English

Systematic study of $e^+e^- \rightarrow t\bar{t}$ at the ILC using full simulation of the ILD Detector and determination of anomalous electroweak coupling of top quarks

Yuichi Okugawa

Department of Physics Graduate School of Science Tohoku University 2019

- 1. Introduction
- 2. International Linear Collider
- 3. Event Reconstruction
- 4. Background
- 5. Result
- 6. Conclusion

Top Quark

Top Quark

- Mass ~175 GeV
- Spin 1/2
- Charge 2/3
- Mass of the top quark is close to the vacuum expectation value of the electroweak symmetry breaking.
- Due to its massiveness, top quark decays before its hadronization.
- Since the discovery of the top quark, it has only been studied in the hadron colliders, such as LHC and Tevatron.

 \rightarrow Precision studies at the lepton collider is now expected.

トップ対と Z/γ の結合

$$\Gamma_{\mu}^{t\bar{t}X}(k^{2},q,\bar{q}) = ie \left[\gamma_{\mu} \left(\tilde{F}_{1V}^{X}(k^{2}) + \gamma_{5} \tilde{F}_{1A}^{X}(k^{2}) \right) + \frac{\sigma_{\mu\nu}}{2m_{t}} (q + \bar{q})^{\nu} \left(i\tilde{F}_{2V}^{X}(k^{2}) + \gamma_{5} \tilde{F}_{2A}^{X}(k^{2}) \right) \right]$$

$$(X = Z, \gamma)$$

The couplings between pair of top and Z^0/γ are parametrized in terms of form factors.

 A_{FR}^{t} is the measure for the level of the parity violation.

$$(A_{FB}^{t})_{I} = \frac{-3\beta F_{1A}^{I}(F_{1V}^{I} + F_{2V}^{I})}{2[(1 + \frac{1}{2\gamma^{2}})(F_{1V}^{I})^{2} + (\beta F_{1A}^{I})^{2} + 3F_{1V}^{I}F_{2V}^{I}]}$$

$$\sigma_{I} = 2\left(\frac{4\pi\alpha^{2}}{3s}\right)N_{c}\beta\left[\left(1 + \frac{1}{2\gamma^{2}}\right)(F_{1V}^{I})^{2} + (\beta F_{1A}^{I})^{2} + 3F_{1V}^{I}F_{2V}^{I}\right]$$

*At the tree level Standard Mode, $F_2 = 0$

研究背景

本研究の目標

	終状態	Jet 数	崩壊率
Full Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}\bar{\ell}\nu)$	2 jets + 2ℓ	10.5%
Semi Leptonic	$t\bar{t} \to (b\ell\bar{\nu})(\bar{b}q\bar{q}')$	4 jets + 1ℓ	43.8%
Full Hadronic	$t\bar{t} \rightarrow (bq\bar{q}')(\bar{b}q\bar{q}')$	6 jets	45.7%

- In the pre-studies, analysis method for the fullleptonic and semi-leptonic channel has been established.
- Through analysis on the semi-leptonic analysis, particularly aimed for the detector optimization.
- This thesis explores the analysis technique for the full-hadronic channel, which has 6 jets as final states.

トップ対の生成

International Linear Collider

International Linear Collider (ILC)

- e^+e^- linear collider
- Cleaner events compared to the hadron colliders
- $\sqrt{s} = 250 \sim 500$ GeV (500 GeV for this study)
- Enables the polarization of Electron (±80%) and positron (∓30%) beams.

Expected Physics

- Precision measurements of Higgs boson.
- Dark matter search
- Precision measurements of top quark.
- etc...

Main Linac

International Large Detector

International Large Detector (ILD)

- The detector mounted on the ILC
- It is designed to allow the precision measurement of the properties of top quark, and be sensitive to the physics beyond the Standard Model.

Jet Definition (Generalized k_T algorithm for e^+e^- collisions)

$$d_{ij} = \min(E_i^2, E_j^2) \frac{(1 - \cos \theta_{ij})}{(1 - \cos R)}$$
$$d_{iB} = E_{iB}^2$$

 $E_{i,j}$: energy of particles $\cos \theta_{ij}$: separation angle R : cone radius (=1.5)

Flow of jet clustering

- 1. The algorithm calculates the d_{ij} , d_{iB} for each combination of particles
- 2. Selects d_{ij} , d_{iB} so that the value become minimum.
- 3. Repeat step 1 and 2 until the number of clustered jets become 4 or 6.

Secondary Vertex Reconstruction

- After the hadronization, B hadrons will decay at the point away from the primary vertex (PV), called secondary vertex (SV)
- Using the vertex information and multivariable analysis, the algorithm calculates the likelihood of b for each jets called btag.

Difference Semi-Leptonic and Full-Hadronic

	Semi-Leptonic	Full-Hadronic
Isolated Lepton	$P_{lep} > 5 \text{ GeV}$	0
N jets	4	6
W [±] reco	isoLep + q jet	q jet + q jet

Cuts

種類	カット
b-tag	0.8 < b-tag < 0.3
Thrust	Thrust > 0.9
Mhad (GeV)	180 < Mhad < 420
Top mass (GeV)	120 < M _{top} < 270
W [±] had mass (GeV)	50 < Mw < 270

Charge Measurement

$$\chi_{had}^{2} = \frac{\gamma_{t}^{had} - 1.435}{\sigma_{\gamma_{t}}} + \frac{\cos \theta_{Wb} - 0.23}{\sigma_{\cos \theta_{Wb}}} + \frac{p_{b}^{*} - 68}{\sigma_{p_{b}^{*}}}$$

Standard Model Background

$\sigma_{unpol.}$	σ_{eLpR}	σ_{eRpL}	(fb)
572	1564	724	_
2208	6032	2793	
372	1212	276	_
11185	25500	19126	_
6603	26000	150	_
422	1106	582	-
40	151	8.7	-
1.1	3.2	1.22	-
	<i>σ</i> _{unpol} . 572 2208 372 11185 6603 422 40 1.1	$\sigma_{unpol.}$ σ_{eLpR} 572156422086032372121211185255006603260004221106401511.13.2	$\sigma_{unpol.}$ σ_{eLpR} σ_{eRpL} 572156472422086032279337212122761118525500191266603260001504221106582401518.71.13.21.22

	eLpR
Isolated Lepton	51.1%
b-tag	1.10%
Thrust	1.10%
Mhad (GeV)	0.619%
Top / W [±] had mass (GeV)	0.435%

- Focused on the backgrounds that contain similar signature to the $t\bar{t}$ events.
- Most of the events are removed after the btag cuts and finally the top and W mass cuts attenuates the background down to 0.4%

Top Polar Angle (semi-leptonic)

偏極100%(左巻き)の場合

Top Polar Angle (semi-leptonic)

偏極100%(右巻き)の場合

- V-A結合により、偏極が右巻きの場合
 は W はトップの運動方向と同じ方向
 に出てくる。
- ・再構成されたトップの運動方向は W
 ・
 由来の孤立レプトンの方向とほぼ同ー
 となる。
- 孤立レプトンはエネルギーが高い為、
 b-jetなどよりも同定しやすい。

Polar Angle Distribution (semi-leptonic)

Polar Angle Distribution (full-hadronic)

AFB Calculation

Semi-leptonic 過程

$(\mathscr{P}_{e^{-}},\mathscr{P}_{e^{+}})$	(-0.8, +0.3)	(+0.8, -0.3)
$A^t_{FB,gen}$	0.364	0.409
$A_{FB,reco}^t$	0.345	0.369
$\delta_{\!A^t_{FB}}$	0.0025	0.0020
Efficiency	34.6%	64.1%

Full-hadronic 過程

$(\mathscr{P}_{e^-},\mathscr{P}_{e^+})$	(-0.8, +0.3)	(+0.8, -0.3)
$A^t_{FB,gen}$	0.359	0.409
$A_{FB,reco}^t$	0.322	0.369
$\delta_{\!A^t_{FB}}$	0.0028	0.0058
Efficiency	34.6%	32.5%

Semi-leptonic 過程	(先行研究*)

	(-0.8, +0.3)	(+0.8, -0.3)
$\delta_{\!A^t_{FB}}$	0.0059	0.0055
Efficiency	30.8%	30.8%

Conclusion

まとめ

- Reconstruction of top quark using $\sqrt{s} = 500$ GeV samples was presented, along with calculation of A_{FB}^t which demonstrated the ILC's capability to measure its value with uncertainty up to $\delta_{A_{FB}^t} = \pm 0.002$.
- The full-hadronic channel of $t\bar{t}$ decay was analyzed for the first time.

Future Prospects

- Apply the weights to the method used for the charge comparison by computing charge identification efficiencies for each methods.
- Form factor calculation using A_{FB}^{t} that was obtained in this analysis.

Backup Slides

Single Topの背景事象

- Similar to the $t\bar{t}$ events, it has $b\bar{b}W^+W^-$ as final state
- Difficult to eliminate these events from the reconstruction
 - \rightarrow set a cut to the generator information

 $|m_{Wb} - 174| < 15 \text{ GeV}$

• 12% of all events are from the single top events.

Polar Angle Distribution (semi-leptonic)

