Weak Decays/CKM/CP violationExperimental summary(highlights) -

Hitoshi Yamamoto, Tohoku University January 26, 2002. WIN02, Christchurch, NewZealand Observation of CP violation in $B \rightarrow f_{CP}(e.g. J/\Psi K_S)$

It is found that,

If the tag side is B^0 (\overline{B}^0), the $J/\Psi K_S$ side tends to decay later (earlier) than the tag side.

 \xrightarrow{CP} If the tag side is \overline{B}^0 (B^0), the $J/\Psi K_S$ side tends to decay later (earlier) than the tag side: Not seen.

 \rightarrow CPV!

Decay modes

	Babar	Belle
CP-	$\Psi K_S, \chi_{c1}K_S$	$\Psi^{(\prime)}K_S, \chi_{c1}K_S, \eta_c K_S$
CP+	ΨK_L	ΨK_L
CP mix	ΨK^{*0}	ΨK^{*0}

Time-dependent asymmetry

$$A(\Delta t) \equiv \frac{\Gamma_{B^{0}\mathrm{tag}}(\Delta t) - \Gamma_{\bar{B}^{0}\mathrm{tag}}(\Delta t)}{\Gamma_{B^{0}\mathrm{tag}}(\Delta t) + \Gamma_{\bar{B}^{0}\mathrm{tag}}(\Delta t)} = -\frac{\lambda}{\lambda} \sin \Delta m \Delta t,$$

$$oldsymbol{\lambda} = \mathrm{Im}rac{qA_{ar{B}0
ightarrow f}}{pA_{B^0
ightarrow f}} = oldsymbol{\xi}_f \sin 2(\phi_1/eta)$$

(sign convention: $\Delta m=m_1-m_2>0$, $B_1=pB^0+qar{B}^0$)

 $\lambda = \xi_f \sin 2(\phi_1/\beta)$

	Babar	Belle
CP-	-0.56 ± 0.15	-0.84 ± 0.17
CP+	0.70 ± 0.34	1.31 ± 0.23
$\sin 2(\phi_1/eta)$	$0.59 \pm 0.14 \pm 0.05$	$0.99 \pm 0.14 \pm 0.06$

- CP+ and CP- final states have opposite asymmetries.
- Babar and Belle consistent at 1.9σ .

World average: $\sin 2(\phi_1/\beta) = 0.79 \pm 0.10$

In terms of the unitarity triangle

Pre-Babar/Belle experimental inputs: 1. $|V_{ub}/V_{cb}|$ (by $b \rightarrow ue\nu$) 2. B^0 - \bar{B}^0 mixing $\rightarrow |V_{td}|$ 3. ϵ_K (from Kaon system)

An (agressive) example: Ciuchini et.al.: 3 lines crosses at one point \rightarrow already a triumph of SM.

 $\sin 2(\phi_1/\beta) = 0.79 \pm 0.10$ falls nicely on top of it.

Measure all 3 angles of the unitarity triangle. Does the triangle close (is CKM unitary)?

$$\frac{\alpha}{\phi_2} \equiv \arg\left(\frac{b}{-a}\right), \frac{\beta}{\phi_1} \equiv \arg\left(\frac{c}{-b}\right), \frac{\gamma}{\phi_3} \equiv \arg\left(\frac{a}{-c}\right)$$
$$\frac{\alpha}{-a} + \frac{\beta}{\phi_1} + \frac{\gamma}{\phi_1} = \arg\left(\frac{\frac{b}{b} \cdot \frac{c}{c} \cdot \frac{a}{-b}}{-b} \cdot \frac{a}{-c}\right) = \pi \pmod{2\pi}$$

for any a, b, c (closed triangle or not)

 \rightarrow Important to measure the sides of the triangle. $(|V_{ub}|, |V_{cb}|, |V_{td}|)$

\boldsymbol{B} Mixing and lifetimes

Angle α/ϕ_2 (BaBar)

$$\Gamma(\Delta t) = N e^{-\gamma \Delta t} [1 \pm S_{\pi\pi} \sin \Delta m \Delta t \mp C_{\pi\pi} \cos \Delta m \Delta t]$$

If NO penguin, $S_{\pi\pi} = \sin 2\alpha$, $C_{\pi\pi} = 0$. (Penguin will be there, but try it anyway for now)

Modes useful for β/ϕ_1

Observable:
$$\lambda \equiv rac{q \ Amp(ar{B}^0 o f)}{p \ Amp(B^0 o f)}$$
 $(B_{H,L} = pB^0 \pm qar{B}^0)$

- $b \rightarrow s$ penguin process.
 - $\phi K_S (CP-)$: Im $\lambda \sim \sin 2\phi_1$ pure penguin (short or long-distance) may be modified by new physics in $b \rightarrow s$.

- $b \rightarrow c\bar{c}d(s)$ tree process ($b \rightarrow c\bar{c}d$: some penguin with V_{td})
 - $D^+D^-(CP^+)$ ($b \rightarrow c\bar{c}d$): Im $\lambda \sim \sin 2\phi_1$
 - $D^{*+}D^{*-}$: $(b \to c\bar{c}d)$: $\mathrm{Im}\lambda \sim \sin 2\phi_1$ *CP*-diluted by polarizations (as in $J/\Psi K_S^*$).
 - $D^{*+}D^ (b \to c\bar{c}d)$, $D^{(*)+}D^{(*)-}K_S$ $(b \to c\bar{c}s)$: $\mathrm{Im}\lambda \sim r\sin(2\phi_1 + \delta_{\mathrm{strong}})$ CP-diluted. In general, $r \equiv |Amp(\bar{B}^0 \to f)/Amp(B^0 \to f)| \neq 1$, and the strong phase δ_S does not cancel out.

Partial Reconstruction of $D^{*+}D^{-}$ (Belle)

 $B^0
ightarrow D^{*+}D^-$, $D^{*+}
ightarrow D^0 \pi^+_{slow}$ D^- and $\pi +_{slow}$ back-to-back

No reconstruction of D^0 .

 θ : helicity angle of D^{*+} decay. (expect $\cos^2 \theta$) Require $\cos \theta$ is 'physical' Plot $\cos \theta_{D^- - \pi^+_{slow}}$

Two samples: w/ and w/o lepton tag.

Lepton-tag

$$Br(B^0 o D^{*+}D^-) + Br(B^0 o D^{*-}D^+) = (1.84 \pm 0.43^{+0.68}_{-0.63}) imes 10^{-3}$$

Modes useful for γ/ϕ_3

$$B^-
ightarrow D_{CP} K^-$$
 (29.1 fb $^{-1}$) (Belle)

 D^0h^- : assign π mass to h^- . Signal at $\Delta E = -49$ MeV.

 $egin{array}{c} \mathsf{CP} & +: & & \ & K^+K^-, \pi^+\pi^- & \ & \mathsf{CP} & -: & & \ & K_S\pi^0, K_S\omega, K_S\eta, K_S\eta' & \end{array}$

$$B^- \to D_{CP} K^-$$

Preliminary			
	CP+	CP-	
A_{CP}	$A_1 = 0.29^{+0.29}_{-0.24} \pm 0.05$	$A_2 = -0.22^{+0.26}_{-0.22} \pm 0.04$	
	$-0.14 < A_1 < 0.79$	$-0.60 < A_2 < 0.21$	
R_{CP}	$R_1 = 1.38 \pm 0.38 \pm 0.15$	$R_2 = 1.37 \pm 0.36 \pm 0.12$	

$$R_i \equiv rac{Br(B^{\pm}
ightarrow D_i K^{\pm})/Br(B^{\pm}
ightarrow D_i \pi^{\pm})}{Br(B^{\pm}
ightarrow D^0 K^{\pm})/Br(B^{\pm}
ightarrow D^0 \pi^{\pm})}$$
(Cabibbo suppression factor ratio, D_{CP} vs D^0

 $A_1 \sim -A_2$ expected. Still consistent with no asymmetry.

Color-suppressed $b \to c \bar{u} d$ Modes

$Br(imes 10^{-4})$	Belle	Th.Mode
$D^0\pi^0$	$3.1\pm0.4\pm0.5$	0.7
$D^{*0}\pi^0$	$2.7\substack{+0.8+0.5\\-0.70.6}$	1.0
$D^0\eta$	$1.4^{+0.5}_{-0.4}\pm 0.3$	0.5
$D^{*0}\eta$	$2.0^{+0.9}_{-0.8}\pm 0.4$	1.0
$D^0 \omega$	$1.8\pm0.5^{+0.4}_{-0.3}$	0.7
$D^{*0}\omega$	$3.1^{+1.3}_{-1.1}\pm 0.8$	1.7

Consistently larger than the factorization model.

FSI rescattering from D^+X^- ?

$$B^+ o \chi_{c0} K^+$$

Prohibitted in naive factorization: $\langle \chi_{c0} | (\bar{c}c)_{V-A}^{\mu} | 0 \rangle = 0$ (*P* and *C* conservation. Conserved vector current also is relevant.)

$$Br(B^+ o \chi_{c0}K^+) = (8.0^{+2.7}_{-2.4} \pm 1.0 \pm 1.1[Br]) imes 10^4 \ Br(\chi_{c0}K^+)/Br(J/\Psi K^+) = 0.77^{+0.27}_{-0.23} \pm 0.11$$

Inclusive χ_{c2} Productions

Prohibitted in naive factorization:

 $\langle \chi_{c2} | (ar{c}c)^{\mu}_{V-A} | 0
angle = 0$

 $\chi_{c1,2}
ightarrow J/\Psi \gamma$, $J/\Psi
ightarrow \ell^+ \ell^-$

 $Br(B
ightarrow \chi_{c2}X) = (1.22 \pm 0.24 \pm 0.25) imes 10^{-2} \ Br(B
ightarrow \chi_{c1}X) = (3.14 \pm 0.16 \pm 0.29) imes 10^{-2}$

 $B^+ o p \bar{p} K^+$

Baryon production in charmless modes.

$$B^+ o p \bar{p} K^+$$

Reject charmonia $\rightarrow p\bar{p}$.Preliminary $Br(\times 10^{-6})$ $p\bar{p}K^+$ $4.2 \pm 0.8 \pm 0.6$ $(M_{p\bar{p}} < 3.4 {\rm GeV})$ $p\bar{p}$ < 1.6 $\Lambda\bar{\Lambda}$ < 2.3 $\bar{\Lambda}p$ < 2.1

Why not 2-body modes?

Belle

Charm Physics

A. Lifetimes

1.
$$\tau_{D_{S}^{+}}/\tau_{D^{0}} = \begin{cases} 1.17 \pm 0.02 \pm 0.01 \text{ (Belle)} \\ 1.20 \pm 0.02 \text{ (PDG)} \end{cases}$$

Annihilation diagram important.

2.
$$\tau_{\Xi_c^+} / \tau_{\Lambda_c^+} = \begin{cases} 2.8 \pm 0.03 & (\text{CLEO}) \\ 2.1 \pm 0.01 & (\text{FOCUS}) \end{cases}$$

Theoretical expectation: $1.2 \sim 1.7$

B. $D^0 - \overline{D}^0$ Mixing

1.
$$y_{cp} \equiv \frac{\Gamma_{CP+} - \Gamma_{CP-}}{\Gamma_{CP+} + \Gamma_{CP-}} \sim \frac{\tau_{K\pi}}{\tau_{KK}} - 1$$

 $\sigma_{y_{cp}} \sim 1\%$. Consistent with zero.

2.
$$x = \frac{\Delta m}{\Gamma}$$
, $y = \frac{\Delta \Gamma}{2\Gamma}$
 $\sigma_{x,y} \sim$ a few %. Consistent with zero.

C.
$$R_{DCSD} = \frac{Br(D^0 \rightarrow K^+ \pi^-)}{Br(D^0 \rightarrow K^- \pi^+)}$$

CLEO, FOCUS, BaBar, Belle.
 $R_{DCSD} = 0.3-0.4\%$. Error~ 0.05%.

D. $D^0 o K_L \pi^0$ vs $K_S \pi^0$ Belle

E.
$$A_{CP} \equiv \frac{\Gamma_{D \to f} - \Gamma_{\bar{D} \to \bar{f}}}{\Gamma_{D \to f} - \Gamma_{\bar{D} \to \bar{f}}}$$
 CLEO
 D^{0} : $K^{+}K^{-}, \pi^{+}\pi^{-}, K_{S}\phi, K_{S}\pi^{0}, \pi^{0}\pi^{0}, K_{S}K_{S}$
 D^{+} : $K^{+}K^{-}\pi^{+}, K^{-}K^{*0}, \phi\pi^{+}, \pi^{+}\pi^{-}\pi^{0}$
No evidence of CPV.

F. Semieptonic decays. CLEO

 $D^+ \to \bar{K}^{*0} \ell^+ \nu$, $\Lambda_c \to \Lambda e^+ \nu$: Form factors. HQET $\to B$ system. $\Omega_c^0 \to \Omega^- e^+ \nu$

CLEO-c

- Lower the CESR energy to the charm region.
- Only minor modification to the CLEO detector.
- Collect \sim 3fb⁻¹/yr.

 \rightarrow Full-reconstruction tag: 5.7M D^0 , 2.3M D^+ , 0.3M D_S^+ .

- Errors on $f_{D^+,D_s^+} \sim 2\%$ (14-33% now).
- Determine $|V_{cs}|, |V_{cd}|$ to 2% (7-16% now).
- $D \to K^{(*)}$ and $D \to \pi$ form factors.
- Other interesting stuff (h_c , η_c , etc.)

Tau Updates

A. Forbidden decays.

$$Br(au^- o \mu^- \gamma) igg\{ < 1.0 imes 10^{-6} ext{ Belle(01) 19M } au's \ < 1.1 imes 10^{-6} ext{ CLEO(00) 12M } au's$$

Comparable constraining power on NP as $Br(\mu^- \rightarrow e^- \gamma) < 1.2 \times 10^{-11}$ (MEGA/LAMPH(99))

$$egin{split} Br(au^- &
ightarrow e^- K^0) < 1.8 imes 10^{-6} \ Br(au^- &
ightarrow \mu^- K^0) < 1.8 imes 10^{-6} \ \end{bmatrix}$$
 Belle(01)

B. CPV

 $au^-
ightarrow \pi^- \pi^0
u_{ au}$ (Belle, CLEO), $ar{K}^0 \pi^-
u_{ au}$ (CLEO) No evidence of CPV.

Lots of potential at Babar, Belle.

Kaon Physics

A. ϵ'/ϵ

$$\operatorname{Re} \frac{\epsilon'}{\epsilon} = \begin{cases} (20.7 \pm 1.5 \pm 2.4 \pm 0.5) \times 10^{-4} \text{ KTeV} \\ (15.3 \pm 2.6) \times 10^{-4} & \text{NA48} \end{cases}$$

Direct CPV in neutral K established. Difficult to extract CKM angles, however.

B. $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (BNL787) Measures $|V_{ts}^* V_{td}| \rightarrow |V_{td}|$ ($|V_{cb}| = |V_{ts}|$) 2 signal candidates found. $Br(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.57^{+1.75}_{-0.82}) \times 10^{-10}$ (SM expects: $(0.75 \pm 0.29) \times 10^{-10}$) Upgarde(BNL949): Runing. 5-10 events in 2 yrs. FNAL CKM: Approved. 100 events with S/N> 10. (latter half of this decade) C. $K_L \rightarrow \pi^0 \nu \bar{\nu}$ Measures $\text{Im}(V_{ts}^* V_{td}) \rightarrow \eta$ $Br(K_L \rightarrow \pi^0 \nu \bar{\nu}) < 5.9 \times 10^{-7}$ (SM expects: $(2.6 \pm 1.2) \times 10^{-11}$: > 10⁴ to go.)

KEK E391a: Data taking 03. Sensitivity $O(10^{-10})$. BNL KOPIO: Latter half of this decade. 50 events with S/N=2.

Future *B* Facilities

Asymmetric B-factories at present:

	PEP2	KEK-B
$\mathcal{L}_{ ext{max}}(ext{cm}^{-2} ext{s}^{-1})$	4.51×10^{33}	5.5×10^{33}
$\int \mathcal{L} dt/{\sf day}$ (pb $^{-1}$)	303.4	311.5
$\int \mathcal{L} dt$ (fb $^{-1}$)	64.7	47.2

Each will have $\sim 100 \text{fb}^{-1}$ by this summer. (200 fb⁻¹ together \sim the original design for the lifetime of a B-factory)

 \sim 500fb $^{-1}$ each by 2006

This success was definitely helped by healthy competition where each learned from mistakes and good ideas of the other.

Future *B* Facilities

Asymmetric B-factories at present:

	PEP2	KEK-B
$\mathcal{L}_{ ext{max}}(ext{cm}^{-2} ext{s}^{-1})$	4.51×10^{33}	5.5×10^{33}
$\int \mathcal{L} dt/{\sf day}$ (pb $^{-1}$)	303.4	311.5
$\int \mathcal{L} dt$ (fb $^{-1}$)	64.7	47.2

Each will have $\sim 100 \text{fb}^{-1}$ by this summer. (200 fb⁻¹ together \sim the original design for the lifetime of a B-factory)

 \sim 500fb $^{-1}$ each by 2006

This success was definitely helped by healthy competition where each learned from mistakes and good ideas of the other.

Future *B* Facilities

- CDF/D0 Tevatron Run2(a,b). Fermilab $p\bar{p}$ collider. Running.
 - $2fb^{-1}$ by ~2004, ~ 15 fb^{-1} by 2007+.
- LHCb. Dedicated *B*-detector on LHC. Starts ~2007.

(ATLAS,CMS have also *B* programs)

- **BTeV.** Dedicated *B*-detector on Tevatron. Starts ~2008.
- Super-KEKB. $\mathcal{L} \sim 10^{35}$ (×20 present). Evolutionary upgrade. Starts ~2007.
- Super-BaBar. $\mathcal{L} \sim 10^{36}$. Quantum leap from the current machine.