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The mixing and CP -violation parameter of the neutral D system, ycp,
is usually obtained from the effective decay rates of K+K− and K±π∓

final states. We obtain expressions for these effective decay rates with-
out assuming that the semileptonic asymmetry parameter is small. We
then estimate the error in measuring the average lifetime by the ef-
fective lifetime of the Kπ mode. We also study the biases caused by
fitting single exponentials to these decay distributions which are not
single exponentials in reality.

1 Introduction

One way to probe mixing and CP violation in the neutralD system is to measure the
flavor-untagged lifetime differences of D0 mesons [1]. In particular, the often-used
modes are the K±π∓ and K+K− final states [2, 3].

In this memo, we will start from the exact expression for the time-dependent
decay rates and systematically evaluate approximate formulas assuming that x, y
and ∆ are small but non-zero values in general. These parameters are defined as

x ≡ δm

γ+

, y ≡ γ−
γ+

, ∆ ≡ |p|
2 − |q|2

|p|2 + |q|2 , (1)

where

δm ≡ m1 −m2, γ± ≡
γ1 ± γ2

2
, (2)

with m1,2 and γ1,2 being the mass and decay rates of the physical states D1,2 given
by

D1 ≡ pD0 + qD
0
, D2 ≡ pD0 − qD0

. (3)

The coefficients are normalized as

|p|2 + |q|2 = 1 . (4)

If there is no CP violation, we have |p| = |q| = 1/
√

2. In (3), we have assumed
CPT invariance in mixing; otherwise, we would have needed four instead of two (p
and q) complex coefficients. At this point, we do not need to specify which of D1,2

is heavier.
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The asymmetry between the D0 and D̄0 contents in the D1 or D2 state is the
asymmetry between |p|2 and |q|2, and is nothing but the ∆ parameter defined above.
Note that this asymmetry is the same for D1 and D2. The equivalent parameter
in the neutral K system can be measured as the asymmetry between positive and
negative leptons in the semileptonic decays of KL.

A pure D1,2 state is an eigenstate of the total Hamiltonian; thus, it will physically
stay as D1,2, but its amplitude and phase will change over time:

D1 → D1e1(t) , D2 → D2 e2(t) , (5)

where
e1(t) ≡ e−

γ1
2
t−im1t , e2(t) ≡ e−

γ2
2
t−im2t . (6)

2 Basic formulas

In this section, we obtain the basic expressions for the time-dependent decay dis-
tributions of a pure D0 or D̄0 at t = 0. No approximation will be made except for
the CPT invariance and the Wigner-Weisskopf formalism. In particular, xt and yt
could be large and CP may be violated in decay as well as in mixing.

Solving (3) for D0 and D̄0, applying the time evolutions of D1,2 given by (5),
then re-expressing D1,2 in terms of D0 and D̄0, we obtain the time evolutions of D0

and D̄0:

D0 → 1

2

[
D(e1 + e2) +

q

p
D̄(e1 − e2)

]
, (7)

D̄0 → 1

2

[
D̄(e1 + e2) +

p

q
D(e1 − e2)

]
. (8)

For a final state f and f̄ , we write the instantaneous decay amplitudes as

a ≡ Amp(D0 → f), a′ ≡ Amp(D̄0 → f), (9)

b ≡ Amp(D̄0 → f̄), b′ ≡ Amp(D0 → f̄). (10)

For f = K−π+, a and b are Cabibbo-favored decays and a′ and b′ are doubly
Cabibbo-suppressed decays.

Let AD→f (t) be the time-dependent decay amplitudes for a pure D0 state at
t = 0 to decay to a final state f at time t. It can be obtained by replacing D and
D̄ in (7) by a and a′, respectively. Similarly, AD̄→f̄ (t) can be obtained by replacing
D and D̄ in (8) by b′ and b, respectively. These ‘favored’ amplitudes can then be
written as

AD→f (t) =
a

2

[
(e1 + e2) + α(e1 − e2)] , (11)

AD̄→f̄ (t) =
b

2

[
(e1 + e2) + β(e1 − e2)] , (12)

2



where

α ≡ qa′

pa
, β ≡ pb′

qb
. (13)

For f = K−π+, the approximate values are |α| ∼ |β| ∼ 0.06 which is the factor of
double Cabibbo suppression.

The ‘suppressed’ modes are similarly expressed as

AD̄→f (t) =
a

2

p

q

[
(e1 − e2) + α(e1 + e2)] , (14)

AD→f̄ (t) =
b

2

q

p

[
(e1 − e2) + β(e1 + e2)] . (15)

Since we have not actually specified what is f and what is f̄ , (11) is equivalent to
(15), and (12) to (14). The difference is which amplitude is factored out, and it has
to do with mere convenience.

Squaring these amplitudes gives the corresponding decay distributions:

ΓD→f (t) =
|a|2
2
e−γ+t

{
(1 + |α|2) cosh γ−t− 2<α sinh γ−t

+(1− |α|2) cos δmt+ 2=α sin δmt
}
, (16)

ΓD̄→f̄ (t) =
|b|2
2
e−γ+t

{
(1 + |β|2) cosh γ−t− 2<β sinh γ−t

+(1− |β|2) cos δmt+ 2=β sin δmt
}
, (17)

for the ‘favored’ modes and

ΓD̄→f (t) =
|a|2
2

|p|2
|q|2 e

−γ+t
{
(1 + |α|2) cosh γ−t− 2<α sinh γ−t

−(1− |α|2) cos δmt− 2=α sin δmt
}
, (18)

ΓD→f̄ (t) =
|b|2
2

|q|2
|p|2 e

−γ+t
{
(1 + |β|2) cosh γ−t− 2<β sinh γ−t

−(1− |β|2) cos δmt− 2=β sin δmt
}
, (19)

for the ‘suppressed’ modes. Note that, for each category, the second expression can
be obtained from the first by the replacements a→ b, α→ β, and p↔ q. This can
also be seen at the amplitude level (11) through (15).

Assuming that D0 and D̄0 are generated in the same numbers, the untagged
decay distributions are

ΓD,D̄→f (t) = ΓD→f (t) + ΓD̄→f (t)

=
|a|2
2

(
1 +
|p|2
|q|2

)
e−γ+t

{[
(1 + |α|2) cosh γ−t− 2<α sinh γ−t

]
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−∆
[
(1− |α|2) cos δmt+ 2=α sin δmt

]}
, (20)

ΓD,D̄→f̄ (t) = ΓD→f̄ (t) + ΓD̄→f̄ (t)

=
|b|2
2

(
1 +
|q|2
|p|2

)
e−γ+t

{[
(1 + |β|2) cosh γ−t− 2<β sinh γ−t

]
+∆

[
(1− |β|2) cos δmt+ 2=β sin δmt

]}
, (21)

where we have used the definition of ∆ given in (1). These expressions for decay
distributions are exact in the sense that they do not use approximations that x, y,
or ∆ are small.

When the CP asymmetry in mixing ∆ is zero, the untagged decay distribution is
a linear combination of two exponentials e−γ1t and e−γ2t, and when ∆ is nonzero there
are oscillating terms. We see that the oscillating terms in the untagged distributions
are suppressed by the parameter ∆.

3 Applications to f = K+K− and K−π+

3.1 Effective decay rates

In the case of the neutral D system, the parameters x, y, are small (% level or less)
and it is not practical to measure the two separate exponentials or the oscillating
terms for the untagged decay distributions. In practice, a single exponential is fit
to the measured decay time distribution to obtain an ‘effective decay rate’.

Suppose we have a function

f(t) = e−γ1t + e−γ2t. (22)

The relative slope at t = 0 f ′(0)/f(0) is the same as that of another function given
by

g(t) = 2e−
1
2

(γ1+γ2) . (23)

These two functions are actually quite close when γ1 ∼ γ2 and γ−t is small. In fact,

f(t)

g(t)
= cosh γ−t ∼ 1 +

(γ−t)
2

2
· · · (24)

For γ−t < 0.1, or for example y = 0.01 and less than 10 lifetimes, the deviation
above is less than 0.005.

A toy Monte Carlo study has shown that when a single gaussian is fit to the
function f(t) above, the slope is close the average of γ1 and γ2, or γ+, where the fit
value is always smaller by approximately 2y2 relative. Namely, if one is to measure
y by comparing γ1 with the effective decay rate of f(t), the measured value of y is
shifted by a fraction 2y of y itself as long as the upper limit of the fit is 5 to 30
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lifetimes. As we will see, this is comparable to the shifts we are concerned with
in the following sections to the extent |y| ∼ |α|, |β|. As the experimental limit
on y becomes smaller, the bias caused by fitting a single gaussian would become
smaller. In the case of an oscillating term, the deviation of the fitted slope of a
single exponential and the relative slope at t = 0, f ′(0)/f(0), was found to be of the
same order as above. The sign of the shift is such that it is not as large as evaluated
from the relative slope at t = 0. This is due to the fact that the osillating terms are
bounded (i.e. | sin θ|, | cos θ| ≤ 1).

3.2 f = K+K−

In this section and the next, we will take the unit of time as the mean lifetime 1/γ+.
Then,

γ+t→ t , γ−t→ yt , δm t→ xt . (25)

Here we have f = f̄ , so we can use either of (20) or (21); the result should be the
same. What we are interested in is the relative slope at t = 0. We will thus express
the decay distributions in the form (1 + ct) (apart from e−γ+t) taking terms only to
the first order in t (to be precise, in yt and xt).

Thus, we start from (20), apply (25) and use the approximations

cosh yt→ 1 , sinh yt→ yt , cosxt→ 1 , sin xt→ xt (26)

to obtain

ΓD,D̄→KK(t) =
|a|2
2

(
1 +
|p|2
|q|2

)
(1 + |α|2)e−t

×
[
1−∆

1− |α|2
1 + |α|2 −

2|α|
1 + |α|2 (y cosφ+ ∆x sinφ)t

]
, (27)

where

α ≡ qAmp(D̄0 → K+K−)

pAmp(D0 → K+K−)
, (28)

and
φ ≡ argα . (29)

Experimentally, we have |Amp(D̄0 → K+K−)| ∼ |Amp(D0 → K+K−)| but the
limit on ∆ is essentially non-existent [4]. Thus, we first assume that |α| could deviate
significantly from 1 and ∆ from 0. We then write the above decay distribution as

ΓD,D̄→KK(t) ∝ e−(1+ycp) (30)

with

ycp =
2|α|

1 + |α|2 −∆(1− |α|2)(y cosφ+ ∆x sinφ) . (31)
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This parameter ycp may be defined as

ycp ≡
Γeff (K

+K−)

γ+

− 1 , (32)

where Γeff indicates the effective decay rate. If ]p| ∼ |q|, then we have ∆ ∼ 0 and
|α| ∼ 1, and keeping terms to the first order in ∆ and |α| − 1, ycp can be written as

ycp = y cosφ+ ∆x sinφ . (33)

3.3 f = K−π+

The average decay rate γ+ is often measured as the effective decay rate of the K−π+

final state. The goal of this section is to find out the accuracy of this method.
We take f = K−π+ in (20) and (21) and apply the change of time unit (25) and

the approximation xt, yt¿ 1 or equivalently (26). The result is

ΓD,D̄→K−π+(t) =
|a|2
2

(
1 +
|p|2
|q|2

) [
(1 + |α|2)−∆ (1− |α|2)

]
e−t

×
[
1− 2(<α y + ∆=αx)

(1 + |α|2)−∆ (1− |α|2) t
]
, (34)

ΓD,D̄→K+π−(t) =
|b|2
2

(
1 +
|q|2
|p|2

) [
(1 + |β|2) + ∆ (1− |β|2)

]
e−t

×
[
1− 2(<β y −∆=β x)

(1 + |β|2) + ∆ (1− |β|2) t
]
, (35)

where the second can be obtained from the first by the replacements a→ b, α→ β,
p ↔ q, and ∆ → −∆ (since p and q is exchanged). The parameters α and β are
explicitly given by

α ≡ qAmp(D̄0 → K−π+)

pAmp(D0 → K−π+)
, β ≡ pAmp(D0 → K+π−)

qAmp(D̄0 → K+π−)
, (36)

and as mentioned earlier, the order of magnitude is |α| ∼ |β| ∼ 0.06.
Writing in exponential form,

ΓD,D̄→K−π+(t) ∝ e−(1+yK−π+ )t , yK−π+ =
2(<α y + ∆=αx)

(1 + |α|2)−∆ (1− |α|2) , (37)

ΓD,D̄→K+π−(t) ∝ e−(1+yK+π− )t , yK+π− =
2(<β y −∆=β x)

(1 + |β|2) + ∆ (1− |β|2) . (38)

The parameters yK−π+ and yK+π− are the fractional shift of the effective decay rate
from γ+. If ∆ ∼ 0, these parameters are roughly,

yK+π− ∼ 2<α y , yK−π+ ∼ 2<β y . (39)
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When the effective decay rate of K−π+ is used instead of γ+ in evaluating ycp
using the definition (32), the measured ycp is actually ycp − yK−π+ . Since <α and
<β are of order 0.06 (or less) and ycp is of order y (or less), the typical shift in the
measured ycp is of order 10% of itself. In practice, one may measure the effective
decay rate of the sum of the K−π+ and K+π− samples. There is, however, no
automatic cancellation between yK+π− and yK−π+ , and thus the typical shift in ycp
is still of the same order.

4 Summary

In the case of the K+K− final state, the bias caused by fitting a single exponential
to the real distribution that includes two decay rates and oscillating terms is of order
a few times y or ∆ · x whichever is larger. Namely, if ycp is of order 3% the error is
of order 10% of itself. The effective decay rate of the K±π∓ mode does not exactly
measure the average decay rate γ+ with the bias that is roughly 0.1 y which leads
to about 10% mismeasurement of ycp. We also found an expression for ycp where ∆
is not assumed to be small.
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