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Abstract
The International Linear Collider is now under consideration
as the next global project in particle physics. In ILC, it is
essential to have very flat beams at the interaction point in
order to obtain high luminosity.A measurement of the beam

size is therefore extremely important for keeping luminosity as
high as possible. In this research, Pair Monitor has been
executed by utilizing the already implemented geometry of
another forward calorimeter, namely BeamCal. By means of

full simulation of process happened in linear collider,
information is obtained from detector.Then building

appropriate model of machine learning to precisely predict
beam size by a number of training data from simulation.
Otherwise, introduce data analysis method for reducing

statistical fluctuations and improve accuracy in model. The
result of prediction are almost close to 100% in defined range.
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Chapter 1

Introduction

In the high energy physics field, powerful accelerator,clever detector and

precise measurement are significant part which helped made new discover-

ies. Meanwhile, artificial intelligence technologies swarm into many kinds

of industry and field as a effective and importance tool in nearly a decade.

Artificial intelligence technologies also have immense potential in high en-

ergy physics. For example, machine learning of Artificial Intelligence could

made it possible to predict certain quantities which are hard work in past,

and deeply seek for hidden information from events. The machine learning

is an application of Artificial Intelligence that provides systems the ability

to automatically learn and improve from experience without being explicitly

programmed. And it focuses on the use of data and algorithms to imitate the

way that humans learn, gradually improving its accuracy, in the other word,

use historical data as input to predict new output values. So it’s a available

algorithm for some prediction that beyond human’s ability.

The International Linear Collider (ILC) has been designed to address

many central physics issues. Compare with Large Hadron Collider, it will ex-

tend and complement the LHC physics program. And the ILC require very

flat beams at the collision point in order to ensure maximum luminosity in

running. Pair Monitor are designed for measuring the size of interacted beam

and make sure the adequate luminosity can be provided. So the high precision
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of measurement are most importance point in Pair Monitor[26]. After simula-

tion of interaction process, it is obvious that information from Pair Monitor

detector is sensitive to horizontal and vertical beam size. Therefore the ma-

chine learning model could predict beam size through observable from pair

monitor. In earlier research[21][19], different machine learning model have

been utilized, but the accuracy are short of expectation due to statistics

fluctuations. So I introduced data analysis method for dealing with those

problems.

In my thesis, first a short introduction of construction and interaction

principle in the ILC. Then represent simulation about ILC detector environ-

ment and interaction process. Afterward introducing how to applied Machine

Learning model to predict parameter of beam size, besides the method for

developing model are implemented. Finally, some suggestions about how to

improve future research on this topic would look like is discussed.
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Chapter 2

International Linear Collider

2.1 Overview of the accelerator

The international Linear Collider (ILC)[7] is an electron-positron collider,will

be a necessary tool for unlocking some of the deepest mysteries about the uni-

verse.Its best feature is it will allow physicists to precisely explore extremely

high-energy regions between 250 GeV and 1000 GeV.The ILC consisting of

two linear accelerators that will stretch approximately 31 kilometers in length,

and it will smash electrons and their anti particles, positrons, together at

nearly the speed of light and colliding nearly 7000 times every second.The

ideal result is that the electrons and positrons will create an array of new

particles that could help answer some of the most fundamental questions of

all time: What is the higgs boson? What are dark matter and dark energy?

Does supersymmetry exist? ILC will help achieve this goal by means of its

clean environment, high luminosity and beam polarization. The following

section would describe the chief components of the accelerator system.
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Figure 2.1: A schematic of the ILC[8]

2.2 Accelerator

The ILC accelerator which shown in Fig 2.1 consists of superconducting RF

main Linacs, electron source,positron source, damping ring and a beam de-

livery system.

2.2.1 Superconducting RF main linacs

The heart of the ILC accelerator consists of the two superconducting Main

Linacs that accelerate both beams from 5 to 125 GeV. The beams are ac-

celerated in 1.3GHz nine-cell superconducting cavities made of niobium and

operated at about 2 K(Fig 2.2). These are assembled into cryomodules com-

prising nine cavities or eight cavities plus a quadrupole / corrector / beam

position monitor unit, and all necessary cryogenic supply lines. The cryogenic

plants could cool a continuous length of 2.5 km of Linac. The main Linac is

made with the curvature of the earth in mind to ensure smooth supply.

Figure 2.2: A 1.3 GHz superconducting niobium nine-cell cavity.[8]
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2.2.2 Electron sources

The electron source design[4] is based on the SLC polarized electron source,

which has demonstarted that the bunch charge, polarisation and cathode life-

time parameters are feasible.The laser impinging on a photocathode based

on a strained GaAs/GaAsP superlattice structure, which will produce elec-

tron bunches with an expected polarisation of 85%.After bunching and ac-

celerating to 76 MeV through normal conducting structure,superconducting

solenoids rotate the spin vector into vertical and finally the beam is injected

into a damping ring.

2.2.3 Positron sources

After electron beam is passed through a helical undulator, the hard gamma

rays are produced which are converted to positron in a rotating target. Positrons

are captured in a flux concentrator or a quarter wave transformer, acceler-

ated to 400 MeV in two normal conducting preaccelerators followed by a

superconducting accelerator very similar to the main Linac, before they are

injected into the damping rings at 5 GeV.

2.2.4 Damping rings

The ILC includes two oval dampling rings of 3.2 km circumference, sharing a

common tunnel in the central accelerator complex. The damping rings reduce

the horizontal and vertical emittance of the beams by almost six orders of

magnitude within a time span of only 100 ms, to provide the low emittance

beams required at the interaction point.Both damping rings operate at an

energy of 5 GeV.

2.2.5 Ring to Main Linac(RTML)

The Ring to Main Linac(RTML) system is responsible for transporting the

beams from Damping Rings at the entrance of the accelerator complex to

6



the upstream ends of the Main Linacs, collimating the beam halo generated

in the Damping Rings,and rotating the spin polarisation vector from the

vertical to the desired angle at the IP(Interaction Point).

2.2.6 Beam delivery system

The Beam delivery system transports the electron-positron beam from the

end of the main Linacs, focuses them to the require small beam spot at the

Interaction Point,brings them into collision, and transports the spent beam

to the main dumps.

2.3 International Linear Detector

The ILC detector are designed to make precision measurements on the Higgs

boson,W ,Z,τ ,and other particles. The ILD are selected to meet the require-

ment for such measurements. It results in a large detector optimized for good

energy and momentum resolution, with flexibility for operation at energies up

to the TeV range, and employs a highly granular calorimeter, with minimal

material between the interaction point and the calorimeter. The tracker is a

Time Projection Chamber(TPC) providing continuous tracking for excellent

pattern recognition and dE/dX capability.

The interaction region of the ILC is designed to host two detectors, which

can be moved in and out of the beam position with a ‘push-pull’ scheme. The

mechanical design of ILD and the overall integration of subdetectors takes

these operational constraints into account.

The ILD concept shown in Fig 2.3 has been designed as a multi-purpose

detector[1]. A high precision vertex detector is followed by a hybrid tracking

layout, realised as a combination of silicon tracking with a time projection

chamber, and a calorimeter system inside the large solenoid.

The momenta of the full set of final-state particles are best reconstructed

with the Particles Flow Algorithm(PFA)[15]. This technique combines the
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Figure 2.3: The ILD detector concept[5]

information from the tracking system and from the calorimetric systems to

reconstruct the energy and the direction of all charged and neutral particles

in the event. Besides, the requirements of large distance between interac-

tion point and sweep charged particles away from the neutral, make particle

reconstruction by PFA superior to previously used energy flow scheme.

2.3.1 Detector component

Vertex system

The vertex detector is realized as a multi-layer pixel vertex detector with

three super-layers. The detector positioned very closely to the interaction

point and has a pure barrel geometry to minimize the occupancy from back-

ground hit, the first layer located at a radius of about 1.6 cm. Besides it is

optimized for point spatial resolution better than 3 µm and material budget

below 0.15% χ0/layer.

Silicon tracking system

The silicon part of the ILD tracking is made of four component: two barrel

component, the Silicon Inner Tracker(SIT) and the Silicon External Tracker(SET).

One end cap component behind the end-plate of the TPC.and the forward

tracker. The SIT and SET help improving the overall momentum resolution
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and linking the VTX detector with the TPC, and in extrapolating from the

TPC to the calorimeter.

TPC

A distinct feature of ILD is a large volume Time Projection Chamber with up

to 224 points per track that is optimized for 3-dimensional point resolution

and minimum material in the field cage and in the end-plate. Its low material

budget substantially for best calorimeter and PFA performance. To obtain

good momentum resolution and to suppress backgrounds, the detector will

be situated in a strong magnetic field of 3.5T. Under this condition a point

resolution of better than 100 µm for complete drift and a double hit resolution

of less than 2mm becomes possible.

Electromagnetic Calorimeter system

Electromagnetic Calorimeter is an experimental detector that measures the

energy of electron, positron and photon that interact primarily via the elec-

tromagnetic interaction. It can distinguish between overlapping showers, do

pattern recognition of the showers and reconstruct photons even in presence

of particles nearby.

Hadronic Calorimeter system

Hadronic Calorimeter measure the energy of particles that interact via the

strong nuclear force. It separates the charged hadrons from the neutral ones

and thus contributes highly to particle flow resolution for jet energies up to

100 GeV.

Forward Calorimetry

In the very forward region shown in Fig 2.4, three systems: LumiCal, Beam-

Cal and LHCAL, are proposed. Theses system serve as luminosity monitor
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Figure 2.4: The very forward region of the ILD detector[2]

(LCAL) and beamstrahlungs monitor (BeamCal), and they close the coverage

down to very small angles, also for neutral hadrons (LHCAL).

LumiCal

LumiCal carried out precision measurement of luminosity by means of Bhabha

scattering. Its small pad size is very suitable for accurate measurement of

showers with very small polar angles.

BeamCal

BeamCal is positioned just outside the beam-pipe and hit by massive amount

of Beamstrahlung pairs and along with Pair Monitor it makes bunch-by-

bunch measurement of luminosity and employs a shower finding algorithm

which can detect pair backgrounds even at low polar angles.

Pair Monitor

Pair Monitor measure the parameter of beam size in front of BeamCal. And

it’s described at next section in detail.
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2.4 Physics case

Today, the LHC experiments could achieve 20% uncertainties in their mea-

surements of Higgs boson couplings. We believe the LHC is hard to lead to

Higgs coupling measurements of the required high precision. So the core of

the physics case for the ILC is to make high-precision measurements of the

properties of the Higgs boson. As we know, the Higgs field has a central role

in the SM which is responsible for not only the masses of all known elemen-

tary particles but also those aspects that are hardest to understand (such as

hierarchy of quark and lepton masses, flavor mixing, CP violation and etc.).

If we wish to learn more about these features of the fundamental laws of

nature, an obvious course is to measure the Higgs boson as well as we are

able. We will argue some physics case at ILC of 250GeV below.

• e+e− → Zh

This is a different way to measure Higgs boson couplings provided by the

ILC. It is measurement of the reaction e+e− → Zh at 250 GeV. At an e+e−

collider at this energy, it is true to a first approximation that any Z boson

observed with a lab energy of 110 GeV is recoiling against a Higgs boson.

The background come from radiative e+e− → Zγ and e+e− → ZZ.which

should identify Higgs boson events independently of decay mode, allowing

the measurement of the total cross section for Higgs production and the

discovery of exotic and unanticipated Higgs decays.

• e+e− → W+W−

The reaction e+e− → W+W− provides an excellent way to test for the pres-

ence of dimension-6 operators that involve the W and Z fields. The Feynman

diagrams of reaction show in Fig 2.5.In the SM, there are large cancellations

among these diagrams, but these are not respected by the dimension-6 con-

tributions. Thus, the dimension-6 coefficients appear in the cross section

formula enhanced by a factor S/m2
W .[17]
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Figure 2.5: e+e− → W+W−

• e+e− → ff̄

The Fermion pair production could provides a search for new forces that

couple directly to the electron. In ILC, it operate at an appropriate energy

but with much higher luminosity, which corresponds to the ability to ob-

served new vector bosons at 5-6 TeV and contact interaction scales of 70

TeV, comparable to the projected reach of the HL-LHC.

• Search for pair-production of new particles

Due to insensitivity to new particles with electroweak interactions only that

decay to an invisible partner with a mass gap of less than 5 GeV and insensi-

tivity to production of pairs of invisible particles observed through radiation

of an initial-state gluon, LHC has blind spots coreesponding to physically

interesting models. Contrarily, the ILC can detect these new physics events

for particle masses almost up to half of the collider center of mass energy.

From physics case described above, keeping luminosity as high as possible

is indispensable for well running of ILC. Besides, measurement of luminosity

is also a important role at ILC, that is the reason for implementation of Pair

monitor
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Chapter 3

Pair Monitor

3.1 Introduction

In ILC, it is essential to have very flat beams at the interaction point in order

to obtain high luminosity[26]. Because of this goal, an precise meausrement

of lunminosity is required. The quantity that measures the ability of a par-

ticle accelerator to produce the required number of interactions is called the

luminosity and is the proportionality factor between the number of event per

second dR/dt and the cross section σp:

dR

dt
[S−1] = L[S−1 ∗ cm−2] ∗ σp[cm

−2] (3.1)

For transverse Gaussian beam distributions, luminosity can be define as[13]:

L =
N1N2

4πσxσy

nbfHD (3.2)

Where N1 and N2 are number of particle in one bunch for incoming

and outgoing beam respectively and transverse collision area is described as

4πσxσy. f is the revolution frequency and nb is the number of bunches in

one beam.HD is additional factor of luminosity due to the cross angles.It
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shows parameter of beam sizes are inversely proportional to luminosity. So a

appropriate beam size are benefit of maintaining stable luminosity at ILC.

3.2 Beamstrahlung

When a particle is forced on a curved trajectory by the other beam, it will

emit radiation in a similar fashion as in a bending magnet. This radiation

is called beamstrahlung. This leads to the formation of a luminosity spec-

trum and obviously impacts the performance of the physics experiments.

The beamstrahlung can be described by its critical energy h̄wc, which can be

wirrted as[23]:

h̄wc =
3

2

h̄γ3c

ρ
(3.3)

where ρ is the bending radius of the particle trajectory,γ is gamma parameter

and c is speed of light. The beamstrahlung parameter writted as:

Υ =
3

2

h̄wc

E
(3.4)

The beamstrahlung spectrum is described by the Sokolov–Ternov spectrum:

dω̇

dω
=

α√
3πγ2

[

∫ ∞

x

K5/3(x
′
)dx

′
+

h̄ω

E

h̄ω

E − h̄ω
K2/3(x)] (3.5)

where x = ω
ωc

E
E−h̄ω

and K5/3 and K2/3 are the modified Bessel function. If the

limit Υ ≪ 1 the power of the photon radiation of a particle is proportional

to Υ2:

P =
e2

6πϵ0

c

ρ2
γ4 =

2

3

rec

λ2
c

mc2υ2 (3.6)

with λc = h̄/(mc). The average Beastrahlung parameter defined as:

⟨Υ⟩ = 5

6

Nre
ασz(σx + σy)

(3.7)
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where α is fine structure constant. The maximum beamstrahlung parameter

is about:

Υmax ≈ 12

5
⟨Υ⟩ (3.8)

Generally speaking,spectrum corresponds to synchrotron radiation and

one speaks of the classical regime, Υ ≪ 1.

3.3 Choice of beam parameters

In the classical regime, the number of photons emitted per beam particle nγ

depends on the bunch charge and transverse dimensions:

nγ ∈ Υ
σz

γ
∈ N

σx + σy

(3.9)

Similarly, the average energy Eγ of each photon as:

Eγ ∈ Υ
1

γ
∈ N

σz(σx + σy)
(3.10)

From Eq 3.9, for reducing effect of Beamstrahlung, the values of σx+σy have

to be large, meanwhile , for high luminosity, the values of σxσy have to be

small. For both goals can be simultaneously achieved, therefore, flat beam

with σx ≪ σy is the right choice for purpose because dampling ring naturally

delivers beams with larger horizontal emittance and small vertical emittance.

3.4 Pair Background

There are three major method of producing photons by interaction between

oncoming electron and positron without come from Beamstrahlung which

shown at Fig 3.1,

Breit-Wheeler(γγ → e+e−),Landau- Lifschitz(eeγγ → e+e−e+e−) and

Bethe-Heitler(eγγ → e±e+e−). This case of Beamstrahlung real photons in-

teracting with themselves or oncoming e+e− is called incoherent process.
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Figure 3.1: physical processes of photon production

3.5 Method of measurement

Many low-energy e+e− pair are expected to be created during beam crossing

due to three incoherent processes. Where the γ is the beamstrahlung photon

and this phenomena have been investigated as troublesome background for

experiment at ILC. The particles of concern have the same charge as that

of the oncoming beam, so most of them are deflected at larger angles than

their inherent scattering angles by a strong electromagnetic force due to the

oncoming beam and the particles with opposite charge are deflected with

small angles like Fig 3.2. Since this potential is produced by the intense

Figure 3.2: incoherent pair from Interaction Point[19]

electric charge of the oncoming beam, it is a function of the transverse beam

size and intensity of the beam. So the deflected particles should carry this

information, especially in their angular distribution and distance from the

center axis. It is what I intend to measure. In this research, I assume the two

beam have the same parameter of beam size.
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3.6 Pair Monitor[3]

Additional and independent information on beam parameter will be obtained

from the pair monitor.The device will consist of one layer of silicon pixel

sensors, with pixel size of 400*400 µm2, thickness of 300 µm and the distance

from the interaction point is about 350 cm, just in front of BeamCal to

measure the number density distribution of beamstrahlung pairs, that shown

in Fig 3.3.

Figure 3.3: Detector geometry and location of the proposed pair monitor
[25]

The nominal beam size of horizontal bunch sizes and vertical beam sizes

are 729 nm and 7.7 nm respectively for 250 GeV. And the measurement of the

beam size at the interaction point is crucial to maintaining a high luminosity

because the luminosity is highly dependent on σx and σy. In my research,

the full detector simulation of pair monitor has been undertaken, with the

realization that the first layer of the BeamCal mimics pair monitor readout

signal because of the same material and function.
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Chapter 4

Simulations

4.1 Simulation of Beam-Beam Interaction

CAIN[18] is a standalone FORTRAN Monte-Carlo code for the interaction

involving high energy electron, positron and photons.According to nominal

beam size values (σ∗
x=729 nm,σ∗

y=7.7 nm), 0.8,0.9,1.0,1.1,1.2,1.3,1.4 times of

the typical beam size values [9] have been simulated by CAIN. There are to-

tally 7*7=49 sets of samples with different parameter combination of beam

size. According to the convention of CAIN user’s manual[18], the electron

and positron beams have been simulated as right and left going beams re-

spectively. The parameter used in the CAIN simulation described in Table

4.1. It is seen that each beam consist of 1312 bunches.But any observable

from Pair Monitor by simulation is one bunch.

4.2 DD4hepSimulation Package[22]

The design of the DD4hep toolkit is shaped on the experience of detec-

tor description systems which developed for the Linear Collider community.

DD4hep toolkit include a coherent set of tools, with most of the basic compo-

nents already existing in one form or another.Fig 4.1 shows the architecture

of the main components of the toolkit and their interfaces to the end-user
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Energy(one beam) 125 GeV
Number of bunches 1312
Bunch Population 2*1010

Number of macro-particles 100000
Collision Rate Number of bunches *5Hz

Horizontal emittance 10
Vertical emittance 35

IP Horizontal β function 13.0 mm
IP Vertical β function 0.41mm
Slope(=ϕcross/2) 7 mrad

External Field(Bx, By, Bz) (0,0,3.5T)
Constant Field QED BeamStrahlung

Polarization
Maximum event probability

per time step= 0.5
Gaussian Tail cutoff 4.5

nx, ny, nz, nϵ (units of respective σ)
Polarization vector (ζx, ζy, ζz)

Electron Beam=(0,0,-1)
Positron Beam=(0,0,1)

Beam-Beam Field Horizontal bins=32
Vertical bins=128

Horizontal mesh width=12*σxheight

Table 4.1: parameter of Simulation

applications, namely the simulation,reconstruction, alignment and visualiza-

tion. The code is designed to optimize particle transport through complex

structures and works standalone with respect to any Monte-Carlo simulation

engine. The ROOT geometry package provides sophisticated 3D visualiza-

tion functionality, which is ideal for building detector and event displays.

The second component is the Geant4 simulation toolkit, which is used to

simulate the detector response from particle collisions in complex designs.

In DD4hep the geometrical representation provided by ROOT is the main

source of information.

Currently the ideal detector description namely ILD-l5-v05, incorporates

realistic detector geometry, solenoid field map, anti-DID field map and mag-

netic fields in the forward focusing magnets.Fig 4.2 and Fig 4.3 depicts the

detector construction implemented by ILD-l5-v05 as a logarithmic color map
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Figure 4.1: The components of the DD4hep detector geometry toolkit[10]

plot of number of radiation lengths in a bin with respect to the ILD detector

coordinate system where y-axis point out of the page.

The tilted forward calorimetry is clearly visible here. Besides, the detector

of interest i.e. BeamCal, which is about 300 cm away from the interaction

point, is seen to have a very high radiation length.

Figure 4.2: Cross Section of the ILD detector system[16]
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Figure 4.3: outline of the ILD detector system[16]

4.3 Marlin and LCIO packages

Marlin(Modular Analysis and Reconstruction for the Linear Collider) is a

software framework based on ILCSOFT. LCIO is a persistency framework

that defines a data model for linear collider detector studies, it is intended

to be used in both simulation studies and analysis frameworks. Marlin imple-

ments a processor to digitise hit collection which then extracts the digitised

collection through LCIO data model. [12]

Digitised information of an event are accessed inside a processor through

the LCEvent class. Event information inside the BeamCal are accessed as

LCCollection type object by means of SimCalorimeterHit class inside the

processor. Each element of this collection corresponds to hits at the BeamCal

cells. Each of this hit denote only the position of the cell hit by the particle

and not the exact position i.e. coordinate values or layer number of the hit.

Therefore, these collections are decoded by means of CellIDDecoder and layer

number corresponding to every element of the BeamCal collection is obtained

by passing the address of the element into decoder.
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For the first layer, number of contributions by all MCParticles, inside each

aforementioned element, is obtained using getNMCContributions(), which is

a member function of SimcalorimeterHit class.

Due to multiple layers of BeamCal and the scatter while MCparicles pass

through the layers,the number of contributions are higher than expect.Such

contribution contain the energy, position, pdg etc. information calculated

by Geant4.Only fisrt midpoint position between MCparticles and detector is

required in PairMonitor, such MCparitcles are collected by using getNMC-

Contribution()[20]. And the simulation of position distribution at first layer

of BeamCal show at Fig 4.4. The central blank shape like a keyhole because

of input pipe and output pipe.

Figure 4.4: position distribution of the first layer of BeamCal(1 bunch)
(σx = σ∗

x, σy = σ∗
y)

22



Chapter 5

Data analysis

As described at section 4.1, the beam like a train that contains a number of

bunches(1312), each bunch look like a cube, the variables of beam size are

σx and σy that is the width and length of the cube at Fig 5.1. According to

different variables of beam size simulated different process of interaction and

get different hit information from Pair Monitor that shown in Fig 5.2.There

are 9 examples in results of simulation, it’s difficult to look for difference

and feature by naked eyes. So it’s important to apply dataanalysis and

featureextract for discover the hidden information from hit distribution.

Figure 5.1: interaction after one bunch
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Figure 5.2: part of images of simulation(1 bunch)

5.1 Different parameter of beam size

As mentioned in section 4.1, simulation of 49 sets of parameters with each

value of σx corresponding to 7 values of σy and vice versa, have been carried

out. The Fig 5.3 and Fig 5.4 shows the azimuthal angle, ϕ = tan−1(y/x)

distributions for nominal σx with different σy and nominal σy with different

σx respectively. beam size pair means one of 49 combinations of the horizontal

and vertical beam size. The ϕ plots of different σx(Fig 5.4), vary across the

whole region [-3,3] with small statistical fluctuations. But the fluctuations in

the ϕ plot (Fig 5.3), that corresponds to different values of σy, are very vague

and uncertain correlation of plots with the values of σy

The plot of ρ, ρ =
√

x2 + y2, that the distance of the particles from the

center, also with different σx and different σy show in Fig 5.5 and Fig 5.6.

The ρ plot have similar point with ϕ plot. There have very clear correlation

of the plots with the different values of σx at the range of [10,80] in Fig 5.5.
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Figure 5.3: ϕ (radian) plots for different times to nominal values of σy and
nominal σx (1 bunch/beam size pair)

Figure 5.4: ϕ (radian) plots for different times to nominal values of σx and
nominal σy (1 bunch/beam size pair)
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Figure 5.5: ρ plots for different times to nominal values of σx and nominal
σy (1 bunch/beam size pair)

Figure 5.6: ρ plots for different times to nominal values of σy and nominal
σx (1 bunch/beam size pair)
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Meanwhile, the line segment are close and hard to distinguish with different

values of σy in Fig 5.6. On the other hand, even though the same plots for

different values of σy show some difference in some range, but it is not as

drastic as the case of changing σx.

From the distribution as seen in Fig 5.3, 5.4,5.5,5.6, it can be seen that

the number of particles is a major discriminant between different values of

both horizontal and vertical beam size. Especially, the number of particles hit

increases drastically when the values of σx is decreased. In case of decreasing

values of σy, the number of hit increase slightly in most of the range in both

ρ and ϕ distribution. The influence of the keyhole shape(as seen in Fig 4.4)

is responsible for the asymmetry of the ϕ and ρ distribution.

5.2 EDA

Exploratory Data Analysis (EDA) is used by data scientists to analyze and

investigate data sets and summarize their main characteristics, often employ-

ing data visualization methods. It helps determine how best to manipulate

data sources to get the answers you need, making it easier for data scientists

to discover patterns, spot anomalies, test a hypothesis, or check assumptions.

Current study in competition or application show that appropriate data anal-

ysis method will improve quality of data set that make it possible to increase

accuracy of Machine Learning model.

5.2.1 Histogram Algorithm

In earlier research, the image from screen of Pair Monitor always be defined as

pattern in training model. Although image recognition technique is popular

and rapidly developmental in worldwide and the it is a visible method for

expressing the hit distribution information on the detector, in this research it

is a kind of unstructed data that is hard to intercomparison and do calculate

with each other than digital data. Generally speaking, image store as RBG
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matrix with 3 channel. Each pixel of image combination of color values with

Red channel, Blue channel and Green channel that is tensor of n*m*3 (n*m

is size of pixel). As seen at Fig 4.4, more deep color means more large number

of hit particles. For more comfortable and direct performance, I used digit

instead of color with 3 channel to displace the number of hit particle at any

position of pixel.

Firstly, dividing the screen of detector into a form with 200*200 grid like

Fig 5.7. Each element inside the grid is a digit. If once the MCparticle hit

into any grid, the element in this grid plus one. Ultimately, a 200*200 matrix

will be build, and the component of matrix means the number of hit particle

which look likes a histogram of 3-dimension shown in Fig 5.8, the x-axis and

y-axis are plane of screen in detector, and z-axis means the number axis of

hit particles.

Figure 5.7: divide by 200*200 grid
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Figure 5.8: overhead viewing

5.3 High-Dimension Data

Though we transformed the pattern from image to matrix, but the dimensions

of data are so huge that it is troublesome to find correlation and discrepancy

among the different data.

What is dimension of data

We always describe an object from many different angles.If those angles de-

scribe an object completely, it could be regard as dimension of data. In my

research, each matrix is a sample with label of beam size. It could be ac-

cepted similar sample with the same beam size and different sample with

the different beam size respectively, but the common point of all samples is

that those could be described by a 200*200 matrix. In that circumstances,

the dimensionality of each sample could be seen as 200*200=400000, it also

called variables of data set.
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How to display a high-dimension data

For one dimensional data, it is easy to display it by a Number line. For two

dimensional data, we could put it on a plane of two dimension. And for three

dimensional data, it is available to see it at three dimensional space. But once

the dimensionality exceed 3, the data are hard to visualize in our imagination.

Before putting the data into model of Machine learning or Deep learning, it

is required to make sure whether those sample could be distinguished by

different label of beam size. Especially, due to huge dimensionality(40000),

we could not get result directly. So first of all, try to make those data more

easy to display.

5.4 Dimension Reduction

5.4.1 PCA

Principal Component Analysis(PCA), is a dimensionality-reduction method

that often used to reduce the dimensionality of large data sets, by transform-

ing a large set of variables into a smaller one that still contains most of the

information in the large set.

Reducing the number of variables of a data set naturally comes at the

expense of accuracy, but the trick in dimensionality reduction is to trade a

little accuracy for simplicity. Because smaller data sets are easier to explore

and visualize and make analyzing data much easier and faster for machine

learning algorithms without extraneous variables to process.

So to sum up, reduce the number of variables of a data set, while preserv-

ing as much information as possible are our goal in this section.

Standardization

The first step is to standardize the range of the continuous initial variables

so that each one of them contributes equally to the analysis[14].

30



More specifically, the reason why it is critical to perform standardization

prior to PCA, is that the latter is quite sensitive regarding the variances of

the initial variables. That is, if there are large differences between the ranges

of initial variables, those variables with larger ranges will dominate over those

with small ranges (For example, a variable that ranges between 0 and 100

will dominate over a variable that ranges between 0 and 1), which will lead

to biased results. So, transforming the data to comparable scales can prevent

this problem.

Mathematically, this is available by subtracting the mean and dividing

by the standard deviation for each value of each variable.

z =
value−mean

standdevition
(5.1)

Once the standardization is done, all the variables will be transformed to the

same scale.

Covariance Matrix Computation

For understanding how the variables of the input data set are varying from

the mean with respect to each other, or in other words, to see if there is

any relationship between them. Because sometimes, variables are highly cor-

related in such a way that they contain redundant information. So, in order

to identify these correlations, we compute the covariance matrix.

The covariance matrix is a p × p symmetric matrix (where p is the

number of variables) that has as entries the covariances associated with all

possible pairs of the initial variables. For example, for a 3-dimensional data

set with 3 variables x, y, and z, the covariance matrix is a 3×3 matrix of this

from:


Cov(x, x) Cov(x, y) Cov(x, z)

Cov(y, x) Cov(y, y) Cov(y, z)

Cov(z, x) Cov(z, y) Cov(z, z)
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Since the covariance of a variable with itself is its variance (Cov(a,a)=Var(a)),

in the main diagonal (Top left to bottom right) we actually have the variances

of each initial variable. And since the covariance is commutative (Cov(a,b)=Cov(b,a)),

the entries of the covariance matrix are symmetric with respect to the main

diagonal, which means that the upper and the lower triangular portions are

equal.

If a n-dimension data after standardization:

X = (x1, x2, ..., xn) (5.2)

Convariance matrix:

C =
1

n
XXT (5.3)

If the convariance are positive, the two variables increase or decrease

together i.e. correlate. If the covariance are negative, the one increase and

the other decrease i.e. inversely correlated. We got the correlations between

all the possible pairs of variables.

Principal Components[11]

Principal components are new variables that are constructed as linear combi-

nations or mixtures of the initial variables. These combinations are done in

such a way that the new variables (namely principal components) are uncor-

related and most of the information within the initial variables is squeezed

or compressed into the first components. For example,a 10 dimensional data

gives you 10 principal components, but PCA tries to put maximum possible

information in the first component, then maximum remaining information in

the second and so on.

In this research, 40000 variables of data are so huge that most of compo-

nent are useless in describing the identified data.So organizing information
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in principal components by this way, will allow us to reduce dimensionality

without losing overfull information by discarding the components with low

information and considering the remaining components as your new variables.

An important thing to realize here is that, the principal components are less

interpretable and don’t have any real meaning since they are constructed as

linear combinations of the initial variables.

Geometrically speaking, principal components represent the directions of

the data that explain a maximal amount of variance, that is to say, the lines

that capture most information of the data. The relationship between variance

and information here, is that, the larger the variance carried by a line, the

larger the dispersion of the data points along it, and the larger the dispersion

along a line, the more the information it has. To put all this simply, just think

of principal components as new axes that provide the best angle to see and

evaluate the data, so that the differences between the observations are better

visible.

So how to get the principal components? Eigenvectors and eigenvalues

are the linear algebra concepts that we need to compute from the covariance

matrix in order to determine the principal components of the data.Every

eigenvector has an eigenvalue and their number is equal to the number of

dimensions of the data. For example, for a 3-dimension data set, there are 3

variables, therefore there are 3 eigenvectors with 3 corresponding eigenvalues.

The first maximum principal component accounts for the largest possible

variance in the data set. For example,to reduce dimension from 2 to 1.The

scatter plot of our data set is as shown at Fig 5.9. The first principal com-

ponent is approximately the line that minimize the average of the squared

distances from the projected points to the line (variance).Comparing those

two line, the u1 is better than u2 at minimizing variance. If the dimensionality

larger than 2, the second principal component is calculated in the same way,

with the condition that it is uncorrelated with (i.e., perpendicular to) the

first principal component and that it accounts for the next highest variance.
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Figure 5.9: a case of data set

As describe above, the eigenvectors of the Covariance matrix are actually

the directions of the axes where there is the most variance(most information)

and that we call Principal Components. And eigenvalues are simply the coef-

ficients attached to eigenvectors, which give the amount of variance carried

in each Principal Component.By ranking your eigenvectors in order of their

eigenvalues, highest to lowest, we get the principal components in order of

significance.If we decided how many dimensionalities we want to keep, and

discard those of lesser significance (of low eigenvalues), and form with the

remaining ones a matrix of vectors that we call Feature vector.For example,

if we choose to keep only p eigenvectors (components) out of n, the final data

set will have only p dimensions that achieve goal of reducing dimension.

Don’t forget to recover the data from standardization to original range

by:

FinalDataSet = FeatureV ectorT ∗ StandardizedOriginalDataSetT

5.4.2 T-SNE

In this research, although we can give up part of variable with low informa-

tion and reduce the complexity of compute at the same time, around 5000
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dimensionality still be required to completely describe the data. It is still hard

to look for the correlation among the data set. How to display those data set

by 2-dimensional plane or 3-dimensional space? There are a method called T-

SNE dimension reduction, compare with the PCA reduction described above,

what difference between them? PCA is a linear dimension reduction technique

that seeks to maximize variance and preserves large pairwise distances,and

T-SNE differs from PCA by preserving only small pairwise distances or local

similarities[6].

The T-SNE algorithm calculates a similarity measure between pairs of

instances in the high dimensional space and in the low dimensional space. It

then tries to optimize these two similarity measures using a cost function.

Similarities

The main work are measuring similarities between points in the high dimen-

sional space. Think of a bunch of data points scattered on a 2D space like

Fig 5.10.

Figure 5.10: Measuring pairwise similarities in the high-dimensional space

For each data point (xi) we’ll center a Gaussian distribution over that point.

Then we measure the density of all points (xj) under that Gaussian distri-

bution. Then renormalize for all points. This gives us a set of probabilities

35



(Pij)for all points. For i ̸= j,define:

Pi|j =
exp(−∥xi − xj∥2 2σ2

i )∑
k ̸=j

exp(−∥xi − xk∥2 2σ2
i )

(5.4)

if we set Pi|i = 0, then : ∑
j

Pj|i = 1 (5.5)

Now,denfine:

Pij =
Pj|i + Pi|j

2N
(5.6)

And note that pij = pji,pii = 0 and
∑

i,j Pij = 1

Those probabilities are proportional to the similarities. All that means is,

if data points x1 and x2 have equal values under this gaussian circle then their

proportions and similarities are equal and hence you have local similarities

in the structure of this high-dimensional space. The Gaussian distribution

or circle can be manipulated using what’s called perplexity, which influences

the variance of the distribution (circle size) and essentially the number of

nearest neighbors. Normal range for perplexity is between 5 and 50[27].

Student T-distribution

Instead of Gaussian distribution, the Student T-distribution,which is also

know as the Cauchy distribution�gives us a second set of probabilities(Qij)

at the low dimensional space.Qij is used to measure similarities between low-

dimensional points in order to allow dissimilar objects to be modeled far

apart in the map. As you can see the Student t-distribution has heavier tails

than the normal distribution. The heavy tails allow for better modeling of

far apart distances.

For i ̸= j, define Qij:

Qij =
(1 +−∥yi − yj∥2)−1∑

k

∑
l ̸=k(1 + ∥yk − yl∥2)−1

(5.7)
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Figure 5.11: Gaussian vs Student t-distribution[28]

KL divergence

Finally we want these set of probabilities from the low-dimensional space

(Qij) to reflect those of the high dimensional space (Pij) as best as possible.We

want the two map structures to be similar. We measure the difference between

the probability distributions of the two-dimensional spaces using Kullback-

Liebler divergence (KL).

KL(P∥Q) =
∑
i ̸=j

Pijlog(
Pij

Qij

) (5.8)

KL divergence is a statistical distance: a measure of how one probability

distribution P is different from a distribution Q.The locations of the points

yi in low dimension space are determined by minimizing the KL divergence of

the distribution P and distribution Q. The method of minimizing divergence

are gradient descent, which are always utilized in Machine Learning model.

5.4.3 Visualization of data

In machine learning, a large number of data set are necessary to train a

appropriate model. The result of simulation by technique described at section

4 shown in table 5.1:
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σx

σy 0.8 0.9 1.0 1.1 1.2 1.3 1.4

0.8 1088 1087 1079 1068 1077 1069 1099
0.9 1093 1039 1066 1072 1085 951 1092
1.0 1081 1041 1073 1096 1071 1063 1078
1.1 1077 1071 1085 1042 1072 1078 1050
1.2 1049 1010 1062 1046 1085 1082 1001
1.3 1032 1024 1002 1013 1001 1011 1026
1.4 1063 979 953 1045 921 1025 1098

Table 5.1: the number of the sample in different parameter by simulation

There are total around 50000 samples as data set.

It is also important to estimate whether those data set are distinguishable

and rhythmic by using the algorithm that discussed above. Select 200 samples

from each pair of σx and σy at visualization of data. We used T-SNE by pack-

age of sklearn.manifold.TSNE and PCA by package of sklearn.decomposition.PCA

.

Firstly, we try to reduce the dimension from 200*200=40000 to 2-D space

directly by T-SNE at range of σx and σy respectively. The result at Fig

5.12,5.13.(In color bar, 0-7 map to the multiple to nominal value of σx or σy

from 0.8-1.4, the following is same.)

The result of figures are vague and disordered due to too many original di-

mension. So before using T-SNE, reduce part of variable from 200*200=40000

to 5000 by linear reduction namely PCA, the result shown in Fig 5.14,5.15,5.16.

By the way, the axis in figures show the abstract distance between the points,

so the unit of axis are common.

5.4.4 Conclusion

From the distributions as seen in Fig 5.14,5.15, it can be seen that the dis-

tance among the data of different σx are larger than the data of different σy,

which accord with the result from section 5.1. Beside, Fig 5.16 show total

49 data distribution with different pair of σx and σy at high-dimension.It is

obvious that the center of cluster are isolate, but there are many overlap area
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Figure 5.12: the data of different σx distribution at high-dimension

among different clusters. Even the data with the same beam size, it also has

high statistical fluctuations under the result of each bunch.
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Figure 5.13: the data of different σx distribution at high-dimension

Figure 5.14: the data of different σx distribution at high-dimension after PCA
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Figure 5.15: the data of different σy distribution at high-dimension after PCA

Figure 5.16: the data of different pair of σy and σy distribution at high-
dimension after PCA
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Chapter 6

Machine Learning

6.1 Introduce

Machine learning is an intersection of computer science and statistics and its

study involves the design of algorithms in order to draw statistical inferences

from observation.

In the language of machine learning, any observation can be considered to

be an unknown function y = h(x) where x denotes the independent variable.

The purpose of machine learning is to define a hypothesis H which contains

a set of many functions, and to choose a certain function h from H, so that

h ≈ H in a strictly mathematical sense.

After many years of development, there are a great lot of excellent model

in Machine Learning include Logistic Regression, SVM, Bayesian Model and

so on. Otherwise, the advancement of Machine learning that Deep Learn-

ing also play a important role at many applications. I’d like to introduce two

kinds of models employed in this research,Neural Network and Ensemble Learning,

at next section.

Machine learning can be categorized into supervised learning, unsuper-

vised learning, reinforcement learning etc. Machine learning also can be cat-

egorized into Regression and classification. In this research, supervised learn-

ing is suitable to address problem.
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Regression

Regression analysis consists of a set of machine learning methods that allow

us to predict a continuous outcome variable (y) based on the value of one or

multiple predictor variables (x).

Classification

Classification is a task of Machine Learning which assigns a label value to

a specific class and then can identify a particular type to be of one kind or

another.

In this research, the label of training data, which shown at table 5.1, look

like continuous values but discrete values of 49 kinds of classes actually. So

Classification Model are suitable model in this research.

6.2 Neural Network

Neural Networks are the functional unit of Deep Learning and are known

to mimic the behavior of the human brain to solve complex data-driven

problems. The input data is processed through different layers of artificial

neurons stacked together to produce the desired output.

6.2.1 Neurons

The Neural Network architecture is made of individual units called neurons

that mimic the biological behavior of the brain which shown in Fig 6.1.

Input

It is the set of features that are fed into the model for the learning process.

For example, in this research, input values are variables in sample.
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Figure 6.1: Neuron in Artificial Neural Network

Weight

It is main function is to give importance to those features that contribute

more towards the learning. It does so by introducing scalar multiplication

between the input value and the weight matrix.

Transfer Function

The job of the transfer function is to combine multiple inputs into one output

value so that the activation function can be applied. It is done by a simple

summation of all the inputs to the transfer function.

Activation Function

It introduces non-linearity in the working of perceptrons to consider varying

linearity with the inputs. Without this, the output would just be a linear

combination of input values and would not be able to introduce non-linearity

in the network.

Bias

The role of bias is to shift the value produced by the activation function. Its

role is similar to the role of a constant in a linear function.
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The calculation function inside the neuron are:

yk = f(
M∑

m=1

(xm ∗ wkm + bk)) (6.1)

When multiple neurons are stacked together in a row, they constitute a

layer, and multiple layers piled next to each other are called a multi-layer

neural network(Fig 6.2).

Figure 6.2: Multi-layer neural network

6.2.2 Layer

Input Layer

The data that we feed to the model is loaded into the input layer from external

sources like a CSV file or a web service. It is the only visible layer in the

complete Neural Network architecture that passes the complete information

from the outside world without any computation.

Hidden Layers

The hidden layers are core of Multi-layer neural network what makes deep

learning. They are intermediate layers that do all the computations and ex-
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tract the features from the data. There can be multiple interconnected hidden

layers that account for searching different hidden features in the data.

Output Layer

The output layer takes input from preceding hidden layers and comes to

a final prediction based on the model’s learnings. It is the most important

layer where we get the final result. In the case of classification/regression

models, the output layer generally has a single node. However, it is completely

problem-specific and dependent on the way the model was built.

6.2.3 Forward Propagation

Neural network contains one or multiple layers, with each layer containing one

or multiple nodes. Each node corresponds to a certain Activation Function

φj, that is input into the next layer. If the first layer having M nodes, is M

linear combinations of the input variables x1,...,xN :

aj =
n∑

i=1

w
(1)
ji + w

(1)
j0 (6.2)

where j=1,...,n and the superscript (1) denotes the first layer, w(1)
ji denote

the weights and w
(1)
j0 denotes the bias. And the bias can be absorbed into the

weights by taking an input x0 = 1 so that,

aj =
N∑
i=0

w
(1)
ij xi (6.3)

And a non-linearity known as activation function is applied to this output,

zj = φ(aj) (6.4)

Input layer output and hidden layer output can be combined to give a result

at the output layer. For classification problem, softmax usually be set as the
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activated function of the output layer.

σ(xi) =
exi∑
j e

xj
(6.5)

The i denote the number of neuron at output layer, is also the number of

classes we want to distinguish. And the xi is output values of output layer.

Through double hidden layers and output layers, we get,

yk(x,w) = σ(
M∑
j=0

w
(2)
kj φ(

D∑
i=0

w
(1)
ji xi)) (6.6)

The above method of calculating the output is called forward propagation.

And weight and bias can be update by back propagation.

6.2.4 Back Propagation

The output obtained in this way is evaluated by means of a cost function,

E(w) which in the current study is the mean square error, which is defined

as the following:

E(w) =
1

n

n∑
i=1

(yi − ŷi(w))
2 (6.7)

for an input (xi,yi),where xi ∈ Rd+1 and prediction ŷi(w) The cost function

also be minimized by means of gradient descent, and the main idea of gradient

descent is to update the parameters and then evaluate the cost function

iteratively.

vt = ηt∇wE(wt) (6.8)

wt+1 = wt − vt (6.9)

where ∇wE(wt) is the gradient of E(w) with respect to w, ∇t is the

learning rate which controls the step to be taken in the direction of gradient

at a step t. The model approach to ideal function that h(x) ≈ H by multiple

iteration of Eq 6.8 and 6.9, namely gradient descent. But the presence of
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multiple layers causes the error function to be a composite function of all

the weight parameters used in the earlier layers. Because of this brute force

calculation of gradient descent is not feasible in this case. Instead a special

algorithm known as back propagation is used.

Change of the cost function with respect to the weighted input in a layer,

i.e. the gradient ∆
(l)
j corresponding to the j-th neuron in the l-th layer can

be defined as,

∆
(l)
j =

∂E

∂a
(l)
j

∂σ(z
(l)
j )

∂z
(l)
j

(6.10)

Since error in layer l is propagated from the subsequent layer l+1, chain rule

of differentiation can be used to write,

∆
(l)
j = (

∑
k

∆
(l+1)
k w

(l+1)
kj )

∂σ(zlj)

∂z
(l)
j

(6.11)

When final error is differentiated by the weight of the k-th neuron of a specific

layer l, the result can be expressed by means of the product of∆(l)
j from above

and j the output of the k-th from the previous layer, l − 1. In such way the

derivative of E for weights at all layers and neurons can be computed.

E

w
(l)
jk

=
E

w
(l)
jk

= ∆
(l)
j a

(l−1)
k (6.12)

This approach makes it possible to update the weights:

wl+1 := wl − η
E

w(l)
(6.13)

where the elements of the vector w(l) correspond to all the weights in the

neurons of a particular layer l and η denotes the learning parameter.
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6.3 Ensemble learning

6.3.1 Introduce

Ensemble learning is a general meta approach to machine learning that seeks

better predictive performance by combining the predictions from multiple

models.

There are three main classes of ensemble learning methods are bagging,

stacking, and boosting. In this research, a kind of boosting ensemble model be

selected because of it’s outstanding performance and accurate in many compe-

tition and experiments that is called Gradient Boosting Decision Trees(GDBT)

6.3.2 Decision Trees

A decision tree is a machine learning model that builds upon iteratively

asking questions to partition data and reach a solution. It is the most intuitive

way to zero in on a classification or label for an object. Visually too, it

resembles and upside down tree with protruding branches and hence the

name.

A decision tree is a flowchart-like tree structure where each node is used

to denote feature of the data set, each branch is used to denote a decision,

and each leaf node is used to denote the outcome.

The topmost node in a decision tree is known as the root node. It learns to

partition on the basis of the feature value. It partitions the tree in a recursive

manner, also call recursive partitioning. This flowchart-like structure shown

in Fig 6.3 helps in decision making. Like Neural Network, Decision Tree also

have a cost function(error function) to evaluate performance of model and

update the model by minimizing the function. In current study, Gini impurity

is a good cost function in Decision Tree.

For a data set S = (x1, y1), ..., (xn, yn), xn ∈ Rd+1 and yi ∈ 1, ..., c where

c is the number of classes, the probability of picking up a certain label k can be

denoted as Pk =
|SK |
s
, where SK ∈ S,Sk = (x, y) : y = k and S = S1 ∪ ...∪S2
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Figure 6.3: a framework of decision tree

Gini inpurity of a leaf, G(S) is defined as:

G(S) =
c∑

k=1

pk(1− pk) (6.14)

when one leave is pure i.e. pk = 1, the corresponding Gini impurity is 0. If

a tree has two leaves, the maximum impurity corresponding to one leaf can

therefore be 0.5.

An alternative to Gini impurity is cross-entropy, which for a leaf, can be

defined as:

D = −
c∑

k=1

pklogpk (6.15)

If pk is 0 either 1, D will be 0. That is, entropy will be minimum if the leaf

includes only one class.

6.3.3 Gradient Boosting Decision Trees

In gradient boosting decision trees, we combine many weak learners to come

up with one strong learner. The weak learners here are the individual decision

trees. For a data set D = (xi, yi), use K additive weak learners to combine a
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strong learner:

ŷi = ϕ(xi) =
K∑
k=1

fk(xi), fk ∈ F (6.16)

where F = f(x) = ω(q(x))(q : Rm → T, ω ∈ RT ) Here q represents the

structure of each tree that maps an example to the corresponding leaf index.

T is the number of leaves in the tree. Each fk corresponds to an independent

tree structure q and leaf weights ω.

To learn the set of functions used in the model, we minimize the following

loss objective function.

L(ϕ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk) (6.17)

where

Ω(f) = γT +
1

2
λ||ω||2 (6.18)

Here l is a differentiable convex loss function that measures the difference

between the prediction ŷi and the target yi. The second term Ω penalizes the

complexity of the model,The additional regularization term helps to smooth

the final learnt weights to avoid over-fitting.

The tree ensemble model in Eq 6.17 includes functions as parameters and

cannot be optimized using traditional optimization methods. Instead, the

model is trained in an additive manner. Formally, let y(t)i be the prediction

of the i-th instance at the t-th iteration, ft needs to be added to minimize

the following loss objective function.

L(t) =
m∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) +

∑
k

Ω(fk) (6.19)

According to Taylor Series Expansion, Eq 6.19 can be write,

L(t) ≈ [
m∑
i=1

l(yi, ŷi
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] +

∑
k

Ω(fk) (6.20)
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where gi = ∂ŷ(t−1)l and hi = ∂2
ŷ(t−1)l are first and second order gradient

statistics on the loss function. Then by removing the constant terms (constant

terms do not effect gradient of objective function) and expand Ω as Eq 6.18,

define Ij = i|q(xi) = j.

L̃(t) ≈
T∑

j=1

[(
∑
i∈Ij

gi)ωj +
1

2
(
∑
i∈Ij)

hi + λ)ω2
j ] + γT (6.21)

Define Gj =
∑

i∈Ij gi and Hj =
∑

i∈Ij hi,

L̃(t) =
T∑

j=1

[Giωi +
1

2
(Hi + λ)ω2

j ] + γT (6.22)

For a fixed structure q(x), we can compute the optimal weight w∗
j of leaf j

by

w∗
j = − Gj

Hj + λ
(6.23)

And calculate the corresponding optimal value by

L̃(t)(q) = −1

2

T∑
j=1

G2
j

Hj + λ
+ γT (6.24)

Eq 6.24 can be used as a scoring function to measure the quality of a tree

structure q. This score is like the impurity score for evaluating decision trees,

except that it is derived for a wider range of objective functions.

Normally it is impossible to enumerate all the possible tree structures q. A

greedy algorithm that starts from a single leaf and iteratively adds branches

to the tree is used instead. Assume that IL and IR are the instance sets of

left and right nodes after a split. Letting I = IL∪ IR, then the loss reduction

after the split is given by

Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
+

(GL +GR)
2

HL +HR + λ
]− γ (6.25)
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To the sum, the process of GDBT are:

1.The algorithm produce new single decision tree each iteration.

2.Before starting iteration, calculate first and second order gradient statistics

of loss function at every sample of training data.

3.The new decision tree produced by greedy algorithm, compute predictive

values at every leaf by Eq 6.23.

4.Add the new decision tree into model.

5.Finish all of iteration, the model is strong learner what we need.

6.4 Application

6.4.1 Preprocessing

The data set display at table 5.1 which are 200*200 matrix that extracted

from result of simulation.The total number of data set are around 50000. But

before fed the data set into Machine learning model, the preprocess of data

is important to reduce the compute complexity and risk of overfit, besides it

can increase the accuracy of model.

dimension reduction

As we said at section 5.4, the dimension of single data are too large to training,

so we do dimension reduction by means of PCA technique.

label

As supervised learning, label of data is a important component to measure

the accuracy of model. The label of our data set are beam size that are σx

and σy.

Standardization

As described at section 5.4, it transform values of data such that the mean

of the values is 0 and the standard deviation is 1. In this approach, we
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are constraining our data attribute to a particular container to develop a

correlation among different data points. And what’s interesting is that not

all of model need standardization, for example, GBDT (said in section 6.3.3)

can not do data standardization.

train-test split

Splitting 80% of data set as train data, and 20% as test data. Because even

if the model perform well at train data due to overfit, other normal data

performance would be shown at test data.

6.4.2 Training and Test

Neural Network

Building a classification model of full connection neural network, In table

Layer Number of nodes
Input Layer 5000

Hidden Layer1 1024
Hidden Layer2 256
Hidden Layer3 64
Output Layer 49

Table 6.1: summary of full connection neural network

6.1, the number of nodes at input layer come from the variables of data after

PCA reduction, and the Output Layer are classes number of different pair of

σx and σy.

The activate function is ReLU :

f(x) = max(0, x) (6.26)

The output layer activate function is softmax(described at Eq 6.5 )

The loss function is Cross Entropy

Loss = − 1

N

∑
i

M∑
c=1

yiclog(pic) (6.27)
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Figure 6.4: error of training data

where M is number of classes, yic = 1 if sample i belong to class c, or else

yic = 0. pic is probability of sample i belong to class c namely the values from

output layer.

Learning rate is 0.01 which means the speed of weight update. Method

of training is SGD (stochastic gradient descent), that is stochastic training

a part of data in every iteration. And one epoch means training the model

by means of all the training data for one iteration. The number of epoch set

as 50 that is 50 iteration. The result of training show at figure 6.4 and 6.5:

Ensemble Learning

The model used in this research called XGBoost which based on GBDT algo-

rithm. Basic learner is decision tree which loss function also is Cross Entropy
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Figure 6.5: accuracy of test data

write at Eq 6.27. The parameter of XGBoost model set as following:

model = XGBClassifier(max_depth = 15,

learning_rate = 0.1,

n_estimators = 2000,

objective =′ multi : softprob′,

eval_metric =′ auc′,

reg_alpha = 0,

reg_lambda = 0.4)

Where max_depth denote the maximum depth of single decision tree, learn-

ing_rate is speed of iteration such as in Neural Network,n_estimators denote

the number of weak learner(decision tree), objective function is softprob that

output a matrix of n_data ∗ n_class which values are probability between

each data and each class, eval_metric is the Evaluation Metric for model,

reg_alpha and reg_lambda is L1regularization term and L2regularization
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term. The accuracy define as :

acc =
number of correctly classified sample

total number of sample

After training, the accuracy of test data is:

acc = 22.79%

6.4.3 Resample

Performance of model are not good enough to our expect.Apart from modi-

fying the model, we also can tune the data set.

In statistics and machine learning, the bias–variance tradeoff which shown

in Fig 6.6 is the property of a model that the variance of the parameter esti-

mated across samples can be reduced by increasing the bias in the estimated

parameters.

Figure 6.6: bias vs variance[24]
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Bias

Bias is the difference between the average prediction of our model and the

correct value which we are trying to predict. Model with high bias pays very

little attention to the training data and oversimplifies the model. It always

leads to high error on training and test data.

Varience

Variance is the variability of model prediction for a given data point or a

value which tells us spread of our data. Model with high variance pays a lot

of attention to training data and does not generalize on the data which it

hasn’t seen before. As a result, such models perform very well on training

data but has high error rates on test data.

From Fig 5.14,5.15,5.5, we get result, that is the center of cluster are

isolate, but there are many overlap area among different clusters. It’s the

expression of high bias.So if we can deal with the high statistical fluctuations

of data, the accuracy of prediction will dramatic rise.

What I want are data superposition of the number of bunch for eliminat-

ing the effect of fluctuations.It easy to do matrix addition for data set which

means recording hit information after the number of bunch.

The conduct at data set is randomly chose 20 samples at each label of

beam size and do matrix addition as a new sample, then repeat it 200 times

that means we have a new data set with 200 samples.

6.4.4 Conclusion

After T-SNE dimension reduction and Visulization, the result show in Fig

6.7,6.8 . It’s obvious that the distinguishability at high dimensional space of

new data set is better than origonal data set.

There are three series of charts which are original data after PCA, re-

sample data without PCA and resample data after PCA respectively show
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Figure 6.7: the new data of different pair of σx and σy distribution at high-
dimension

Figure 6.8: the new data of different pair of σx and σy distribution at high-
dimension after PCA
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in Fig 6.9,6.10,6.11 . From those charts we can learn that PCA could en-

hance the stability of model because it remove trifling dimensionality from

input data, and resample could improve the accuracy of model as a result

of decreasing statistical fluctuations of original data. By means of those

two skills of data analysis, we could get a high precision and high stabil-

ity model which could perfectly figure out the beam size of target sample in

specify range σx(0.8,0.9,1.0,1.1,1.2,1.3 and 1.4 times σx nominal values) and

σy(0.8,0.9,1.0,1.1,1.2,1.3 and 1.4 times σy nominal values). But how about

the other sample out of the specify range ? A potential solution will be dis-

cussed at next chapter. Besides, the accuracy of ensemble learning model for

resample data are also close to 100%. The difference between Neural Network

and Ensemble Learning is that the latter are not required PCA reduction.

So when dimensionality of data are large and all of them are too important

to drop out by dimension reduction, Ensemble Learning will be a suitable

model for high dimension data.
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Figure 6.9: training loss and testing accuracy of original data after PCA
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Figure 6.10: training loss and testing accuracy of resample data without PCA

62



Figure 6.11: training loss and testing accuracy of resample data after PCA
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Chapter 7

Discussion

In an earlier research, input data always be defined as image and applied

in model designed for image recognition like Convolutional Neural Network.

Compare with image, the matrix which elements relate to hit number could

stands for the feature and quality of data directly. For example, as Fig 7.1,

there are 4 lion pictures with different color, in computer language, that are

4 different matrix. But either human’s eye or image recognition model, those

4 pictures always be regard as the same object. Because machine learning

model always pay attention to compute and search the correlation between

different pixel in the image not the values of pixel i.e. elements of matrix.

However in this research, the number of hit particles are main feature for

precisely defining data with definite beam size, it is a reason for transferring

data from image to matrix.The next step is that choose appropriate model

which is sensitive to numerical value, meanwhile utilizing dimension reduction

for reducing compute complexity and improve model’s accuracy. Besides, due

to high statistical fluctuations i.e. high bias, the accuracy of neural network

model and ensemble learning model are 50% and 40% respectively.

The method of solving high bias are resample that combine 20 bunches

data to form a new sample, it is effective to deal with high bias which is

obvious in T-SNE visualization at Fig 6.8. Applied new data set in the same

model, the result of predict accuracy is 100% and 100%. It is seen that either
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Figure 7.1: The same object with different color

neural network or ensemble learning are able to distinguish those 49 sets of

data exactly which is also goal of this research.

For reducing error in measurement of beam size, instead of attempting

different algorithm models in earlier research, we try to focus on preprocessor

of data that is introduction of EDA, PCA and T-SNE method. It is good for

magnifying useful information of data so that improve performance of input

data in model which is obvious at conclusion of section 6.4. In other words,

preprocessor work well for pair monitor analysis.

As described at section 6.1, there are many difference between classifica-

tion problem and regression problem. When Machine learning applied in ILC

project, regression model is a more reliable choice than classification model.

In classification model, it could give answer which class the target sample

belong to, more classes more precise. But if once the target sample not be-

long to any classes in model or out of range of classes, the result would be

worse than expectation, so classification model are appropriate for data that

located in defined range.It is limitations in classification model. As for re-

gression model, its output are not possibility of class but values of beam size.

So the regression model are more effective and useful at realistic experience.

Although the accuracy of regression mode is not good as classification model

inside the defined range, its performance at other range in high quality, in the

other word, regression model are more universally than classification model.

However, there are complicated points in training of regression model. For

regression model, the data set with continues values of label i.e. parameter

of beam size are necessary. But it is conflict with defining the parameter
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before simulation of data set. So how to convert classification problem into

regression problem that make it more universally at reality experiment is

important.

Besides, in our research, the factor which influence the luminosity in ILC

are not only the σx and σy of beam size, but also other parameter of beam.

Like the vertical distance the cross angle between two interaction beams. And

other parameter also could be measured by Pair Monitor simultaneously.

If we want to discover those information from Pair Monitor by Machine

Learning, the a larger number of data that corresponding to different value

of parameters are required. Actually, the biggest challenges at the moment

are how to effectively simulate events under the different parameters, it also

our goal in future research.
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