Vertex Charge Determination

Yuichi Okugawa, Ryo Yonamine, Roman Pöschl

東北大学

okugawa@epx.phys.tohoku.ac.jp

May 18, 2018

• • • • • • • • • • • •

Introduction

- Background
- International Linear Collider
- Analysis methods
- Vertex Restoration

Analysis

- Cuts only
- Cuts and Vertex restoration
- 3 Conclusion

Background

Standard Model

なぜ Top なのか

電弱対称性の破れのスケールに質量を持つ Top クォークとゲージ粒子の 結合を調べれば、電弱対称性の破れについて知ることができる。

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

< ロ > < 同 > < 回 > < 回 > < 回 >

なぜ Top なのか

電弱対称性の破れのスケールに質量を持つ Top クォークとゲージ粒子の 結合を調べれば、電弱対称性の破れについて知ることができる。 → New Physics!!

< ロ > < 同 > < 回 > < 回 > < 回 >

International Linear Collider (ILC)

Yuichi Okugawa, Ryo Yonamine, R<u>oman Pös</u>c

International Linear Collider (ILC)

e- _____ e+

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Channel

Channel	崩壊過程	崩壊確率
Full Hadronic	$tar{t} ightarrow bar{b}q\overline{q}'q\overline{q}'$	45.7%
Semi-leptonic	$t \overline{t} ightarrow b \overline{b} \ell \overline{\ell} q \overline{q}'$	43.8%
Full leptonic	$ar{tt} ightarrow b\overline{b} \ell \overline{\ell} \ell \overline{\ell}$	10.5%

Yuichi Okugawa, Ryo Yonamine, Roman Pösc

Vertex Charge Determinatior

May 18, 2018 14 / 52

Channel

- Top \mathcal{O} full hadronic decay channel ($\Im \sharp \psi \, t \to b \overline{b} q \overline{q}' q \overline{q}')$
- Six jet final state
- Top の崩壊過程の 46% がこの過程で崩壊する。

-

- ₹ ∃ ►

Vertex Charge Measurement

Vertex 測定の問題点

Missing prongs 何らかの原因により prong の再構成に失敗する場合がある。

Missing vertex

Prong の欠落は vertex の識別に影響を与え、vertex 再構成失敗の原因になる。

Inaccurate vertex charge measurement

Vertex 情報がしっかりしない為、b または t の識別にも影響する。

< ロ > < 同 > < 回 > < 回 > < 回 >

Vertex 測定の問題点

Missing prongs 何らかの原因により prong の再構成に失敗する場合がある。

Missing vertex

Prongの欠落は vertex の識別に影響を与え、vertex 再構成失敗の原因になる。

Inaccurate vertex charge measurement

Vertex 情報がしっかりしない為、b または t の識別にも影響する。

Vertex 測定の問題点

Missing prongs 何らかの原因により prong の再構成に失敗する場合がある。

Missing vertex

Prong の欠落は vertex の識別に影響を与え、vertex 再構成失敗の原因に なる。

Inaccurate vertex charge measurement

Vertex 情報がしっかりしない為、b または t の識別にも影響する。

э

< ロ > < 同 > < 回 > < 回 > < 回 >

Vertex Restoration

Vertex Restoration の過程

- Prong 候補の確保 Vertex restoration に際し、jet 内に再構成された 電荷を持つ粒子は全て prong 候補とする。この際、PFO として再構成 されなかった prong を救出する為、全てのトラック情報から charged PFO として PFO のリストに加える(カロリメータヒットは無しても OK)。 既に再構成された PFO と重複する場合は削除される。
- PFO に重複がないか確認。
- これらの情報から Vertex を再構成する。

Vertex Restoration

Vertex Restoration の過程

 Prong 候補の確保 - Vertex restoration に際し、jet 内に再構成された 電荷を持つ粒子は全て prong 候補とする。この際、PFO として再構成 されなかった prong を救出する為、全てのトラック情報から charged PFO として PFO のリストに加える(カロリメータヒットは無しても OK)。 既に再構成された PFO と重複する場合は削除される。

PFO に重複がないか確認。

• これらの情報から Vertex を再構成する。

くぼう くほう くほう

Vertex Restoration

Vertex Restoration の過程

- Prong 候補の確保 Vertex restoration に際し、jet 内に再構成された 電荷を持つ粒子は全て prong 候補とする。この際、PFO として再構成 されなかった prong を救出する為、全てのトラック情報から charged PFO として PFO のリストに加える(カロリメータヒットは無しても OK)。 既に再構成された PFO と重複する場合は削除される。
- PFO に重複がないか確認。
- これらの情報から Vertex を再構成する。

くぼう くほう くほう

解析1:カットのみ

Event Pre-selection

Pre-selection conditions

- b-tag cut Top1btag > 0.8 && Top2btag > 0.8
- Chi2 cut chiTopMass1 + chiTopE1 + chiPbstar1 < 30 chiTopMass2 + chiTopE2 + chiPbstar2 < 30
- Kinematic cut

140 GeV < Top1mass < 210 GeV 140 GeV < Top2mass < 210 GeV

э

• • = • • = •

Precuts & Generated

	Before vertex recovery	After vertex recovery
Event number	506773 (100%)	506773 (100%)
After b-tag cut	371410 (73.3%)	372884 (73.6%)
After kinematic cut	242100 (47.8%)	243046 (48.0%)
After chi2 cut	146479 (28.9%)	146990 (29.0%)
	Generated	
Event number	491557	
AFB(top)	0.324676	
AFB(bottom)	0.341256	

Yuichi Okugawa, Ryo Yonamine, Roman Pösc

Ξ.

Vertex charge cut

Strict cuts

Top1bcharge*Top2bcharge < 0 &&</p> Top1TotalKaonCharge*Top2TotalKaonCharge < 0

- Top1bcharge*Top2bcharge < 0
- Top1TotalKaonCharge*Top2TotalKaonCharge < 0</p>
- Top1bcharge*Top2TotalKaonCharge < 0</p>
- Top2bcharge*Top1TotalKaonCharge < 0</p>

э

Vertex charge cut

Strict cuts

Top1bcharge*Top2bcharge < 0 &&</p>

Loose cuts

- Top1bcharge*Top2bcharge < 0</p>
- Top1TotalKaonCharge*Top2TotalKaonCharge < 0</p>
- Top1bcharge*Top2TotalKaonCharge < 0</p>
- Top2bcharge*Top1TotalKaonCharge < 0</p>

Vertex charge cut

	Strict cuts		Loose cuts	
Number after cut	5113	(1.01%)	57866	(11.4%)
AFB(top)	0.280853		0.266201	
AFB(bottom)	0.293370		0.263730	
	Generated			
Event number	491557			
AFB(top)	0.324676			
AFB(bottom)	0.341256			

Ξ.

Polar angle spectrum (Strict cuts)

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 24 / 52

Polar angle spectrum (Loose cuts)

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 25 / 52

解析2:カット & Vertex restoration

Vertex charge cut (strict cuts)

	Before vertex recovery	After vertex recovery
Number after cut	5113 (1.01%)	5469 (1.08%)
AFB(top)	0.280853	0.296581
AFB(bottom)	0.29337	0.301518
	Generated	
Event number	491557	
AFB(top)	0.324676	
AFB(bottom)	0.341256	

A D > A B > A B > A B

Polar angle spectrum (Strict cuts)

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 28 / 52

3 > < 3

Polar angle spectrum (Strict cuts)

Figure: Top polar angle with MC and RC compared

Image: A match the second s

Vertex charge cut (Loose cuts)

	Before vertex recovery	After vertex recovery
Number after cut	57866 (11.4%)	58365 (11.5%)
vtx1+vtx2	25527	25254
kaon1+kaon2	13481	14557
vtx1+kaon2	5784	5833
vtx2+kaon1	13074	12721
AFB(top)	0.266201	0.269991
AFB(bottom)	0.263730	0.267026
	Generated	
Event number	491557	
AFB(top)	0.324676	
AFB(bottom)	0.341256	

Yuichi Okugawa, Ryo Yonamine, Roman Pösc

2

Polar angle spectrum (Loose cuts)

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöso

Vertex Charge Determination

May 18, 2018 31 / 52

Polar angle spectrum (Loose cuts)

Figure: Top polar angle with MC and RC compared

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 32 / 52

まとめと今後の展望

- 今回の解析で Hadronic channel から得られるイベント数を検出効率 を下げずに増やすことができた。
- Vertex restoration の適用によって AFB value の精度向上は見られな かった。
- Semi-leptonic decay channel の解析に戻り、プロセッサの動作に問題 がないか調べる必要がある。

伺 ト イ ヨ ト イ ヨ ト

Thank you!

(以下バックアップスライド)

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 34 / 52

э

Vertex charge cut (non-strict cut)

Cuts

• Top1bcharge*Top2bcharge < 0

- Top1TotalKaonCharge*Top2TotalKaonCharge < 0
- Top1bcharge*Top2TotalKaonCharge < 0
- Top2bcharge*Top1TotalKaonCharge < 0

Vertex charge cut (non-strict cut)

	Before vertex recovery	After vertex recovery
Number after cut	25527 (5.04%)	25254 (4.98%)
AFB(top)	0.276374 (14.8%)	0.280312 (13.7%)
AFB(bottom)	0.276492 (19.0%)	0.279718 (18.0%)

Polar angle spectrum

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 37 / 52

Polar angle spectrum

Figure: Top polar angle with MC and RC compared

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 38 / 52

э

• • • • • • • • • • • •

Vertex charge cut (vtx + kaon)

Cuts

- Top1bcharge*Top2bcharge < 0
- Top1TotalKaonCharge*Top2TotalKaonCharge < 0
- Top1bcharge*Top2TotalKaonCharge < 0
- Top2bcharge*Top1TotalKaonCharge < 0

Vertex charge cut (vtx + kaon)

	Before vertex recovery	After vertex recovery
Number after cut	39008 (7.70%)	39811 (7.86%)
vtx1+vtx2	25527	25254
kaon1+kaon2	13481	14557
AFB(top)	0.277994 (14.4%)	0.281204 (13.4%)
AFB(bottom)	0.277200 (18.8%)	0.281053 (17.6%)

Yuichi Okugawa, Ryo Yonamine, Roman Pösc

Ξ.

Polar angle spectrum

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 41 / 52

Polar angle spectrum

Figure: Top polar angle with MC and RC compared

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 42 / 52

-

• • • • • • • • • • • •

Vertex charge cut (vtx + kaon + vtx1/kaon2)

Cuts

- Top1bcharge*Top2bcharge < 0
- Top1TotalKaonCharge*Top2TotalKaonCharge < 0</p>
- Top1bcharge*Top2TotalKaonCharge < 0
- Top2bcharge*Top1TotalKaonCharge < 0

Vertex charge cut (vtx + kaon + vtx1/kaon2)

	Before vertex recovery	After vertex recovery
Number after cut	44792 (8.84%)	45644 (9.01%)
vtx1+vtx2	25527	25254
kaon1+kaon2	13481	14557
vtx1+kaon2	5784	5833
AFB(top)	0.274871 (15.3%)	0.278525 (14.2%)
AFB(bottom)	0.271924 (20.3%)	0.275524 (19.3%)

Polar angle spectrum

Figure: Top and bottom polar angle spectrum

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 45 / 52

Polar angle spectrum

Figure: Top polar angle with MC and RC compared

Yuichi Okugawa, Ryo Yonamine, Roman Pöse

Vertex Charge Determination

May 18, 2018 46 / 52

э

Image: A match the second s

TruthVertexFinder

Figure: b クォークのハドロン化と崩壊モードを示した図。(Bilokin, 2017) 青線は TruthVertexFinder によって識別される崩壊過程を示し、赤の点線はされないもの である。

Particle Flow Object

Particle Flow Object

Particle Flow Object

考えられる prong の欠落理由:

- トラック情報の欠如。(9.3%)
- VXD または FTD へのヒット無し。(20.%)
- PFO が再構成されなかった場合。(32%)
- 生成された低運動量とoffset (31%)

• その他 (8%)

考えられる prong の欠落理由:

- •トラック情報の欠如。(9.3%)
- VXD または FTD へのヒット無し。(20.%)
- PFO が再構成されなかった場合。(32%)
- 生成された低運動量とoffset (31%)

• その他 (8%)

< ロ > < 同 > < 回 > < 回 > < 回 >

考えられる prong の欠落理由:

- •トラック情報の欠如。(9.3%)
- VXD または FTD へのヒット無し。(20.%)
- PFO が再構成されなかった場合。(32%)
- 生成された低運動量とoffset (31%)

• その他 (8%)

考えられる prong の欠落理由:

- •トラック情報の欠如。(9.3%)
- VXD または FTD へのヒット無し。(20.%)
- PFO が再構成されなかった場合。(32%)

生成された低運動量とoffset (31%)

• その他 (8%)

考えられる prong の欠落理由:

- •トラック情報の欠如。(9.3%)
- VXD または FTD へのヒット無し。(20.%)
- PFO が再構成されなかった場合。(32%)
- 生成された低運動量とoffset (31%)
- その他 (8%)

考えられる prong の欠落理由:

- •トラック情報の欠如。(9.3%)
- VXD または FTD へのヒット無し。(20.%)
- PFO が再構成されなかった場合。(32%)
- 生成された低運動量とoffset (31%)

• その他 (8%)

考えられる Vertex の欠落理由:

- 中性崩壊点 Prong が生成されなければ崩壊点は再構成されない。
- 生成されたソフトな b-hadron 運動量が小さい為に飛距離が短く、
 b-hadron からの prong と他の b-jet からくる粒子との区別が難しくなる。
- Vertex が他に1つも再構成されなかった場合、prong を1つしか持たない vertex が欠落する場合がある。
- b-hadron が VXD の acceptance 外で生成された場合。

ここでは prong の欠落に由来する vertex の欠損に着目する。

イロト イポト イラト イラ

考えられる Vertex の欠落理由:

- 中性崩壊点 Prong が生成されなければ崩壊点は再構成されない。
- 生成されたソフトな b-hadron 運動量が小さい為に飛距離が短く、
 b-hadron からの prong と他の b-jet からくる粒子との区別が難しくなる。
- Vertex が他に1つも再構成されなかった場合、prong を1つしか持たない vertex が欠落する場合がある。
- b-hadron が VXD の acceptance 外で生成された場合。

ここでは prong の欠落に由来する vertex の欠損に着目する。

イロト イポト イラト イラ

考えられる Vertex の欠落理由:

- 中性崩壊点 Prong が生成されなければ崩壊点は再構成されない。
- 生成されたソフトな b-hadron 運動量が小さい為に飛距離が短く、
 b-hadron からの prong と他の b-jet からくる粒子との区別が難しくなる。
- Vertex が他に1つも再構成されなかった場合、prong を1つしか持たない vertex が欠落する場合がある。
- b-hadron が VXD の acceptance 外で生成された場合。

ここでは prong の欠落に由来する vertex の欠損に着目する。

4 D N 4 B N 4 B N 4

考えられる Vertex の欠落理由:

- 中性崩壊点 Prong が生成されなければ崩壊点は再構成されない。
- 生成されたソフトな b-hadron 運動量が小さい為に飛距離が短く、
 b-hadron からの prong と他の b-jet からくる粒子との区別が難しくなる。
- Vertex が他に1つも再構成されなかった場合、prong を1つしか持たない vertex が欠落する場合がある。
- b-hadron が VXD の acceptance 外で生成された場合。

ここでは prong の欠落に由来する vertex の欠損に着目する。

イロト イポト イラト イラ