Exercise 3.5

In terms of γ matrices, B_{i}^{b} and B_{i}^{r} can be written as

$$
B_{i}^{b}=\frac{1}{2} \gamma^{0} \gamma^{i} \quad B_{i}^{r}=\frac{1}{2} \gamma^{j} \gamma^{k}(i j k: \text { cyclic })
$$

We first evaluate $\left[B_{i}^{b}, B_{j}^{b}\right]$ where (i, j, k) are cyclic. Using the anticommutation of γ matrixes and $\gamma^{0^{2}}=1$,

$$
\begin{aligned}
{\left[B_{i}^{b}, B_{j}^{b}\right] } & =\frac{1}{4}\left[\gamma^{0} \gamma^{i}, \gamma^{0} \gamma^{j}\right]=\frac{1}{4}(\gamma^{0} \underbrace{\gamma^{i} \gamma^{0}}_{-\gamma^{0} \gamma^{i}} \gamma^{j}-\gamma^{0} \underbrace{\gamma^{j}}_{-\gamma^{0} \gamma^{j}} \gamma^{i}) \\
& =-\frac{1}{4}\left(\gamma^{i} \gamma^{j}-\gamma^{j} \gamma^{i}\right)=-\frac{1}{2} \gamma^{i} \gamma^{j}=-B_{k}^{b} .
\end{aligned}
$$

This is consistent with

$$
\begin{equation*}
\left[B_{i}^{b}, B_{j}^{b}\right]=-\epsilon_{i j k} B_{k}^{r} \tag{*}
\end{equation*}
$$

where (i, j) is in cyclic order. When (i, j) is in anti-cyclic order, the above equation is correct since LHS and RHS both change sign. Also, it is trivially correct when $i=j$ since both sides are zero. Thus, $(*)$ is correct for all (i, j).

Next we evaluate $\left[B_{i}^{r}, B_{j}^{r}\right.$] where (i, j) are in cyclic oder. Taking $(i j k)$ as cyclic,

$$
\left[B_{i}^{r}, B_{j}^{r}\right]=\frac{1}{4}\left[\gamma^{j} \gamma^{k}, \gamma^{k} \gamma^{i}\right]=\frac{1}{4}(\gamma^{j} \underbrace{\gamma^{k} \gamma^{k}}_{-1} \gamma^{i}-\underbrace{\underbrace{\gamma^{k} \gamma^{k}}_{-1} \gamma^{i} \gamma^{j}}_{-1} \gamma^{j} \gamma^{k})=\frac{1}{2} \gamma^{i} \gamma^{j}=B_{k}^{r},
$$

and thus we get

$$
\left[B_{i}^{r}, B_{j}^{r}\right]=\epsilon_{i j k} B_{k}^{r}
$$

as in the discussion below ($*$).
Again for ($i j k$) in cyclic order,

$$
\left[B_{i}^{r}, B_{j}^{b}\right]=\frac{1}{4}\left[\gamma^{j} \gamma^{k}, \gamma^{0} \gamma^{j}\right]=\frac{1}{4}(\underbrace{\gamma^{j} \gamma^{j} \gamma^{j}}_{-1} \gamma^{0} \gamma^{j} \gamma^{0}-\gamma^{0} \underbrace{\gamma^{j} \gamma^{j}}_{-1} \gamma^{k})=\frac{1}{2} \gamma^{0} \gamma^{k}=B_{k}^{b},
$$

which leads to

$$
\left[B_{i}^{r}, B_{j}^{b}\right]=\epsilon_{i j k} B_{k}^{b}
$$

as in the discussion below (*).

Exercise 3.6

(a) We trivially have $1^{2}=1, \gamma^{\mu 2}=1$ or -1 . For $\sigma^{\mu \nu}(\mu \neq \nu)$,

$$
\sigma^{\mu \nu 2}=i \gamma^{\mu} \gamma^{\nu} i \gamma^{\mu} \gamma^{\nu}=\gamma^{\mu 2} \gamma^{\nu 2}= \pm 1
$$

We also have $\gamma_{5}{ }^{2}=1$ (see text). For axial vectors,

$$
\left(\gamma^{\mu} \gamma_{5}\right)^{2}=\gamma^{\mu} \underbrace{\gamma_{5} \gamma^{\mu}}_{-\gamma^{\mu} \gamma_{5}} \gamma_{5}=-\gamma^{\mu 2} \gamma_{5}{ }^{2}= \pm 1
$$

(b) For γ^{μ} or $\gamma^{\mu} \gamma_{5}, \gamma_{5}$ does the job:

$$
\gamma^{\mu} \gamma_{5}=-\gamma_{5} \gamma^{\mu}, \quad\left(\gamma^{\mu} \gamma_{5}\right) \gamma_{5}=-\gamma_{5}\left(\gamma_{5} \gamma^{\mu}\right)
$$

For γ_{5}, a γ^{μ} does the job as shown above. For $\sigma^{\mu \nu}(\mu \neq \nu)$, the γ^{μ} anticommutes with it:

$$
\left(i \gamma^{\mu} \gamma^{\nu}\right) \gamma^{\mu}=-\gamma^{\mu}\left(i \gamma^{\mu} \gamma^{\nu}\right)
$$

Thus, for any $\Gamma_{i}(i \neq 1)$, there is at least one Γ_{k} that anticommutes with it. Now the trace of $\Gamma_{k} \Gamma_{i} \Gamma_{k}$ can be written in two ways as

$$
\operatorname{Tr}\left(\Gamma_{k} \Gamma_{i} \Gamma_{k}\right)=\left\{\begin{array}{rl}
\operatorname{Tr}\left(\Gamma_{i} \Gamma_{k}^{2}\right) & (\text { by } \operatorname{Tr} A B=\operatorname{Tr} B A) \\
-\operatorname{Tr}\left(\Gamma_{i} \Gamma_{k}^{2}\right) & \left(\text { by }\left\{\Gamma_{i}, \Gamma_{k}\right\}=0\right)
\end{array} \quad \rightarrow \quad \operatorname{Tr}\left(\Gamma_{i} \Gamma_{k}^{2}\right)=0 .\right.
$$

On the other hand, $\Gamma_{k}^{2}= \pm 1$ by (a); thus, we have $\operatorname{Tr} \Gamma_{i}=0(i \neq 1)$.
(c) By moving the same γ^{μ} 's to next to each other and using $\gamma^{\mu 2}= \pm 1$, any product of γ^{μ} 's can be uniquely reduced to the form

$$
c \gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}} \quad\left(\mu_{i}=0,1,2,3 \quad \mu_{1}<\cdots<\mu_{n} \quad n \leq 4\right)
$$

where c is a constant and all γ^{μ} 's are different. The axial vector $\gamma^{\mu} \gamma_{5}$ corresponds to $n=3$:

$$
\gamma^{\mu} \gamma_{5}=\gamma^{\mu} i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}= \pm i \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma}
$$

where α, β, γ are 3 numbers different from μ. Thus, up to a constant, if $n=1$ it should be one of the 4 vectors γ^{μ}, if $n=2$ it should be one of the 6 tensors $i \gamma^{\mu} \gamma^{\nu}$, if $n=3$ it should be one of the 4 axial vectors $\gamma^{\mu} \gamma_{5}$, and if $n=4$ it is the pseudoscalar γ_{5}. When the product of two Γ_{i} 's are taken, the only way it reduces to the scalar is that all γ^{μ} 's are paired to form $\gamma^{\mu 2}$'s; namely, only when the two Γ_{i} 's are the same. Thus, for any Γ_{i} and $\Gamma_{j}(i \neq j)$, the product reduces to the above form with $n>0$:

$$
\Gamma_{i} \Gamma_{j}=c \Gamma_{k} \quad(i \neq j, k \neq 1) .
$$

(d) Suppose $\sum_{i=1}^{16} c_{i} \Gamma_{i}=0$. Taking the trace and noting that $\operatorname{Tr} \Gamma_{i}=0(i \neq 1)$, we have

$$
c_{1} \operatorname{Tr} \Gamma_{1}=0 \quad \rightarrow \quad c_{1}=0 .
$$

Multiply $\Gamma_{j}(j \neq 1)$ to $\sum_{i=1}^{16} c_{i} \Gamma_{i}=0$ and take the trace. Then the only non-zero term is $i=j$ since all other terms are proportional to a certain $\Gamma_{k}(k \neq 1)$:

$$
c_{j} \operatorname{Tr} \Gamma_{j}^{2}=0 \quad \rightarrow \quad c_{j}=0 . \quad(j \neq 1)
$$

Namely, all the coefficients become zero, and thus $\Gamma_{i}(i=1, \ldots, 16)$ are linearly independent.

