AXEL Experiment: Construction of a 1000L-size detector (2)

Shinichi Akiyama, Tohoku University for the AXEL Collaboration

2 Nov 2022, Exploration of Particle Physics and Cosmology with Neutrino, Kyoto

- Readout system
 - FPC cable
 - Frontend board
- Cockcroft- Walton multiplier
 - Step dependency of output voltage
 - Estimate of output voltage for 1000L detector
 - CW operation check in 180L detector
- Background rejection with topology using deep learning
- Photo isolation
- DLC ELCC
- Summary

Readout system (FPC cable)

- ELCC and Frontend Board are redesigned from 56ch/unit → 64ch/unit for space saving of readout device

 \cdot Thinner and wider strips make the FPC easier to be produced.

New structure needed, with the same impedance.

Strip width increases: 100 um (old one) \rightarrow 200 um (new one) Strip interval decreases: 400 um (old one) \rightarrow 300 um (new one) \Rightarrow Distance between pair strips increases for impedance matching. (65 \rightarrow 90 um)

· Crosstalk between channels are measured with square wave (~0.1%)

Readout system (frontend board)

Redesigning FEB for 64ch/board

Change to a connector for direct attachment of FPC cables

Cockcroft-Walton multiplier

- We need high voltage
 - Drift electric field 100V/cm/bar
 - EL process 3kV/cm/bar
 - \rightarrow 76.4kV for 1000L detector (with 80.5cm drift region)
- Make high voltage inside the chamber instead of using high voltage feedthrough to avoid surface discharge
- Cockcroft-Walton (CW) multiplier implemented on polyimide based FPC Can be connected to other FPC
- · Resistor chain for equally divided potential

Step dependency of output voltage

- Ideal output of CW multiplier is 2NU (N: number of steps, U: amplitude of input voltage) but smaller values are observed in practice
 - Stray capacity of diode
 - Charge carry away by current on resistor
 - Reverse current on diode
- Measurement on 30 ${\sim}50$ steps, 800Vpp,1200Vpp input voltage for understanding efficiency

Estimation of output voltage for 1000L detector

- Estimated output volage at 80 steps (for 1000L) based on measurement results at 30 to 50 steps
- 62.3kV at 1200Vpp, 10kHz input voltage → we need to increase input voltage while avoiding discharge to obtain - 76.4kV
- Countermeasure for electrical discharge
 - Using cap nut to avoid exposing screw threads
 - Redesigning the FPC (expand the interval of soldering pad, holes between pad to avoid surface discharge)

CW operation check in 180L detector

- CW installed in place of Cathode DC power supply in 180L detector
- Current on anode DC power supply is used to measure the output of CW multiplier

CW operation check in 180L detector

 Measured output voltage exceeds the ideal output in some input voltage, due to the miscaliblation or big systematic error (not yet evaluated).

- Need to detect discharge for interlocking the input voltage
 - Detect light of discharge by usb camera (motion detection)
 - Monitor anode DC power supply, HV amp for CW input by data logger

Background rejection with topology using deep learning

- Classify 0vββ and BG using deep learning (3D-CNN, Densenet)
- Using simulated 0vββ and gamma-ray (²¹⁴Bi 2,448 keV) event topologies
- Achieved signal acceptance 27%, BG rejection: 99.9996% @ threshold 0.9008

10

Photo isolation

- Operate PMTs at high electric potential
 - To put PMTs close to the cathode mesh
 - Drive LED with amplified PMT signal and readout with MPPC

DLC ELCC

- Using diamond like carbon (DLC) to prevent electrical discharge on the edges of the anode
- Voltage drop in the DLC section when discharge occurs
- To confirm the DLC anode, we are now ordering Kaptonbase FPC without coverlay

Summary

- Readout system upgrade for high integration of readout devices
 - New 64ch one-body FPC cable
 - Thinner and wider strips with same inpedance
 - Crosstalk between the channels are ~0.1%
 - Frontend board for 64ch/board is redesigning
 - Change connectors, OpAMP, FPGA
 - Gain adjustment
 - Add negative voltage input
- Cockcroft- Walton multiplier
 - Estimated output voltage for 1000L detector is -62.3kV → Need to increase input voltage, countermeasure for electrical discharge
 - CW operation check in 180L detector
 - Need to detect discharge for interlocking the input voltage by motion detection, data logger etc
- Background rejection with topology using deep learning
 - Achieved signal acceptance 27%, BG rejection: 99.9996% @ threshold 0.9008 using simulated 0vββ and gamma-ray (214Bi 2,448 keV) event topologies
- Photo isolation to put PMTs close to the cathode mesh
- DLC ELCC
 - Prevent electrical discharge on the edges of the anode by voltage drop in the DLC section.