Exercise 3.7 (20 pnts)

1. Weyl representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & -I \\
-I & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) .
$$

The space part is the same as the Direac representation; thus, $\left\{\gamma^{i}, \gamma^{j}\right\}=2 g^{i j}$ is already shown. The rest is to show $\gamma^{0^{2}}=1$ and $\left\{\gamma^{0}, \gamma^{i}\right\}=0$:

$$
\gamma^{0^{2}}=\left(\begin{array}{cc}
0 & -I \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -I \\
-I & 0
\end{array}\right)=\left(\begin{array}{ll}
I & 0 \\
0 & I
\end{array}\right)=1 .
$$

and

$$
\begin{aligned}
\left\{\gamma^{0}, \gamma^{i}\right\} & =\gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0} \\
& =\left(\begin{array}{cc}
0 & -I \\
-I & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & -I \\
-I & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & -\sigma_{i}
\end{array}\right)+\left(\begin{array}{cc}
-\sigma_{i} & 0 \\
0 & \sigma_{i}
\end{array}\right)=0 .
\end{aligned}
$$

Thus, the γ matrixes in the Weyl representation indeed satisfies $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}$.
2. The γ matrixes in the Majorana representation (denoted as γ_{M}^{μ}) can be written using those in the Dirac representation as

$$
\begin{gathered}
\gamma_{M}^{0}=\left(\begin{array}{cc}
0 & \sigma_{2} \\
\sigma_{2} & 0
\end{array}\right)=\gamma^{0} \gamma^{2}, \quad \gamma_{M}^{1}=\left(\begin{array}{cc}
i \sigma_{3} & 0 \\
0 & i \sigma_{3}
\end{array}\right)=i \gamma_{5} \gamma^{0} \gamma^{3}, \\
\gamma_{M}^{2}=\left(\begin{array}{cc}
0 & -\sigma_{2} \\
\sigma_{2} & 0
\end{array}\right)=-\gamma^{2}, \quad \gamma_{M}^{3}=\left(\begin{array}{cc}
-i \sigma_{1} & 0 \\
0 & -i \sigma_{1}
\end{array}\right)=-i \gamma_{5} \gamma^{0} \gamma^{1} .
\end{gathered}
$$

We have to show that $\gamma_{M}^{0}{ }^{2}=1, \gamma_{M}^{i}{ }^{2}=-1$, and they all anticommute, which is equivalent to $\left\{\gamma_{M}^{\mu}, \gamma_{M}^{\nu}\right\}=2 g^{\mu \nu}$. With $k=1$ or 3 ,

$$
\begin{gathered}
\gamma_{M}^{0}{ }^{2}=\gamma^{0} \gamma^{2} \gamma^{0} \gamma^{2}=-\gamma^{0^{2}} \gamma^{2^{2}}=1, \quad \gamma_{M}^{2}{ }^{2}=\gamma^{2^{2}}=-1 . \\
\gamma_{M}^{k}{ }^{2}=-\gamma_{5} \gamma^{0} \gamma^{k} \gamma_{5} \gamma^{0} \gamma^{k}=\gamma_{5}{ }^{2} \gamma^{0^{2}} \gamma^{k^{2}}=-1 .
\end{gathered}
$$

Anticommutations (again with $k=1$ or 3):

$$
\begin{gathered}
\left\{\gamma^{0} \gamma^{2}, \gamma_{5} \gamma^{0} \gamma^{k}\right\}=\underbrace{\gamma^{0} \gamma^{2} \gamma_{5} \gamma^{0}}_{\gamma^{0} \gamma^{2} \gamma_{5}} \gamma^{k}+\gamma_{5} \underbrace{\gamma^{0} \gamma^{k} \gamma^{0}}_{-\gamma^{0^{2}} \gamma^{k}} \gamma^{2}=\gamma^{2} \gamma_{5} \gamma^{k}-\underbrace{\gamma_{5} \gamma^{k} \gamma^{2}}_{\gamma^{2} \gamma_{5} \gamma^{k}}=0 . \\
\left\{\gamma^{0} \gamma^{2}, \gamma^{2}\right\}=\gamma^{0} \gamma^{2} \gamma^{2}+\gamma^{2} \gamma^{0} \gamma^{2}=\gamma^{0} \gamma^{2^{2}}-\gamma^{0} \gamma^{2}=0 .
\end{gathered}
$$

$$
\left\{\gamma^{2}, \gamma_{5} \gamma^{0} \gamma^{k}\right\}=\gamma^{2} \gamma_{5} \gamma^{0} \gamma^{k}+\underbrace{\gamma_{5} \gamma^{0} \gamma^{k} \gamma^{2}}_{-\gamma^{2} \gamma_{5} \gamma^{0} \gamma^{k}}=0
$$

and

$$
\left\{\gamma_{5} \gamma^{0} \gamma^{1}, \gamma_{5} \gamma^{0} \gamma^{3}\right\}=\underbrace{\gamma_{5} \gamma^{0} \gamma^{1} \gamma_{5} \gamma^{0} \gamma^{3}}_{-\gamma_{5}^{2} \gamma^{0^{2}} \gamma^{1} \gamma^{3}}+\underbrace{\gamma_{5} \gamma^{0} \gamma^{3} \gamma_{5} \gamma^{0} \gamma^{1}}_{-\gamma_{5}^{2} \gamma^{0^{2}} \gamma^{3} \gamma^{1}}=-\left(\gamma^{1} \gamma^{3}+\gamma^{3} \gamma^{1}\right)=0 .
$$

Thus, we see that $\left\{\gamma_{M}^{\mu}, \gamma_{M}^{\nu}\right\}=0(\mu \neq \nu)$. Putting all together we have shown $\left\{\gamma_{M}^{\mu}, \gamma_{M}^{\nu}\right\}=2 g^{\mu \nu}$.

Exercise 3.8

(a) We will use a shorthand for sin and cos: $s_{\phi} \equiv \sin \phi, c_{\phi} \equiv \cos \phi$ etc.

Using the formula $e^{i \vec{a} \cdot \vec{\sigma}}=c_{a}+i(\hat{a} \cdot \vec{\sigma}) s_{a}$ and

$$
\sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

the rotation matrix $u(\theta, \phi)$ can be written as

$$
\left.\begin{array}{rl}
u(\theta, \phi)= & e^{-i \frac{\phi}{2} \sigma_{z}} e^{-i \frac{\theta}{2} \sigma_{y}}=\left(c_{\frac{\phi}{2}}-i \sigma_{z} s_{\frac{\phi}{2}}\right)\left(c_{\frac{\theta}{2}}-i \sigma_{y} s_{\frac{\theta}{2}}\right) \\
= & \left(\begin{array}{cc}
c_{\frac{\phi}{2}}-i s_{\frac{\phi}{2}} & 0 \\
0 & c_{\frac{\phi}{2}}+i s_{\frac{\phi}{2}}
\end{array}\right)\left(\begin{array}{cc}
c_{\frac{\theta}{2}} & -s_{\frac{\theta}{2}} \\
s_{\frac{\theta}{2}} & c_{\frac{\theta}{2}}
\end{array}\right) \\
= & \underbrace{\left(\begin{array}{cc}
e^{-i \frac{\phi}{2}} & 0 \\
0 & e^{i \frac{\phi}{2}}
\end{array}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & e^{i \phi}
\end{array}\right)
\end{array} \begin{array}{cc}
c_{\frac{\theta}{2}} & -s_{\frac{\theta}{2}} \\
s_{\frac{\theta}{2}} & c_{\frac{\theta}{2}}
\end{array}\right)=e^{-i \frac{\phi}{2}}\left(\begin{array}{cc}
c_{\frac{\theta}{2}} & -s_{\frac{\theta}{2}} \\
e^{i \phi} s_{\frac{\theta}{2}} & e^{i \phi} c_{\frac{\theta}{2}}
\end{array}\right) .
$$

Drop the overall phase $e^{-i \frac{\phi}{2}}$ and apply this to $|\uparrow\rangle$ and $|\downarrow\rangle$ to form χ_{+}and χ_{-}:

$$
\begin{aligned}
& \chi_{+}=\left(\begin{array}{cc}
c_{\frac{\theta}{2}} & -s_{\frac{\theta}{2}} \\
e^{i \phi^{2}} s_{\frac{\theta}{2}} & e^{i \phi} c_{\frac{\theta}{2}}
\end{array}\right)\binom{1}{0}=\binom{c_{\frac{\theta}{2}}}{e^{i \phi^{2}} S_{\frac{\theta}{2}}}, \\
& \chi_{-}=\left(\begin{array}{cc}
c_{\frac{\theta}{2}} & -s_{\frac{\theta}{2}} \\
e^{i \phi^{2}} S_{\frac{\theta}{2}} & e^{i \phi} c_{\frac{\theta}{2}}
\end{array}\right)\binom{0}{1}=\binom{-s_{\frac{\theta}{2}}}{e^{i \phi} c_{\frac{\theta}{2}}} .
\end{aligned}
$$

Now write them in terms of $s_{x}=s_{\theta} c_{\phi}, s_{y}=s_{\theta} s_{\phi}$. Using $s_{z}=c_{\theta}, 2 c_{\theta}^{2}=1+c_{2 \theta}$, $2 s_{\theta}^{2}=1-c_{2 \theta}$, and noting $\left|s_{+}\right|=s_{\theta}$,

$$
\begin{aligned}
& c_{\frac{\theta}{2}}=\sqrt{\frac{1+c_{\theta}}{2}}=\left\{\begin{array}{l}
\sqrt{\frac{\left(1+c_{\theta}\right)^{2}}{2\left(1+c_{\theta}\right)}}=\frac{1+s_{z}}{\sqrt{2\left(1+s_{z}\right)}} \\
\sqrt{\frac{1-c_{\theta}^{2}}{2\left(1-c_{\theta}\right)}}=\frac{s_{\theta}}{\sqrt{2\left(1-s_{z}\right)}}
\end{array}\right. \\
& s_{\frac{\theta}{2}}=\sqrt{\frac{1-c_{\theta}}{2}}=\left\{\begin{array}{l}
\sqrt{\frac{\left(1-c_{\theta}\right)^{2}}{2\left(1-c_{\theta}\right)}}=\frac{1-s_{z}}{\sqrt{2\left(1-s_{z}\right)}} \\
\sqrt{\frac{1-c_{\theta}^{2}}{2\left(1+c_{\theta}\right)}}=\frac{s_{\theta}}{\sqrt{2\left(1+s_{z}\right)}}
\end{array}\right.
\end{aligned}
$$

Since $s_{+}=s_{\theta}\left(c_{\phi}+i s_{\phi}\right)=s_{\theta} e^{i \phi}$,

$$
e^{i \phi} s_{\frac{\phi}{2}}=\frac{s_{+}}{\sqrt{2\left(1+s_{z}\right)}}, \quad e^{i \phi} c_{\frac{\phi}{2}}=\frac{s_{+}}{\sqrt{2\left(1-s_{z}\right)}} .
$$

Then, χ_{+}and χ_{-}can be written as

$$
\chi_{+}=\frac{1}{\sqrt{2\left(1+s_{z}\right)}}\binom{1+s_{z}}{s_{+}}, \quad \chi_{-}=\frac{1}{\sqrt{2\left(1-s_{z}\right)}}\binom{s_{z}-1}{s_{+}} .
$$

Since the rotation $u(\theta, \phi)$ is a unitary matrix, the norm is conserved; namely, it is automatically unity.
(b) Using the explicit expression of $\vec{s} \cdot \vec{\sigma}$

$$
\vec{s} \cdot \vec{\sigma}=\left(\begin{array}{cc}
s_{z} & s_{-} \\
s_{+} & -s_{z}
\end{array}\right)
$$

the projection operators are

$$
P_{+}=\frac{1+\vec{s} \cdot \vec{\sigma}}{2}=\frac{1}{2}\left(\begin{array}{cc}
1+s_{z} & s_{-} \\
s_{+} & 1-s_{z}
\end{array}\right), \quad P_{-}=\frac{1-\vec{s} \cdot \vec{\sigma}}{2}=\frac{1}{2}\left(\begin{array}{cc}
1-s_{z} & -s_{-} \\
-s_{+} & 1+s_{z}
\end{array}\right)
$$

Applying $P_{ \pm}$to any vector, say $|\uparrow\rangle$, should give $\chi_{ \pm}$up to a constant:

$$
\chi_{+} \propto P_{+}\binom{1}{0}=\binom{1+s_{z}}{s_{+}}, \quad \chi_{-} \propto P_{-}\binom{1}{0}=\binom{1-s_{z}}{-s_{+}}
$$

which is consistent with (a).

