon strip detectors: $(1 \text{cm} \times 1.3 \text{cm}, \text{ shaping time } 0.7 \mu \text{sec}, {}^{90}\text{Sr})$

	300μ	100μ
S/N	29.7	7.88

A large common-mode noise seen for 100μ sensor.

\rightarrow We Need a Pixel Detector for Belle

Essential point:

- We need a substantial improvement in vertex resolution
 - to make the best use of B-factory
 - to compete
- A pixel detector will make it possible by allowing us to get closer to the beam.

Plan: Install as the inner few layers of a future vertexing system.

Monolithic Pixel Detector

Readout electronics and sensor on the same chip

Hawaii-Stanford monolithic pixel detectors Fabricated at CIS, Stanford

• Thickness 300µm

• Bulk: p^+ (i.e. collects holes) • Bulk: p^- Backside: n^+ -diffusion

- One PMOS readout circuit in *n*-well for each pixel.
- Operated with full depletion at \sim 60 V.

Two versions of monolithic pixel detector succesfully tested:

V1. 1993. Pitch 34 × 125μm²
 1.02mm×1.02mm active area
 Full readout
 Tested at Fermilab (muon beam)

 $\rightarrow \sigma = 2.0 \mu \text{m} (34 \mu \text{m} \text{ pitch direction})$

V2. 1996. Pitch $65 \times 67 \mu m^2$ 32×32 array (~ 1mm² active area) Sparse readout Tested by ²⁴¹Am

Challenges for the monolithic pixel design:

1. Larger array

Using the same sparse readout scheme, 320×320 array (1 cm²), 0.5% pixel occupancy $\rightarrow \sim 300\mu$ s readout.

Full readout?

2. Foundry

Difficult to find a foundry who is

- willing to closely collaborate,
- has deep-submicron technology,
- can respond to non-standard facbrications: rad-hard design, high-purity bulk silicon.

 \rightarrow keep looking for a foundry...

Hybrid Pixel Detectors

Hybrid = Bump-bonded

Sensor:high-resistivity silicon (typically float-zone) **Readout chip:**Commercial CMOS OK

 \rightarrow Fabricate separately and bond them (flip-chip technology)

Most current and proposed HEP pixel detectors uses hybrid design.

(DELPHI, WA97, ATLAS, CMS., ALICE, BTeV...)

	pixel size	# pixel (total)	sensor thickness	heat/cell
DELPHI	$330 \times 330 \mu^2$	1.2 M	300μ	$40\mu W$
WA97	$50{ imes}500\mu^2$	1.2 M	300μ	
	$75{ imes}500\mu^2$			
ATLAS	$50{ imes}300\mu^2$	105 M	200-250 μ	$50 \mu W$
CMS	$150{ imes}150\mu^2$	56 M	200-250 μ	$60 \mu W$
ALICE	$50{ imes}300\mu^2$	15.7 M	150μ	$30 \mu W$
BTeV	$50{ imes}300\mu^2$	60 M	300μ	${<}40\mu{ m W}$

Issues for a Belle pixel detector:

- (a) Readout electronics (that fits in $\sim 40 \times 60 \mu^2)$
- (b) Thinning of sensor and readout chips
- (c) Bump bonding
- (d) Radiation hardening

(a) Proposed readout electronics (by G. Varner)

- Avoid sending analog signal by digitizing on each pixel.
- V_{ramp}+Comparator and 5-line counting bus. LVDS driver at the end of sensor.
- 1cm×3cm, start from $50 \times 100 \mu m^2$ pixel.

Expected heat generation

- Most of the time the MOS transistors do not dissipate heat, namely static. (much easier situation than LHC)
- $\sim 0.4 \mu$ W/pixel $\rightarrow \Delta T \sim 0.1^{\circ}$ K (side cooing)
- LVDS driver generates lots of heat, but it is at the end of sensor.

(b) Thinning of the sensor and readout chip

• Wafer thinning is a routine commercial process (for heat dissipation)

{Grinding-polishing-etching Plasma etching

- Readout electronics: Thinned after fabrication using a commercial process (e.g. MOSIS).
- Sensors may be thinned first. (needs a dedicated foundry)

Or, thinned after fabrication (still needs some processing of the thinned side)

• Thin before or after the bump bonding? If thinned after bonding, the read-out electronics may be made quite thin ($\sim 20\mu$?).

 \rightarrow more R&D!

(c) Bump bonding

• Bump bonding defects $< 10^{-4}$ reported. But some problems for the real ATLAS detector.

• Bump diameter can be $< 10\mu$, pitch can be $< 20\mu$ (e.g. GEC Marconi)

Two types of bumps

	Indium	Solder
connection	pressure	fused
UBM *	simple	complicated
bump deposition	both sides	one side
Strength (4K bumps) (tension& sheer)	2.5 lb	10-14 lb (strong)
alignment required	$1\text{-}2\mu$	$\sim 10 \mu$ (self-aligning)
resistance/bump	1-2 Ω (poor)	2-3 μΩ (good)

* UBM = Under Bump Metalization

(d) Radiation Hardening

Radition damage effects:

- a) Effective dopant creation
- b) Leakage current increase
- c) Threshold shift of MOS transistors

a) Effective dopant creation

Mostly p type

- Change in $V_{\text{depletion}}$ (e.g. increase) \rightarrow high voltage breakdown, partial depletion
- Type conversion $(n \rightarrow p)$ at high dose (OK for Belle)

 \rightarrow Thin sensor (low $V_{\text{depletion}}$), or design such that it can stand high voltage (e.g. guard rings at the edges of sensor)

b) Leakage current

- 1. source-drain leakage
- 2. inter-transistor leakage
- 3. detector bulk leakage current

Strategy:

- Rad-hard design rules
 - * Surround-gate design
 - * *p*-stop around NMOS transistor

 current compensation for detector leakage (read-out electronics design)

c) Threshold shift of MOS transistor

Trapped positive ionization charges at gate-oxide \rightarrow induces electrons just below the gate.

$$\Delta V_{
m th} \propto \left\{ egin{array}{ll} t^2 & (t < 10 \, {
m nm}) \ t^3 & (t < 10 \, {
m nm}) \end{array}
ight.$$

t: gate thickness

Make the gate oxide thin:

← natural result of small scale processes. (e.g. <u>commercial</u> IBM 0.25μ process)

Hybrid vs Monolithic Summary

- 1. Monolithic pixel proven to work (32×32 array).
 - larger detector

Challenges:

- rad-hardness
- foundry !!

2. Hybrid pixel design

- heat $< 50 \mu$ W/pixel for LHC. Less for Belle \rightarrow probably not a problem.
- thickness $< 250\mu$ (sensor & read-out) being tested. 150μ total seems feasible.
- bump bonding

yield > 99% :dummy test

pad size can be $< 10\mu$, pitch can be $< 20\mu$

Rad-hardness of readout chip
 Deep subµ + rad.hard rules →
 30 MRad : IBM 0.25µ (ALICE)

 \rightarrow Pursue hybrid design

Prototype Sensors

- Planar (conventional) pixel prototype
 - 300μ m thick (no thinning)
 - 2 mm by 2 mm 24 by 40 array, 50 by 100 μ m² pixel (current SVD: 50 by 84 μ m² readout pitch)
 - Design mostly complete (Chris Kenney)
 - Fabrication:
 By Chris Kenney at CIS (Stanford)
 #mask = 4-5

Schedule Oct (B): mask ordered Oct (M): mask delivered Oct (E): fabrication begins (takes 1.5~2 months) Dec (M): fabrication complete

Prototype pixel sensor design

(Chris Kenney)

- n^+ electrode
- p^- substrate
- p^+ backside

• 3D pixel sensor (Belle prototype)

- $100\mu m$ thick
- same size/pitch as the planar prototype (matched to Gary's readout chip)
- fabrication:
 - piggy-back on the ATLAS 3D sensor fabrication (simultaneous with the planar prototype above)

Bump Bonding Test

GEC Marconi (UK):

So far the only company to thin and bump bond.

Yamamoto visited the company in July, 1999.

- Submit to GEC Marconi: (Jan, 2000)
 - Dummy readout chips
 - Planar prototype sensors
 - Masks for UBM
- The readout chip will be thinned to $\sim 70 \mu m$ by GEC Marconi.
- Goal:
 - Bump bonding reliability test
 IR laser
 X-ray imaging
 - Measure bump bond capacitance

Vertexing R&D Personnel

- Software (Effect of bkg on vertexing/physics)
 - Karim Trabelsi (arr. Nov 99) and friends.
- Sensor/electronics testing/coordination
 - Gianluca Alimonti (arr. Jan 1, 2000
 - pending INFN approval) and friends.
- Sensor design/fabrication
 - Chris Kenney/Sherwood Parker and friends.
- Electronics/Integraqted Circuits
 - Gary Varner and friends.
- Mechanical design
 - Mark Rosen and friends.
- Beam background study
 - Coordination: Tom Browder/Hitoshi Yamamoto
 - \rightarrow Synchrotron radiation: Sanjay Swain
 - → Beam Gas: Hulya Guler

····· and friends.

Committment from Belle

US-Japan: \$61K to Hawaii this year for Belle pixel R&D.

OK for now, but as we will start fabrication of more prototype sensors, submission of readout electronics and hybridization, more funds will be needed.

Need for next year

Sensor fabrication	15K
(CIS fee, wafer, thinning)	
Readout Chip	90K
Other electronics	10K
Hybridization	60K
total	175 K