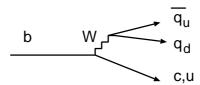
A Note on ϕ_3 determination from $B \to DK$ and $2\pi_1 + \phi_3$ determination from $B \to D\pi$

2003 Jun. 12 T. Kurimoto (Toyama) (krmt@k2.sci.toyama-u.ac.jp)

1 Effective Hamiltonian

Weak decays occur at the tree level through the graph like shown below;



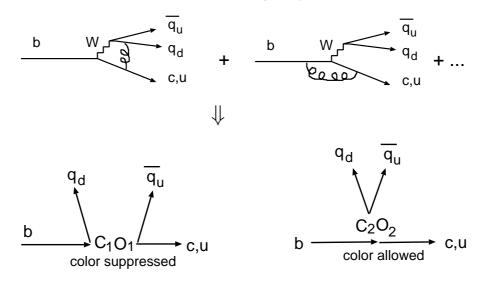
The W boson is so heavy that we can write down 4-Fermi effective Hamiltonian.

$$\mathcal{H}_{eff}^{tree} = \frac{G_F}{\sqrt{2}} V_{cb} V_{ij}^* \overline{c} \gamma_\mu (1 - \gamma_5) b \, \overline{q_j} \gamma^\mu (1 - \gamma_5) q_i + \frac{G_F}{\sqrt{2}} V_{ub} V_{ij}^* \overline{u} \gamma_\mu (1 - \gamma_5) b \, \overline{q_j} \gamma^\mu (1 - \gamma_5) q_i + \text{ (h.c)}.$$
 (1)

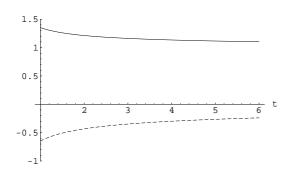
At the B meson mass scale we have to include QCD corrections using renormalization group equations[1]. Then the effective Hamiltonian becomes as follows,

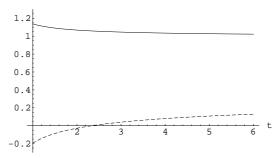
$$\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} V_{cb} V_{ij}^* [C_2 \ \overline{c} \gamma_{\mu} (1 - \gamma_5) b \ \overline{d_j} \gamma^{\mu} (1 - \gamma_5) u_i + C_1 \ \overline{d_j} \gamma_{\mu} (1 - \gamma_5) b \ \overline{c} \gamma^{\mu} (1 - \gamma_5) u_i]
+ \frac{G_F}{\sqrt{2}} V_{ub} V_{ij}^* [C_2 \ \overline{u} \gamma_{\mu} (1 - \gamma_5) b \ \overline{d_j} \gamma^{\mu} (1 - \gamma_5) u_i + C_1 \ \overline{d_j} \gamma_{\mu} (1 - \gamma_5) b \ \overline{u} \gamma^{\mu} (1 - \gamma_5) u_i]
+ (penguin contributions)
+ (h.c)
\equiv \frac{G_F}{\sqrt{2}} V_{cb} V_{ij}^* [C_1 O_1^c + C_2 O_2^c] + \frac{G_F}{\sqrt{2}} V_{ub} V_{ij}^* [C_1 O_1^u + C_2 O_2^u] + \cdots ,$$
(2)

where C_i 's are the Wilson coefficients calculated in perturbative QCD. The color quantum number is assigned so that the first and second (third and fourth) quark fields form a color singlet. Below we use this effective Hamiltonian to estimate B decay amplitudes.



The decays occured through O_1 and O_2 usually correspond to "color suppressed decay" and "color allowed decay", respectively. For the u_i and $\overline{d_j}$ in eq.(2) to form a meson the color quantum number of u_i and d_j should be the same. So that the factor $1/N_C$ (N_c :the number of colors) appears in color suppressed decays in this case. The Wilson coefficients appear in the calculation of decay amplitudes in the combination of $C_2 + C_1/N_C$ or $C_1 + C_2/N_C$. The Wilson coefficients are calculated at the one-loop level as follows;





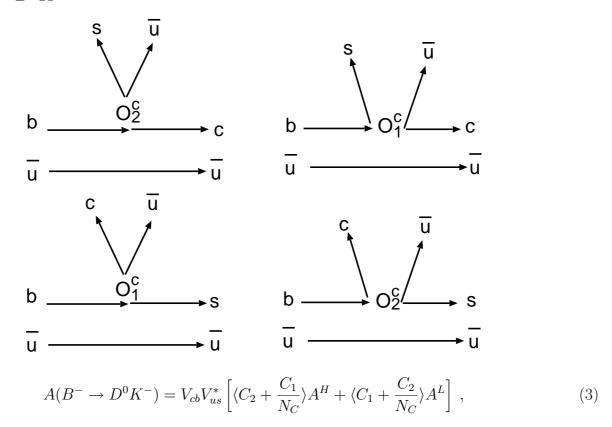
 C_1 (dashed) and C_2 (solid) at the energy scale t (GeV).

 $C_1 + C_2/N_C$ (dashed) and $C_2 + C_1/N_C$ (solid) at the energy scale t (GeV). $N_C = 3$ is the number of color.

2 $B \rightarrow DK$ decays and ϕ_3

In the decays, $B \to \{D^0, \overline{D^0}\}K$, where D^0 and $\overline{D^0}$ decay into a common final state $(KK, K^+\pi^-, \ldots)$, the interference between $b \to c$ and $b \to u$ amplitudess leads to CP asymetry related to ϕ_3 . The detailed arguments on the methods and theoretical errors are given in ref.[2] and references therein. Below we draw diagrams of $B \to DK$ decays (Gluons are not shown) and discuss model independent etsimation of amplitude ratios.

2.1 $B^- \to D^0 K^-$

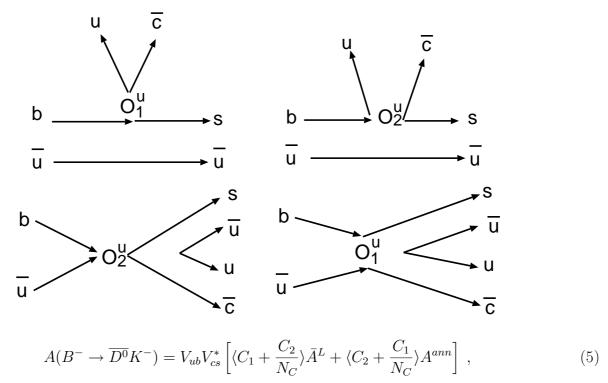


where $A^{H(L)}$ represents the amplitude corresponds to the upper (lower) diagram up to KM and Wilson coefficients factors. The notation $\langle \cdots \rangle$ means the energy scale of the factor inside the braket is convoluted in the calculation. $A^{H(L)}$ becomes the heavy to heavy (light) form factor times a meson decay constant in the naive factorizatio approximation;

$$\langle D^0 K^- | (\bar{c}b)_{V-A} (\bar{s}u)_{V-A} | B^- \rangle \Rightarrow \langle K^- | (\bar{s}u)_{V-A} | 0 \rangle \langle D^0 | (\bar{c}b)_{V-A} | B^- \rangle . \tag{4}$$

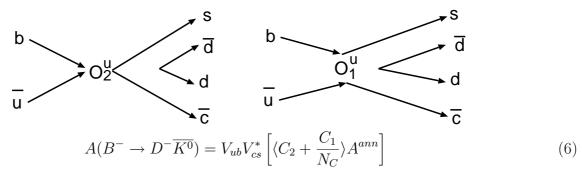
(We do not take this approximation in order for the analysis to be as model independent as possible.)

$2.2 \quad B^- \rightarrow \overline{D^0}K^-$



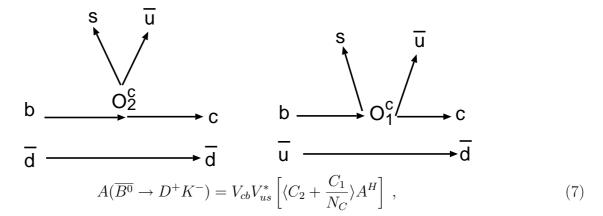
where A^{ann} corresponds to the annihilation amplitude. We distinguish A_L and \bar{A}_L depending on whether c or \bar{c} quark appears since they may be different if we include non-factorizable contributions.

2.3 $B^- \rightarrow D^- \overline{K^0}$

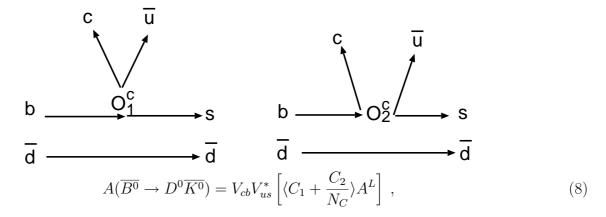


Note that this amplitude is same as the annihilation part of $A(B^- \to \overline{D^0}K^-)$ due to isospin symmetry up to overall phase. Thus if we can measure the branching ratios of both $B^- \to \overline{D^0}K^-$ and $B^- \to D^-\overline{K^0}$, we can constarin the magnutude of the annihilation part. $(B^- \to D^-K^0)$ is not allowed since the final state, $(\bar{c}d)$ $(\bar{s}d)$, cannot be realized unless some new physics contributes.)

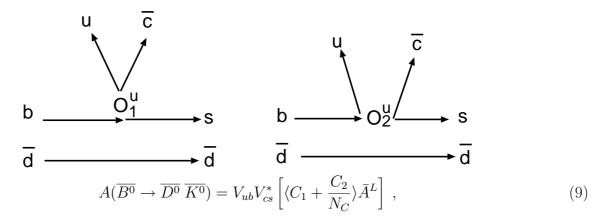
$\overline{B^0} \to D^+ K^-$ 2.4



$\overline{B^0} \to D^0 \overline{K^0}$ 2.5



$\overline{B^0} \to \overline{D^0} \ \overline{K^0}$ 2.6



2.7 Model independent estimation of the amplitude ratios

With eqs.(3) and (8) we obtain

$$\frac{\operatorname{Br}(\overline{B^0} \to D^0 \overline{K^0})}{\operatorname{Br}(B^- \to D^0 K^-)} = \left| \frac{\xi_{HL}}{1 + \xi_{HL}} \right|^2 \quad \text{with} \quad \xi_{HL} = \frac{\langle C_1 + \frac{C_2}{N_C} \rangle A^L}{\langle C_2 + \frac{C_1}{N_C} \rangle A^H}. \tag{10}$$

From Belle date (Belle prerpint 2003-3[3] and Gershon's talk at CKM workshop)

$$Br(B^{-} \to D^{0}K^{-}) = (0.077 \pm 0.0005 \pm 0.0006)Br(B^{-} \to D^{0}\pi^{-}) \simeq 4 \times 10^{-4},$$

$$Br(\overline{B^{0}} \to D^{0}\overline{K^{0}}) = (5.0 \pm 1.3 \pm 0.6) \times 10^{-5} \simeq 5 \times 10^{-5},$$
(11)

$$Br(\overline{B^0} \to D^0 \overline{K^0}) = (5.0 \pm 1.3 \pm 0.6) \times 10^{-5} \simeq 5 \times 10^{-5},$$
 (12)

$$0.2 < |\xi_{HL}| < 0.6$$
 (13)

This value is estimated to be much more small if we put the values of Wilson coefficients and form factors assuming naive factorization. This show that non-factorizable contribution in $\langle C_1 + \frac{C_2}{N_C} \rangle A^L$ cannot be neglected, which gives relatively large $\text{Br}(\overline{B^0} \to D^0 \overline{K^0})$. This is similar to the case of large $\text{Br}(\overline{B^0} \to D^0 \pi^0)[4]$.

We also need the amplitude $\langle C_2 + \frac{C_1}{N_C} \rangle A^{ann}$, which can be obtained if we can measure the branching ratios of both $B^- \to \overline{D^0} K^-$ (or $\overline{B^0} \to \overline{D^0} K^0$ and $B^- \to D^- \overline{K^0}$ as stated in Sec.2.3. With eqs.(5), (6) and (9) we obtain

$$\frac{\operatorname{Br}(B^{-} \to D^{-}\overline{K^{0}})}{\operatorname{Br}(B^{-} \to \overline{D^{0}}K^{-})} = \left| \frac{\xi_{La}}{1 + \xi_{La}} \right|^{2}, \quad \frac{\operatorname{Br}(B^{-} \to D^{-}\overline{K^{0}})}{\operatorname{Br}(\overline{B^{0}} \to \overline{D^{0}K^{0}})} = |\xi_{La}|^{2}, \tag{14}$$

where

$$\xi_{La} = \frac{\langle C_2 + \frac{C_1}{N_C} \rangle A^{ann}}{\langle C_1 + \frac{C_2}{N_C} \rangle \bar{A}^L}.$$
 (15)

We can also check if $A_L = \bar{A}^L$ or not.

$$\frac{\operatorname{Br}(\overline{B^0} \to \overline{D^0} \, \overline{K^0})}{\operatorname{Br}(\overline{B^0} \to D^0 \, \overline{K^0})} = \left| \frac{V_{ub} V_{cs}}{V_{cb} V_{us}} \frac{\langle C_1 + \frac{C_2}{N_C} \rangle \bar{A}^L}{\langle C_1 + \frac{C_2}{N_C} \rangle A^L} \right|^2 \equiv \left| \frac{V_{ub} V_{cs}}{V_{cb} V_{us}} \right|^2 |\xi_{\bar{L}L}|^2$$
(16)

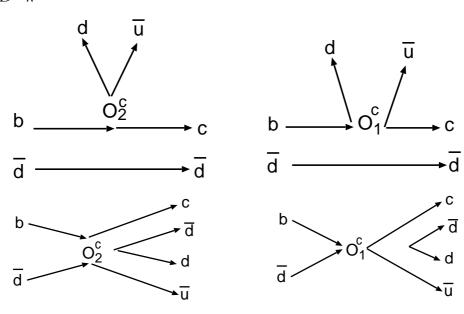
However, the data is not available yet, so we refer a theoretical value based on the preliminary results by pQCD calculation[5].

$$\xi_{La} = 1.1e^{110^{\circ}i} , \quad \xi_{\bar{L}L} = 1.0e^{-156^{\circ}i} .$$
 (17)

3 $B^0(\overline{B^0}) \to D\pi$ decays and $2\phi_1 + \phi_3$

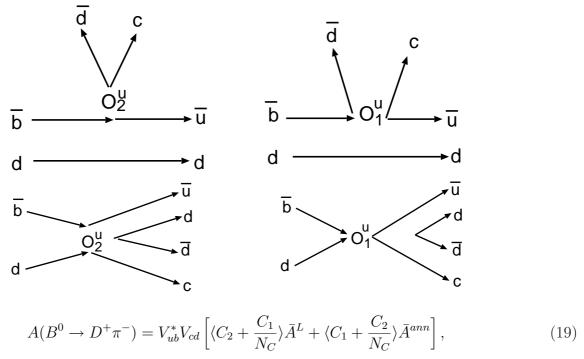
 $\overline{B^0}$ can decay into both $D^+\pi^-$ and $D^-\pi^+$ though the latter decay is doubly CKM suppressed. The interference between $\overline{B^0} \to D^+\pi^-$ and $\overline{B^0} \to B^0 \to D^+\pi^-$ cause CP syammetry related to $2\phi_1 + \phi_3$. Below we draw diagrams of $B^0(\overline{B^0}) \to D^+\pi^-$ decays (Gluons are not shown) and discuss model independent etsimation of amplitude ratios.

3.1 $\overline{B^0} \rightarrow D^+\pi^-$



$$A(\overline{B^0} \to D^+ \pi^-) = V_{cb} V_{ud}^* \left[\langle C_2 + \frac{C_1}{N_C} \rangle A^H + \langle C_1 + \frac{C_2}{N_C} \rangle A^{ann} \right]. \tag{18}$$

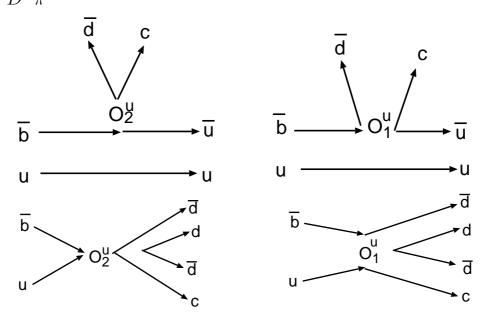
3.2 $B^0 \to D^+ \pi^-$



We distinguish A^{ann} and \bar{A}^{ann} depending on whether it comes from b of \bar{b} since they may be different if we include non-factorizable contributions.

We need the ratio $A(B^0 \to D^+\pi^-)/A(\overline{B^0} \to D^+\pi^-)$ to exterct $2\phi_1 + \phi_3$. But it is hard to obtain it directly from exp. data. So let us look at other decays to exterct $A(\overline{B^0} \to D^+\pi^-)$.

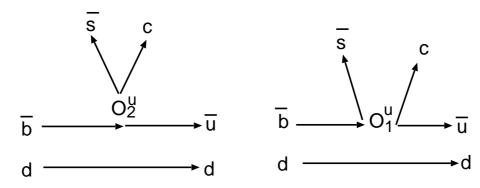
3.3 $B^+ \to D^+ \pi^0$



$$A(B^+ \to D^+ \pi^0) = V_{ub}^* V_{cd} \left[\langle C_2 + \frac{C_1}{N_C} \rangle \bar{A}^L + \langle C_2 + \frac{C_1}{N_C} \rangle \bar{A}^{ann} \right] . \tag{20}$$

If the annihilation contributions can be neglected, this give the same amplitude with $A(B^0 \to D^+\pi^-)$.

3.4 $B^0 \to D_s^+ \pi^-$

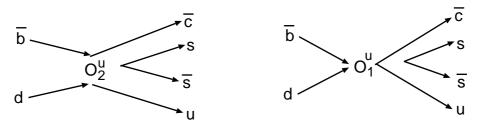


$$A(B^0 \to D_s^+ \pi^-) = V_{ub}^* V_{cs} \left[\langle C_2 + \frac{C_1}{N_C} \rangle \bar{A}^L \right]$$
 (21)

If the annihilation contributions in $A(B^0 \to D^+\pi^-)$ can be neglected, this give the same amplitude up to KM factor. Belle group has already got the data of this decay[6];

$$Br(B^0 \to D_s^- K^+) = (2.4 \pm 1.0 \pm 0.7) \times 10^{-5}.$$
 (22)

3.5 $B^0 \to D_s^- K^+$



$$A(B^0 \to D_s^- K^+) = V_{cb}^* V_{ud} \left[\langle C_1 + \frac{C_2}{N_C} \rangle A^{ann} \right]$$
 (23)

This is a purely annihilation decay. Belle group has already got the data[6];

$$Br(B^0 \to D_s^- K^+) = (4.6 \pm 1.2 \pm 1.3) \times 10^{-5}.$$
 (24)

3.6 Estimation of annihilation contribution

With the results of preceding subsections we can estimate the ratio of the annihilation contribution to spectator contribution. Eqs.(21) to (24) gives

$$\left| \frac{\langle C_1 + \frac{C_2}{N_C} \rangle A^{ann}}{\langle C_2 + \frac{C_1}{N_C} \rangle \bar{A}^L} \right| \simeq \left| \frac{V_{ub} V_{cs}}{V_{cb} V_{ud}} \right| \sqrt{\frac{\operatorname{Br}(B^0 \to D_s^- K^+)}{\operatorname{Br}(B^0 \to D_s^+ \pi^-)}} \sim 0.1$$
(25)

Then we can approximate $|A(B^0 \to D^+\pi^-)|$ by $|A(B^0 \to D_s^+\pi^-)|$ up to the KM factor in 10 % error.

References

- [1] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev.Mod.Phys 68-4, 1125 (1996).
- [2] D. Atwood and A. Soni, hep-ph/0212071 (2002).
- [3] BELLE group, hep-ex/0304032 (2003).
- [4] Y.Y. Keum, T. Kurimoto, H-n. Li, C.D. Lu and A.I. Sanda, hep-ph/0305335 (2003).
- [5] H. Hayakawa, T. Kurimoto M. Nagashima and N. Yoshikawa, in preparation.
- [6] Belle group, PRL **89**, 231804 (2002)