Exercise 1.3

(a) Raising α in the expression $\left(M^{\mu \nu}\right)_{\alpha \beta}=g^{\mu}{ }_{\alpha} g^{\nu}{ }_{\beta}-g^{\mu}{ }_{\beta} g^{\nu}{ }_{\alpha}$,

$$
\left(M^{\mu \nu}\right)^{\alpha}{ }_{\beta}=g^{\mu \alpha} g^{\nu}{ }_{\beta}-g^{\mu}{ }_{\beta} g^{\nu \alpha} .
$$

Then, noting that $g^{0 i}=0(i=1,2,3)$,

$$
\begin{aligned}
\left(K_{i} K_{j}\right)^{\alpha}{ }_{\gamma} & =\left(M^{0 i}\right)^{\alpha}{ }_{\beta}\left(M^{0 j}\right)^{\beta}{ }_{\gamma} \\
& =\left(g^{0 \alpha} g^{i}{ }_{\beta}-g^{0}{ }_{\beta} g^{\alpha \alpha}\right)\left(g^{0 \beta} g^{j}{ }_{\gamma}-g^{0}{ }_{\gamma} g^{j \beta}\right) \\
& =-g^{i \alpha} g^{j}{ }_{\gamma}-g^{0 \alpha} g^{0}{ }_{\gamma} g^{j i} .
\end{aligned}
$$

Exchanging i and j,

$$
\left(K_{j} K_{i}\right)^{\alpha}{ }_{\gamma}=-g^{j \alpha} g_{\gamma}^{i}-g^{0 \alpha} g^{0}{ }_{\gamma} g^{i j} .
$$

Then, the commutator [K_{i}, K_{j}] is

$$
\left[K_{i}, K_{j}\right]^{\alpha}{ }_{\gamma}=g^{j \alpha} g_{\gamma}^{i}-g^{i \alpha} g^{j}{ }_{\gamma}=\left(M^{j i}\right)^{\alpha}{ }_{\gamma}=-\left(M^{i j}\right)^{\alpha}{ }_{\gamma},
$$

namely,

$$
\left[K_{i}, K_{j}\right]=-L_{k} \quad(i, j, k: \text { cyclic }) .
$$

(b) Since any nonzero components in the matrixes that appear in $\left[L_{i}, L_{j}\right]=\epsilon_{i j k} L_{k}$ have purely space indeces, it suffices to consider the 3×3 space parts only. Using $\left(L_{i}\right)^{j}{ }_{k}=-\epsilon_{i j k}$,

$$
\begin{aligned}
\left(L_{i} L_{j}\right)^{l}{ }_{m} & =\left(L_{i}\right)^{l}{ }_{k}\left(L_{j}\right)^{k}{ }_{m}=\epsilon_{i l k} \epsilon_{j k m}=-\epsilon_{i l k} \epsilon_{j m k} \\
& =-\left(\delta_{i j} \delta_{l m}-\delta_{i m} \delta_{l j}\right),
\end{aligned}
$$

where we have used the formula $\epsilon_{i l k} \epsilon_{j m k}=\delta_{i j} \delta_{l m}-\delta_{i m} \delta_{l j}$. Exchanging i and j,

$$
\left(L_{j} L_{i}\right)^{l}{ }_{m}=-\left(\delta_{j i} \delta_{l m}-\delta_{j m} \delta_{l i}\right) .
$$

Then, the commutator becomes,

$$
\left[L_{i}, L_{j}\right]_{m}^{l}=\delta_{i m} \delta_{l j}-\delta_{j m} \delta_{l i}=\epsilon_{i j k} \epsilon_{m l k}=\epsilon_{i j k}\left(L_{k}\right)_{m}^{l},
$$

namely,

$$
\left[L_{i}, L_{j}\right]=\epsilon_{i j k} L_{k}
$$

(c) Since $\left(L_{i}\right)^{0}{ }_{\mu}=\left(L_{i}\right)^{\mu}{ }_{0}=0$ and $\left(K_{i}\right)^{j}{ }_{k}=0$,

$$
\left[L_{i}, K_{j}\right]^{k}{ }_{l}=\left(L_{i}\right)^{k}{ }_{\mu}\left(K_{j}\right)^{\mu}{ }_{l}-\left(K_{j}\right)^{k}{ }_{\mu}\left(L_{i}\right)^{\mu}{ }_{l}=0 .
$$

On the other hand,

$$
\left[L_{i}, K_{j}\right]^{k}{ }_{0}=\underbrace{\left(L_{i}\right)^{k}{ }_{\mu}\left(K_{j}\right)^{\mu}{ }_{0}}_{-\epsilon_{i k l} \delta_{j l}}-\left(K_{j}\right)^{k}{ }_{\mu} \underbrace{\left(L_{i}\right)^{\mu}{ }_{0}}_{0}=-\epsilon_{i k j}=\epsilon_{i j l} \delta_{l k}=\epsilon_{i j l}\left(K_{l}\right)^{k}{ }_{0} .
$$

Similarly,

$$
\left[L_{i}, K_{j}\right]^{0}{ }_{k}=\epsilon_{i j l}\left(K_{l}\right)^{0}{ }_{k} .
$$

Putting all together, we have

$$
\left[L_{i}, K_{j}\right]=\epsilon_{i j l} K_{l} .
$$

Exercise 1.4

(a) Using $P_{\|}=\vec{P} \cdot \vec{n}$ and $\vec{P}_{\perp}=\vec{P}-P_{\|} \vec{n}$, the boost can be written as

$$
\begin{aligned}
E^{\prime} & =\gamma E+\eta P_{\|}=\gamma E+\eta \vec{P} \cdot \vec{n}=\gamma E+\beta \gamma \vec{P} \cdot \frac{\vec{\beta}}{\beta} \\
& =\gamma E+\gamma \vec{P} \cdot \vec{\beta}=\gamma E+\gamma \beta_{x} P_{x}+\gamma \beta_{y} P_{y}+\gamma \beta_{z} P_{z},
\end{aligned}
$$

and

$$
\begin{aligned}
\vec{P}^{\prime} & =P_{\|}^{\prime} \vec{n}+\vec{P}_{\perp}^{\prime}=\left(\eta E+\gamma P_{\|}\right) \vec{n}+\vec{P}_{\perp} \\
& =(\eta E+\gamma \vec{P} \cdot \vec{n}) \vec{n}+\vec{P}-(\vec{P} \cdot \vec{n}) \vec{n} \\
& =(\eta E+(\gamma-1) \vec{P} \cdot \vec{n}) \vec{n}+\vec{P} \\
& =\gamma E \vec{\beta}+\frac{\gamma-1}{\beta^{2}}(\vec{P} \cdot \vec{\beta}) \vec{\beta}+\vec{P},
\end{aligned}
$$

which writes in terms of components,

$$
\begin{aligned}
P_{x}^{\prime} & =\gamma \beta_{x} E+\rho \beta_{x}(\vec{\beta} \cdot \vec{P})+P_{x} \\
P_{y}^{\prime} & =\gamma \beta_{x} E+\rho \beta_{x}(\vec{\beta} \cdot \vec{P})+P_{y} \\
P_{z}^{\prime} & =\gamma \beta_{y} E+\rho \beta_{y}(\vec{\beta} \cdot \vec{P})+P_{z}
\end{aligned}
$$

with $\rho \equiv(\gamma-1) / \beta^{2}$. Putting them in matrix form,

$$
\left(\begin{array}{c}
E^{\prime} \\
P_{x}^{\prime} \\
P_{y}^{\prime} \\
P_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & \gamma \beta_{x} & \gamma \beta_{y} & \gamma \beta_{z} \\
\gamma \beta_{x} & 1+\rho \beta_{x}^{2} & \rho \beta_{x} \beta_{y} & \rho \beta_{x} \beta_{z} \\
\gamma \beta_{y} & \rho \beta_{y} \beta_{x} & 1+\rho \beta_{y}^{2} & \rho \beta_{y} \beta_{z} \\
\gamma \beta_{z} & \rho \beta_{z} \beta_{x} & \rho \beta_{z} \beta_{y} & 1+\rho \beta_{z}^{2}
\end{array}\right)\left(\begin{array}{c}
E \\
P_{x} \\
P_{y} \\
P_{z}
\end{array}\right) .
$$

(b) When $\beta \ll 1, \gamma \sim 1+\beta^{2} / 2$ and thus $\gamma-1 \sim \beta^{2} / 2$. Namely, $\rho \sim 1 / 2$ and $\gamma \sim 1$. Then, the Lorentz tranformation obtained above becomes,

$$
\left(\begin{array}{cccc}
1 & \beta_{x} & \beta_{y} & \beta_{z} \\
\beta_{x} & 1 & 0 & 0 \\
\beta_{y} & 0 & 1 & 0 \\
\beta_{z} & 0 & 0 & 1
\end{array}\right)=I+\beta_{i} K_{i} .
$$

(c) The particle with mass m at rest in K has 4 -momentum $P^{\nu}=m g^{\nu}{ }_{0}$. Then, the 4 -momentum in K^{\prime} is given by

$$
P^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} P^{\nu}=m \Lambda^{\mu}{ }_{\nu} g^{\nu}{ }_{0}=m \Lambda^{\mu}{ }_{0} .
$$

On the other hand, the same 4-momentum should be

$$
P^{\prime \mu}=m \eta_{K}^{\prime \mu} .
$$

where $\eta_{K}^{\prime \mu}$ is the 4 -velocity corresponding to β_{K}^{\prime} :

$$
\eta_{K}^{\prime 0}=\frac{1}{\sqrt{1-\beta_{K}^{\prime 2}}}, \quad \eta_{K}^{\prime i}=\frac{\beta_{K i}^{\prime}}{\sqrt{1-\beta_{K}^{\prime 2}}}
$$

Thus, we should have

$$
\Lambda_{0}^{\mu}=\eta_{K}^{\prime \mu}
$$

If we put a mass m at rest in K^{\prime}, the 4 -momenta there is $P^{\prime \nu}=m g^{\nu}{ }_{0}$. The 4momentum in K is given by the inverse transformation of Λ :

$$
P^{\mu}=\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu} P^{\prime \nu}=m\left(\Lambda^{-1}\right)^{\mu}{ }_{0}=m \Lambda_{0}{ }^{\mu},
$$

where we have used $\left(\Lambda^{-1}\right)^{\mu}{ }_{\nu}=\Lambda_{\nu}{ }^{\mu}$. On the other hand, the same 4-momentum can be written in terms of $\vec{\beta}_{K^{\prime}}$ as

$$
P^{\mu}=m \eta_{K^{\prime}}^{\mu},
$$

where $\eta_{K^{\prime}}^{\mu}$ is the 4 -velocity corresponding to $\vec{\beta}_{K^{\prime}}$. Thus, we should have $\Lambda_{0}{ }^{\mu}=\eta_{K^{\prime}}^{\mu}$, or

$$
\Lambda^{0}{ }_{\mu}=\eta_{K^{\prime} \mu} .
$$

Problem 1.3

That a rotation around an axis commute with a boost in that direction: Using the commutations relations between K_{i} and L_{j} as well as $\theta_{j}=c \xi_{j}$,

$$
\left[\xi_{i} K_{i}, \theta_{j} L_{j}\right]=\xi_{i} \theta_{j} \underbrace{\left[K_{i}, L_{j}\right]}_{\epsilon_{i j k} K_{k}}=c \xi_{i} \xi_{j} \epsilon_{i j k} K_{k}=0
$$

where we noted that $\xi_{i} \xi_{j}$ is symmetric while $\epsilon_{i j k}$ is antisymmetric under $i \leftrightarrow j$, thus cancel out when summed over i and j. Then, using the CBH theorem,

$$
e^{\xi_{i} K_{i}} e^{\theta_{j} L_{j}}=e^{\xi_{i} K_{i}+\theta_{j} L_{j}+} \quad \underbrace{\cdots}_{0}
$$

where the terms indicated by dots are zero since their innermost commutator is $\left[\xi_{i} K_{i}, \theta_{j} L_{j}\right]$ which is zero as shown above. Namely, $e^{\xi_{i} K_{i}}$ and $e^{\theta_{j} L_{j}}$ commute.

That two boosts in the same direction commute: Similarly as above,

$$
\left[\xi_{i} K_{i}, \xi_{j}^{\prime} K_{j}\right]=\xi_{i} \xi_{j}^{\prime} \underbrace{\left[K_{i}, K_{j}\right]}_{-\epsilon_{i j k} L_{k}}=-c \xi_{i} \xi_{j} \epsilon_{i j k} L_{k}=0 .
$$

Thus,

$$
e^{\xi_{i} K_{i}} e^{\xi_{j}^{\prime_{j}}}=e^{\xi_{i} K_{i}+\xi_{j}^{\prime} K_{j}+} \cdot \underbrace{\cdots}_{0}
$$

Namely, $e^{\xi_{i} K_{i}}$ and $e^{\xi_{j}^{\prime} K_{j}}$ commute.

