Problem 1.1

(a) In the original frame, the energy momentum are

$$
\left(\begin{array}{c}
E \\
P_{x}=P \cos \theta \\
P_{y}=P \sin \theta \\
P_{z}=0
\end{array}\right) .
$$

Boosting in x direction by velocity β tranforms this to

$$
\begin{aligned}
& \binom{E^{\prime}}{P_{x}^{\prime}}=\left(\begin{array}{ll}
\gamma & \eta \\
\eta & \gamma
\end{array}\right)\binom{E}{P_{x}} \\
& \binom{P_{y}^{\prime}}{P_{z}^{\prime}}=\binom{P_{y}}{P_{z}}
\end{aligned}
$$

or

$$
\left(\begin{array}{c}
E^{\prime} \\
P_{x}^{\prime} \\
P_{y}^{\prime} \\
P_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
\gamma E+\eta P \cos \theta \\
\eta E+\gamma P \cos \theta \\
p \sin \theta \\
0
\end{array}\right) .
$$

(b) Using the above and $\gamma^{2}-\eta^{2}=1$,

$$
\begin{aligned}
E^{\prime 2}-\vec{P}^{\prime 2} & =(\gamma E+\eta P \cos \theta)^{2}-(\eta E+\gamma P \cos \theta)^{2}-P^{2} \sin ^{2} \theta \\
& =\left(\gamma^{2}-\eta^{2}\right) E^{2}+\left(\eta^{2}-\gamma^{2}\right) P^{2} \cos ^{2} \theta-P^{2} \sin ^{2} \theta \\
& =E^{2}-P^{2} \cos ^{2} \theta-P^{2} \sin ^{2} \theta \\
& =E^{2}-P^{2}
\end{aligned}
$$

(c) Using (a) and $\beta_{0}=P / E$ in $\tan \theta^{\prime}=P_{y}^{\prime} / P_{x}^{\prime}$,

$$
\tan \theta^{\prime}=\frac{P \sin \theta}{\eta E+\gamma P \cos \theta}=\frac{\beta_{0} \sin \theta}{\eta+\gamma \beta_{0} \cos \theta},
$$

or with $\gamma=1 / \sqrt{1-\beta^{2}}$ and $\eta=\beta \gamma$,

$$
\tan \theta^{\prime}=\frac{\sqrt{1-\beta^{2}} \sin \theta}{\beta / \beta_{0}+\cos \theta}
$$

Problem 1.2

(a) The 4-momentum conservation $P=P_{1}+P_{2}$ leads to

$$
P-P_{1}=P_{2} \quad \rightarrow \quad\left(P-P_{1}\right)^{2}=P_{2}^{2} .
$$

Expanding it and using $P^{2}=M^{2}$ and $P_{i}^{2}=m_{i}^{2}$,

$$
P^{2}-2 P \cdot P_{1}+P_{1}^{2}=P_{2}^{2} \quad \rightarrow \quad M^{2}-2 M E_{1}+m_{1}^{2}=m_{2}^{2},
$$

where we have used $P=(E, \overrightarrow{0})$ in the rest frame of the parent. Then E_{1} is

$$
E_{1}=\frac{M^{2}-m_{2}^{2}+m_{1}^{2}}{2 M}
$$

and its momentum p is

$$
\begin{aligned}
p^{2} & =E_{1}^{2}-m_{1}^{2}=\frac{\left(M^{2}-m_{2}^{2}+m_{1}^{2}\right)^{2}}{4 M^{2}}-m_{1}^{2} \\
& =\frac{M^{4}+m_{1}^{4}+m_{2}^{4}-2 M^{2} m_{1}^{2}-2 M^{2} m_{2}^{2}-2 m_{1}^{2} m_{2}^{2}}{4 M^{2}} \\
& =\frac{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)}{4 M^{2}}, .
\end{aligned}
$$

Taking the square root gives the answer.
(b) Suppose the energy and momentum of daughter 1 in the rest frame of the parent are e and p, repectively. Then, from (a), $e=\left(M^{2}-m_{2}^{2}+m_{1}^{2}\right) /(2 M)$ and $p=\sqrt{\lambda\left(M^{2}, m_{1}^{2}, m_{2}^{2}\right)} /(2 M)$. The its energy in the lab frame E_{1} is

$$
E_{1}=\gamma e+\eta p \cos \theta .
$$

The maximum and minimum of E_{1} corresponds to $\cos \theta=+1$ and -1 , respectively:

$$
E_{1 \max }=\gamma e+\eta p, \quad E_{1 \min }=\gamma e-\eta p
$$

The decay is uniform in 4π steradian. The expression for the solid angle element $d \omega=2 \pi d \cos \theta$ indicates that $\cos \theta$ will distribute uniformly from -1 to +1 . Thus, the energy will distribute uniformly from $E_{1 \text { min }}$ to $E_{1 \text { max }}$. Normalizing the distribution in the range of $E_{1 \text { max }}-E_{1 \text { min }}=2 \eta p$,

$$
f\left(E_{1}\right) d E_{1}=\frac{d E_{1}}{2 \eta p}
$$

