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Exercise 3.5
In terms of γ matrices, Bb

i and Br
i can be written as

Bb
i =

1

2
γ0γi Br

i =
1

2
γjγk (ijk : cyclic)

We first evaluate [Bb
i , B

b
j ] where (i, j, k) are cyclic. Using the anticommutation of γ

matrixes and γ02 = 1,

[Bb
i , B

b
j ] =

1

4
[γ0γi, γ0γj] =

1

4
(γ0 γiγ0︸ ︷︷ ︸

−γ0γi

γj − γ0 γjγ0︸ ︷︷ ︸
−γ0γj

γi)

= −1

4
(γiγj − γjγi) = −1

2
γiγj = −Bb

k .

This is consistent with
[Bb

i , B
b
j ] = −ϵijkB

r
k . (∗)

where (i, j) is in cyclic order. When (i, j) is in anti-cyclic order, the above equation is
correct since LHS and RHS both change sign. Also, it is trivially correct when i = j
since both sides are zero. Thus, (∗) is correct for all (i, j).

Next we evaluate [Br
i , B

r
j ] where (i, j) are in cyclic oder. Taking (ijk) as cyclic,

[Br
i , B

r
j ] =

1

4
[γjγk, γkγi] =

1

4
(γj γkγk︸ ︷︷ ︸

−1

γi − γkγiγjγk︸ ︷︷ ︸
γkγk︸ ︷︷ ︸
−1

γiγj

) =
1

2
γiγj = Br

k ,

and thus we get
[Br

i , B
r
j ] = ϵijkB

r
k

as in the discussion below (∗).
Again for (ijk) in cyclic order,

[Br
i , B

b
j ] =

1

4
[γjγk, γ0γj] =

1

4
(γjγkγ0γj︸ ︷︷ ︸
γjγj︸ ︷︷ ︸
−1

γkγ0

−γ0 γjγj︸ ︷︷ ︸
−1

γk) =
1

2
γ0γk = Bb

k ,

which leads to
[Br

i , B
b
j ] = ϵijkB

b
k

as in the discussion below (∗).
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Exercise 3.6
(a) We trivially have 12 = 1, γµ2 = 1 or −1. For σµν (µ ̸= ν),

σµν2 = iγµγνiγµγν = γµ2γν2 = ±1 .

We also have γ5
2 = 1 (see text). For axial vectors,

(γµγ5)
2 = γµ γ5 γ

µ︸ ︷︷ ︸
−γµγ5

γ5 = −γµ2γ5
2 = ±1 .

(b) For γµ or γµγ5, γ5 does the job:

γµγ5 = −γ5γ
µ , (γµγ5)γ5 = −γ5(γ5γ

µ) .

For γ5, a γµ does the job as shown above. For σµν (µ ̸= ν), the γµ anticommutes
with it:

(iγµγν)γµ = −γµ(iγµγν) .

Thus, for any Γi (i ̸= 1), there is at least one Γk that anticommutes with it. Now the
trace of ΓkΓiΓk can be written in two ways as

Tr(ΓkΓiΓk) =

{
Tr(ΓiΓ

2
k) (by TrAB = TrBA)

−Tr(ΓiΓ
2
k) (by {Γi,Γk} = 0)

→ Tr(ΓiΓ
2
k) = 0 .

On the other hand, Γ2
k = ±1 by (a); thus, we have TrΓi = 0 (i ̸= 1).

(c) By moving the same γµ’s to next to each other and using γµ2 = ±1, any
product of γµ’s can be uniquely reduced to the form

cγµ1 · · · γµn (µi = 0, 1, 2, 3 µ1 < · · · < µn n ≤ 4)

where c is a constant and all γµ’s are different. The axial vector γµγ5 corresponds to
n = 3:

γµγ5 = γµiγ0γ1γ2γ3 = ±iγαγβγγ ,

where α, β, γ are 3 numbers different from µ. Thus, up to a constant, if n = 1 it
should be one of the 4 vectors γµ, if n = 2 it should be one of the 6 tensors iγµγν , if
n = 3 it should be one of the 4 axial vectors γµγ5, and if n = 4 it is the pseudoscalar
γ5. When the product of two Γi’s are taken, the only way it reduces to the scalar is
that all γµ’s are paired to form γµ2’s; namely, only when the two Γi’s are the same.
Thus, for any Γi and Γj (i ̸= j), the product reduces to the above form with n > 0:

ΓiΓj = cΓk (i ̸= j, k ̸= 1) .

(d) Suppose
∑16

i=1 ciΓi = 0. Taking the trace and noting that TrΓi = 0 (i ̸= 1), we
have

c1TrΓ1 = 0 → c1 = 0 .
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Multiply Γj (j ̸= 1) to
∑16

i=1 ciΓi = 0 and take the trace. Then the only non-zero term
is i = j since all other terms are proportional to a certain Γk (k ̸= 1):

cjTrΓ
2
j = 0 → cj = 0 . (j ̸= 1)

Namely, all the coefficients become zero, and thus Γi (i = 1, . . . , 16) are linearly
independent.


