Problem 3.3

(a) Using the explicit γ matrices in the Dirac representation,

$$
\not p=E \gamma^{0}-p^{i} \gamma^{i}=E\left(\begin{array}{cc}
I & 0 \\
0 & -I
\end{array}\right)-p^{i}\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=\left(\begin{array}{cc}
E & -\vec{p} \cdot \vec{\sigma} \\
\vec{p} \cdot \vec{\sigma} & -E
\end{array}\right) .
$$

(b) With $c \equiv \sqrt{E+m}$ and $(\vec{p} \cdot \vec{\sigma})^{2}=\vec{p}^{2}=E^{2}-m^{2}$,

$$
\begin{aligned}
\not p u & =c\left(\begin{array}{cc}
E & -\vec{p} \cdot \vec{\sigma} \\
\vec{p} \cdot \vec{\sigma} & -E
\end{array}\right)\left(\begin{array}{c}
\chi \\
\vec{p} \cdot \vec{\sigma} \\
E+m \\
\hline
\end{array}\right)=c\binom{E \chi-\frac{(\vec{p} \cdot \vec{\sigma})^{2}}{E+m} \chi}{(\vec{p} \cdot \vec{\sigma}) \chi-E \frac{\vec{p} \cdot \vec{\sigma}}{E+m} \chi} \\
& =c\binom{\left(E-\frac{E^{2}-m^{2}}{E+m}\right) \chi}{\left(1-\frac{E}{E+m}\right)(\vec{p} \cdot \vec{\sigma}) \chi}=c\binom{m \chi}{m \frac{\vec{p} \cdot \vec{\sigma}}{E+m} \chi}=m u .
\end{aligned}
$$

Thus, we have $(\not p-m) u=0$.
Similarly,

$$
\begin{aligned}
p v & =c\left(\begin{array}{cc}
E & -\vec{p} \cdot \vec{\sigma} \\
\vec{p} \cdot \vec{\sigma} & -E
\end{array}\right)\left(\begin{array}{c}
\vec{p} \cdot \vec{\sigma} \\
E+m \\
\chi
\end{array}\right)=c\binom{E \frac{\vec{p} \cdot \vec{\sigma}}{E+m} \chi-(\vec{p} \cdot \vec{\sigma}) \chi}{\frac{\vec{p} \cdot \vec{\sigma})^{2}}{E+m} \chi-E \chi} \\
& =c\binom{\left(\frac{E}{E+m}-1\right)(\vec{p} \cdot \vec{\sigma}) \chi}{\left(\frac{E^{2}-m^{2}}{E+m}-E\right) \chi}=c\binom{-m \frac{\vec{p} \cdot \vec{\sigma}}{E+m} \chi}{-m \chi}=-m v .
\end{aligned}
$$

Namely, $(\not p+m) v=0$. Note that in the above χ could be any 2 -component vector.

Problem 3.5

(a) Denote the gamma matrixes in the Weyl representation as γ_{W}^{μ} :

$$
\gamma_{W}^{0}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \gamma_{W}^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) .
$$

The transformation of γ^{0} is

$$
V\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) V^{-1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Since the elements are all real, we take the 2×2 unitary matrix V to be real, namely, orthogonal matrix which is a rotation in 2-dimensional space:

$$
V=\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right) \quad \rightarrow \quad V^{-1}=\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)
$$

where $c=\cos \theta$ and $s=\sin \theta$. Trying this to γ^{0},

$$
\left(\begin{array}{cc}
c & -s \\
s & c
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
c & s \\
-s & c
\end{array}\right)=\left(\begin{array}{cc}
c^{2}-s^{2} & 2 s c \\
2 s c & s^{2}-c^{2}
\end{array}\right)=\left(\begin{array}{cc}
\cos 2 \theta & \sin 2 \theta \\
\sin 2 \theta & -\cos 2 \theta
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Namely,

$$
\cos 2 \theta=0, \quad \sin 2 \theta=1
$$

or,

$$
2 \theta=\frac{1}{2} \pi+2 n \pi, \quad \rightarrow \quad \theta=\frac{1}{4} \pi+n \pi .
$$

Taking different n only changes overall sign. Trying $n=1$, we have $c=1 / \sqrt{2}$, $s=$ $1 / \sqrt{2}$, and

$$
V=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right) \quad \rightarrow \quad V^{-1}=V^{\dagger}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)
$$

It keeps the form of γ^{i} the same:

$$
V \gamma^{i} V^{-1}=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=\gamma_{W}^{i} .
$$

(b) Write the boost matrix S in the Dirac representation as

$$
S=c\left(\begin{array}{cc}
1 & \sigma_{P} \\
\sigma_{P} & 1
\end{array}\right) \text { with } \quad c \equiv \sqrt{\frac{E+m}{2 m}}, \sigma_{P} \equiv \frac{\vec{p} \cdot \vec{\sigma}}{E+m}
$$

Then, S in the Weyl representation becomes

$$
V S V^{-1}=\frac{c}{2}\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \sigma_{P} \\
\sigma_{P} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)=c\left(\begin{array}{cc}
1-\sigma_{P} & 0 \\
0 & 1+\sigma_{P}
\end{array}\right):
$$

$$
\text { namely, } \quad S_{W}=\sqrt{\frac{E+m}{2 m}}\left(\begin{array}{cc}
1-\frac{\vec{p} \cdot \vec{\sigma}}{E+m} & 0 \\
0 & 1+\frac{\vec{p} \cdot \vec{a}}{E+m}
\end{array}\right) .
$$

(c) In the Weyl representation, the generators of boost and rotations are in general given by (i, j, k : cyclic)

$$
\begin{gathered}
B^{0 i}=\frac{1}{2} \gamma_{W}^{0} \gamma_{W}^{i}=\frac{1}{2}\left(\begin{array}{cc}
-\sigma_{i} & 0 \\
0 & \sigma_{i}
\end{array}\right), \\
B^{i j}=\frac{1}{2} \gamma^{j} \gamma^{k}=\frac{1}{2}\left(\begin{array}{cc}
-\sigma_{i} \sigma_{j} & 0 \\
0 & -\sigma_{i} \sigma_{j}
\end{array}\right)=\frac{1}{2}\left(\begin{array}{cc}
-i \sigma_{k} & 0 \\
0 & -i \sigma_{k}
\end{array}\right)=B_{k}^{r} .
\end{gathered}
$$

Then, the general Lorentz transformation can be written as

$$
\begin{aligned}
S_{W} & =\exp \left(\xi_{i} B^{0 i}+\theta_{k} B_{k}^{r}\right) \\
& =\exp \left(\begin{array}{cc}
\frac{1}{2}(-\vec{\xi} \cdot \vec{\sigma}-i \vec{\theta} \cdot \vec{\sigma}) & 0 \\
0 & \frac{1}{2}(\vec{\xi} \cdot \vec{\sigma}-i \vec{\theta} \cdot \vec{\sigma})
\end{array}\right) \\
& =\left(\begin{array}{cc}
\exp \left(-\vec{\xi} \cdot \frac{\vec{\sigma}}{2}-i \vec{\theta} \cdot \frac{\vec{\sigma}}{2}\right) & 0 \\
0 & \exp \left(\vec{\xi} \cdot \frac{\sigma}{2}-i \vec{\theta} \cdot \frac{\vec{\sigma}}{2}\right)
\end{array}\right) .
\end{aligned}
$$

Thus, the top half ϕ_{R} and the bottom half ϕ_{L} of the 4 -spinor transforms independently in the Weyl representation. Corresponding generators are

$$
\begin{aligned}
G_{i} & =-\frac{\sigma_{i}}{2} \\
G_{i} & =\frac{\sigma_{i}}{2}
\end{aligned} \quad H_{i}=-i \frac{\sigma_{i}}{2} \quad \text { for } \phi_{R}, ~ f o r ~ \phi_{L}
$$

(d) In the Weyl representation, the massless Dirac equation is

$$
i \gamma_{W}^{\mu} \partial_{\mu} \psi_{W}=0 \quad \text { with } \quad \psi_{W}=\binom{\phi_{L}}{\phi_{R}}
$$

Using the explicit expressions for γ_{W}^{μ},

$$
\begin{gathered}
i\left[\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \partial_{0}+\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) \partial_{i}\right]\binom{\phi_{L}}{\phi_{R}}=0 \\
\rightarrow\left\{\begin{array}{l}
i\left(\partial_{0}+\vec{\sigma} \cdot \nabla\right) \phi_{R}=0 \\
i\left(\partial_{0}-\vec{\sigma} \cdot \nabla\right) \phi_{L}=0
\end{array}\right.
\end{gathered}
$$

