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Abstract

It is known that neutrinos have masses, but the reason for their extremely small masses compared to
other charged leptons and quarks is unknown. The Majorana nature of neutrinos is considered to be an
important key to understand the reason of the smallness of neutrino masses, and also to understand the
origin of the matter – antimatter asymmetry of the universe. Experimentally, the only feasible way to
confirm the Majorana nature of neutrinos is the observation of neutrinoless double beta (0νββ) decay.

A Xenon ElectroLuminescence detector (AXEL) is a high-pressure xenon gas time projection chamber
(TPC) with the aim of observing the 0νββ decay of 136Xe. The AXEL detector employs a cell-based
readout structure called electroluminescence light collection cell (ELCC) to detect electroluminescence
signals, enabling both good energy resolution and three-dimensional track reconstruction capability. The
electron track in the TPC forms a “blob” at its endpoint due to increased energy deposition. As a
result, 0νββ events, in which two electrons are emitted, are expected to exhibit two blobs, whereas
single-electron tracks originating from gamma rays or beta decays would show only one blob. A 180L

prototype detector is currently being developed, focusing on the development of elemental technologies,
verification of scaling-up techniques, and evaluation of energy resolution and track reconstruction near
the Q value of 0νββ.

An important technological element in the TPC is the generation of high voltage to form the drift
electric field. A Cockcroft-Walton (CW) multiplier can be used for this purpose, as it converts a low
voltage AC input to a high voltage DC output. The CW multiplier to supply high voltage to the
AXEL detector was developed and installed at the 180L prototype detector. The CW multiplier was
implemented on a flexible printed circuit (FPC) board and coated with methyl silicone resin as a discharge
countermeasure. Measurements with the 180L prototype detector confirmed that the electrical pickup
from the AC input of the CW multiplier to the signal line is sufficiently small, and stable operation of
40 days has been achieved. Data of the 2615 keV gamma rays from 208Tl using thorium-doped tungsten
rods as the source confirmed an energy resolution of (0.672±0.083)% FWHM. An interpolation based on
the 2615 keV gamma rays from 208Tl and other gamma ray peaks yielded an estimated energy resolution
of (0.678 ± 0.010)% at the Q value of 0νββ, which is close to the design goal of 0.5%. A tracks of the
2615 keV gamma-ray photoabsorption events (an electron track) and double escape events (an electron
and a positron track) are reconstructed, confirming that they each have one and two blob structures,
respectively.

In the search for 0νββ decay, the suppression of background events is of critical importance. To elimi-
nate background events using track information, a discrimination model for 0νββ and background using
machine learning was developed. The model is based on DenseNet and was trained using simulation data
generated by Geant4. The model achieved a classification accuracy of 91.7% on the validation dataset.
However, when inputting the real 2615 keV gamma-ray data obtained by measurement, differences were
observed in the shape of the signal likelihood distribution of gamma-ray backgrounds. This is likely due
to the differences between the simulation data used for training the model and the real data. Several sum-
mary quantities of the simulation data and the real data were compared, and the cause of the observed
differences in the signal likelihood distribution was investigated.

Using the performance of the model on the validation data, the sensitivity of a future 1-ton detector
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is estimated. Three types of background sources were considered: 214Bi, 208Tl, and 137Xe. 214Bi and
208Tl exist in materials and emit gamma rays with energies near the Q-value of xenon 0νββ decay, that
is, 2458 keV. 137Xe is produced via neutron capture on 136Xe, induced by cosmic-ray neutrons, and
undergoes beta decay with a Q-value of 4.16MeV. We estimated an expected sensitivities for an 1 ton
detector. Assuming a future improvement in energy resolution to 0.320% FWHM and a pressure vessel
made of radiopure oxygen-free copper, a lower limit on the 0νββ decay half-life of 1.12 × 1027 years at
90% confidence level is expected for a 10-year measurement, which is 2.9 times better than the current
world record.
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Chapter 1

Introduction

1.1 Neutrino
The neutrino is a neutral lepton introduced by W.Pauli to explain the continuous spectrum of electron
energy associated with beta decays. Since neutrinos interact very little with matter, it was not until
the 1950s that (anti-)electron neutrinos were actually detected through an experiment using a nuclear
reactor by Reines and Cowan[1]. Subsequently, an experiment using an accelerator lead by L.Lederman,
M.Schwartz, and J.Steinberger observed muon neutrinos, demonstrating that neutrinos have flavors[2].
In 1975, Perl discovered the tau lepton[3], and its counterpart, the tau neutrino, was later detected
through the DONUT experiment[4]. To date, no new generation of neutrinos have been discovered, and
measurements of the Z boson decay width indicate that there are exactly three generations of active
neutrinos with masses less than half that of the Z boson[5].

In the Standard Model, neutrinos are considered to be massless. However, the observation of atmo-
spheric[6] and solar[7][8] neutrinos have revealed that neutrinos have mass and undergo neutrino oscil-
lations, changing flavors over time. Neutrino oscillation occurs when the mass eigenstates of neutrinos
|νi〉 (i = 1, 2, 3) differ from their flavor eigenstates |νl〉 (l = e, µ, τ). The relationship between these
eigenstates is expressed by the following mixing matrix Uli.

|νl〉 =
∑
i

Uli |νi〉 (1.1)

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


(1.2)

Here, sij = sin θij , cij = cos θij , θij are mixing angles, and δ is a CP violating phase. The matrix is called
Pontecorvo –Maki –Nakagawa – Sakata (PMNS) matrix. Then, the probability of flavor oscillation from
να to νβ is given by the following equation.

Pνα→νβ
(t) ' δαβ − 4

∑
i>j

Re(Λαβ
ij ) sin2

[
∆m2

ijL

4E

]
+ 2

∑
i>j

Im(Λαβ
ij ) sin

[
∆m2

ijL

2E

]
(1.3)

Λαβ
ij = UαiU

∗
βiU

∗
αjUβj (1.4)

Here, δij is the Kronecker delta, ∆m2
ij = m2

i − m2
j is the mass-squared difference between the mass
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eigenstates, |νi〉 and |νj〉. As can be seen from Eq. 1.3, neutrino oscillation do not depends on the absolute
values of the neutrino masses, but on the mass-squared differences. Table 1.1 shows the current best-fit
values of the oscillation parameters. Various measurements have been conducted and the order of the

Table 1.1 Current best-fit values of the oscillation parameters. NO denotes normal ordering and IO
denotes inverted ordering. Each parameter is presented with its best-fit value and the corresponding
one sigma range. ∆m2

3l = ∆m2
31 for NO and ∆m2

3l = ∆m2
32 for IO. These values are taken from

[9][10].

Parameter NO IO

sin2 θ12 0.308+0.012
−0.011 0.308+0.012

−0.011

θ12 33.68°+0.73°
−0.70° 33.68°+0.73°

−0.70°

sin2 θ23 0.470+0.017
−0.013 0.562+0.012

−0.015

θ23 43.3°+1.0°
−0.8° 48.6°+0.7°

−0.9°

sin2 θ13 0.02215+0.00056
−0.00058 0.02224+0.00056

−0.00057

θ13 8.56°+0.11°
−0.11° 8.58°+0.11°

−0.11°

∆m2
21 7.49+0.19

−0.19 × 10−5 eV2 7.49+0.19
−0.19 × 10−5 eV2

∆m2
3l +2.513+0.021

−0.019 × 10−3 eV2 −2.510+0.024
−0.025 × 10−3 eV2

δ 212°+26°
−41° 285°+25°

−28°

mass eigenvalues is not yet experimentally determined and there are two possibilities: m1 < m2 � m3

and m3 � m1 < m2. The former is called the normal ordering, and the latter is called the inverted
ordering. The corresponding neutrino mixing matrices are given in Eq. 1.5 and 1.6.

U (NO) =

 0.82 0.55 −0.13 + 0.079i

−0.33 + 0.045i 0.65 + 0.030i 0.68

0.46 + 0.048i −0.52 + 0.032i 0.72

 (1.5)

U (IO) =

 0.82 0.55 0.039 + 0.14i

−0.39 + 0.090i 0.53 + 0.060i 0.74

0.39 + 0.079i −0.64 + 0.053i 0.65

 (1.6)

Regarding the direct measurement of the absolute value of the neutrino mass, the KATRIN experiment
measures tritium beta decay and provides the constraints

mνe
< 0.45 eV (1.7)

at 90% confidence level (C.L.)[11]. Since νe itself is not a mass eigenstate, the mass measured here is the
weighted average of the mass eigenstates. From Eq. 1.1, νe is expressed as a linear combination of the
mass eigenstates νi, with coefficients Uei. The probability that νe corresponds to each mass eigenstate is
given by |Uei|2. Therefore, the expected value of the mass is weighted by |Uei|2.

|mνe |2 =
∑
i

|Uei|2m2
i (1.8)

Measurements of the cosmic microwave background provide constraints on the sum of mass eigenstate
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values; observations from the Planck satellite have put the following constraints

∑
i

mi < 0.26 eV (1.9)

at 95% confidence level[12].
These measurements have revealed that neutrinos have mass, but it is more than six orders of magnitude

lighter than that of charged leptons or quarks. The underlying reason for this is unknown.

1.2 Majorana mass and See-Saw mechanism
This section summarizes the mechanisms that give mass to neutrinos. The discussion in this section is
based on references [13] and [14].

The equation governing the fermion field was derived by Dirac[15]. The Dirac equation for a free
fermion field ψ with mass mD is presented in Eq. 1.10.

iγµ∂µψ −mDψ = 0 (1.10)

γµ denotes the gamma matrices, which, in the Dirac representation, are given as follows.

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
0 1

1 0

)
(1.11)

σi (i = 1, 2, 3) denotes the Pauli matrix (Eq. 1.12), 1 represents the 2× 2 identity matrix, and 0 denotes
the 2× 2 zero matrix.

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
(1.12)

ψ is a four-component spinor. In this representation of the gamma matrices, ψ is expressed as a pair of
two-component spinors u, v corresponding to positive and negative energy states.

ψ =

(
u

v

)
(1.13)

The Lagrangian corresponding to the Dirac equation is given in Eq. 1.14, where the bilinear term
mDψ̄ψ is referred to as the mass term.

L = iψ̄γµ∂µψ −mDψ̄ψ (1.14)

Let’s decompose the fermion field into chirality eigenstates ψ = ψR + ψL.

ψR ≡ γRψ =
1

2
(1 + γ5)ψ =

1

2

(
u+ v

u+ v

)
≡ u+ v√

2
|ψR〉

ψL ≡ γLψ =
1

2
(1− γ5)ψ =

1

2

(
u− v
−(u− v)

)
≡ u− v√

2
|ψL〉

(1.15)

The adjoint spinor ψ̄ = ψ†γ0 is expressed as follows.

ψR = γRψ = (γRψ)
†γ0 = ψ†γ†

Rγ
0 = ψ†γ0γL = ψ̄γL

ψL = γLψ = (γLψ)
†γ0 = ψ†γ†

Lγ
0 = ψ†γ0γR = ψ̄γR

(1.16)
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| ⟩𝜓𝜓𝐿𝐿 | ⟩𝜓𝜓𝑅𝑅

𝑚𝑚𝐷𝐷

Fig. 1.1 Transition between left-handed particle and right-handed particle. The Dirac mass mD

arises from this type of transition.

Here, we used the relation γ†
R,L = γR,L and the anticommutation relations of the gamma matrices

{γ5, γµ} = 0. Thus, the Lagrangian in Eq. 1.14 is expressed as follows.

L = i(ψR + ψL)γ
µ∂µ(ψR + ψL)−mD(ψR + ψL)(ψR + ψL)

= i(ψRγ
µ∂µψR + ψLγ

µ∂µψL)−mD(ψRψL + ψLψR)
(1.17)

The orthogonality of the chiral projection matrices γRγL = γLγR = 0 was used in this step. From the
above Lagrangian, we obtain the chirality-based Dirac equation.{

iγµ∂µψR −mDψL = 0

iγµ∂µψL −mDψR = 0
(1.18)

Similarly, by applying the particle-antiparticle transformation ψc ≡ iγ2ψ
∗, the Lagrangian and Dirac

equation for the antiparticle can be expressed as follows.

L = i(ψc
Lγ

µ∂µψ
c
L + ψc

Rγ
µ∂µψ

c
R)−mD(ψc

Lψ
c
R + ψc

Rψ
c
L) (1.19){

iγµ∂µψ
c
L −mDψ

c
R = 0

iγµ∂µψ
c
R −mDψ

c
L = 0

(1.20)

We note that (ψL)
c = iγ2(γLψ)

∗ = γR(iγ2ψ
∗) = (ψc)R , (ψR)

c = (ψc)L and we assume ψc
L means (ψc)L.

For simplicity, assuming the fermion is at rest, that is, ∂iψ = 0 (i = 1, 2, 3), the Dirac equation in
Eq. 1.18 becomes as follows. {

ψ̇R = −imDγ0ψL

ψ̇L = −imDγ0ψR

(1.21)

This means that the amplitude of the left-handed (right-handed) component changes in proportion to the
amplitude of the right-handed (left-handed) component, with an intensity of mD. This corresponds to
the transition shown in Fig. 1.1, and the mass arising from such a transition is called the “Dirac mass”.

Let’s consider the following term.

L = −ML

2
(ψc

RψL + ψLψ
c
R)−

MR

2
(ψc

LψR + ψRψ
c
L) (1.22)

By adding these terms to the Lagrangian of Eq. 1.17 and Eq. 1.19, the Dirac equation is modified as
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| ⟩𝜓𝜓𝐿𝐿 | ⟩𝜓𝜓𝑅𝑅𝑐𝑐

⁄𝑀𝑀𝐿𝐿 2

| ⟩𝜓𝜓𝑅𝑅 | ⟩𝜓𝜓𝐿𝐿𝑐𝑐

⁄𝑀𝑀𝑅𝑅 2

Fig. 1.2 Transition associated with Majorana mass.

follows: 

ψ̇R = −imDγ0ψL − i
MR

2
γ0ψ

c
L

ψ̇L = −imDγ0ψR − i
ML

2
γ0ψ

c
R

ψ̇c
L = −imDγ0ψ

c
R − i

MR

2
γ0ψR

ψ̇c
R = −imDγ0ψ

c
L − i

ML

2
γ0ψL

(1.23)

Here, too, the fermions are assumed to be at rest. This term induces additional transitions between
particles and antiparticles as shown in Fig. 1.2. Such transitions are forbidden for charged leptons by
charge conservation, but they can occur for neutrinos since neutrinos do not carry charge. The mass
arising from these transitions is called the “Majorana mass”. In this case, the mass term of neutrino field
ν in the Lagrangian can be expressed using the neutrino mass matrix M as follows:

Lmass = −
1

2

(
νcR νR

)
M

(
νL

νcL

)
+ h.c. (1.24)

M =

(
ML mD

mD MR

)
(1.25)

By diagonalizing this mass matrix with a unitary matrix U , two mass eigenvalues, mν and mN, are
obtained,

UTMU =

(
mν 0

0 mN

)
(1.26)

mN,ν =
1

2

(
ML +MR ±

√
(ML −MR)2 + 4m2

D

)
(1.27)

Since the mass eigenvalue mν becomes negative when m2
D > MLMR, a orthogonal matrix O and a

diagonal phase matrix ρ are introduced, leading to the following expression.

O =

(
cos θ sin θ

− sin θ cos θ

)
, ρ =

(
ρν 0

0 ρN

)
(1.28)

UTMU = ρTOTMOρ =

(
ρ2νmν 0

0 ρ2NmN

)
(1.29)

tan 2θ =
2mD

MR −ML
(1.30)

Here, ρ2N is always equal to 1, while ρ2ν is taken to be 1 when mν is positive, and −1 when mν is negative.
In this way, the mass eigenvalues mν and mN can always be made positive. The mass eigenstates
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nkL (k = ν,N) satisfy the following relation:(
νL

νcL

)
= Oρ

(
nνL

nNL

)
(1.31)

The diagonalized mass term is expressed as follows.

Lmass = −
1

2

∑
k=ν,N

mknckRnkL + h.c. (1.32)

This mass term is a purely Majorana mass term, and it indicates that nk = nkL + (nkL)
c is a Majorana

particle.
The See-Saw mechanism[16][17][18] provides an explanation for the smallness of neutrino masses by

taking into account both Dirac and Majorana mass terms. In the seesaw mechanism, it is assumed that
ML = 0 and mD � MR. In the Standard Model, a Majorana mass term for left-handed neutrinos is
forbidden because the Higgs triplet required to construct a Lorentz-invariant term does not exist. While
there is no guide to choose the right-handed Majorana mass MR, assuming mD � MR leads to the
following result.

mν '
m2

D

MR
� mD , mN 'MR , tan θ ' mD

MR
� 1 , ρ2ν = −1 (1.33)

Even if the Dirac mass of the neutrino is comparable to that of quarks or charged leptons, the presence
of a large right-handed Majorana mass MR can result in a very small neutrino mass mν . Assuming the
Dirac mass of the neutrino is on the order of 100GeV, comparable to that of charged leptons and quarks,
and the observed neutrino mass mν is approximately 0.1 eV, the mass of the right-handed neutrino
mN corresponds to about 1014 GeV. Since the mixing angle θ is small, the mass eigenstates can be
approximated as nνL ∼ νL and nNL ∼ νcL. This implies that the neutrino observed in weak interactions
effectively corresponds to the light Majorana neutrino nνL, whereas the non-interacting right-handed
neutrino corresponds to the heavy Majorana neutrino nNL.

1.3 Leptogenesis
Our world is composed of matter, and regions dominated by antimatter have not been observed in our
universe. It is believed that in the early universe, baryons and antibaryons were created in equal amounts
and some process led to a slight excess of baryons, resulting in the matter-dominated universe we observe
today. This baryogenesis process is said to require the following three Sakharov conditions:

(1) The existence of reactions that violate baryon number.
(2) The violation of both C and CP symmetries.
(3) Departure from thermal equilibrium.

In the Standard Model, the sphaleron process is a reaction that violates baryon number. In the sphaleron
process, the difference between baryon number B and lepton number L, B − L, is conserved. Regarding
(2), the relevant mechanism is described by the Kobayashi –Maskawa matrix[19]. This matrix describes
the mixing between quark flavors and their weak interaction eigenstates, and its complex phase leads
to the violation of CP symmetry. For (3), the electroweak phase transition could create the departure
from the thermal equilibrium. However, this electroweak baryogenesis model is ruled out because the
Kobayashi-Maskawa matrix does not provide sufficient asymmetry[20][21], and the large mass of the Higgs
particle prevents the electroweak phase transition from being a first-order phase transition[22].
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Fig. 1.3 0νββ decay through light Majorana neutrino exchange.

If neutrinos are Majorana particles, the decay of possible heavy Majorana neutrinos can generate a net
lepton number, violating CP symmetry, too. Leptogenesis is a scenario in which this net lepton number is
converted into a net baryon number through the sphaleron processes, resulting in the matter-dominated
universe[23].

1.4 Neutrinoless double beta decay
As mentioned above, it is important to confirm the Majorana nature of neutrinos, which is a prerequisite
for the See-Saw mechanism that explains the extremely light mass of neutrinos and for leptogenesis that
explains the matter-antimatter asymmetry of the universe. Neutrinoless double beta decay (0νββ) con-
stitutes the only practically feasible experimental method for probing the Majorana nature of neutrinos.

Neutrinoless double beta decay is a phenomenon in which two beta decays occur simultaneously in a
same nucleus and the nucleus emits only two electrons[24]. If neutrinos are Majorana particles, νcR → νL

transitions can occur, leading to 0νββ (Fig. 1.3). Such reaction is called the light Majorana neutrino
exchange reaction. The 0νββ reaction can occur through mechanisms other than those depicted in
Fig. 1.3. Regardless of the specific reaction pathway, the occurrence of 0νββ indicates that neutrinos
have a finite Majorana mass[25]. Because, in general, the presence of the 0νββ process (0 → ud̄ud̄ee)
allows for the νceR → νeL transition as shown in Fig. 1.4 through the combination of weak interactions,
which implies that neutrinos have a finite Majorana mass.

In the observation of 0νββ, two electrons produced by the decay would be detected. In 2νββ, which
occurs as a second-order effect in the Standard Model, neutrinos carry part of the nuclear decay energy
Qββ . Since neutrinos cannot be detected, the sum of the kinetic energies of the two electrons forms a
continuous spectrum with Qββ as the upper limit. In contrast, in 0νββ, the sum of the kinetic energies
of the two electrons produces a mono energy peak at Qββ in the spectrum (Fig. 1.5).

The half-life of 0νββ T 0ν
1/2 is given by the following equation.

1

T 0ν
1/2

= G0ν |M0ν |2 〈mββ〉2 (1.34)
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Fig. 1.4 The νc
eR → νeL transition occurring through any 0νββ process.

Fig. 1.5 Schematic spectrum of the sum of electron energies for 2νββ (dotted curve) and 0νββ
(solid curve). Figure from [26].

Here, G0ν is called the phase space factor and is determined by the decay energy Qββ and the atomic
number Z of the double beta decay nucleus. M0ν is the nuclear matrix element, which is estimated by
theoretical models and has uncertainties. 〈mββ〉 is called the 0νββ effective neutrino mass and is defined
as follows. If neutrinos are Majorana particles, the neutrino mixing matrix has two additional complex
phases, known as Majorana CP phases (α21, α31).

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


1 0 0

0 eiα21 0

0 0 eiα31


(1.35)

The effective neutrino mass is given by the following expression.

〈mββ〉 =
∣∣∣∣∑

i

U2
eimi

∣∣∣∣
= |c212c213m1 + s212c

2
13e

2iα21m2 + s213e
2i(α31−δ)m3|

(1.36)

From the neutrino mixing angles and mass squared differences obtained through neutrino oscillation
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Fig. 1.6 Allowed region of the 0νββ effective neutrino mass 〈mββ〉 as a function of the lightest
neutrino mass mlightest. The shaded regions are based on neutrino oscillation parameters for (a)
the normal mass ordering (NO) and (b) the inverted mass ordering (IO). The horizontal lines
indicate 90% C.L. upper limits on 〈mββ〉 with 136Xe from KamLAND-Zen for various nuclear
matrix element calculations. (c) The corresponding limits for 136Xe, 76Ge, and 130Te. (A)-(C) are
theoretical predictions in the IO region. This figure is taken from [27].

experiments, the possible range of 〈mββ〉 is determined, as shown in Fig. 1.6.
To date, 0νββ has not been observed, and only lower limits on its half-life have been provided. The

next section will discuss the key factors in improving the sensitivity of 0νββ search experiments.

1.5 The key factors in 0νββ search experiments
The essence of 0νββ search lies in securing a large number of decay nuclei and thoroughly reducing
background events.

Even if 0νββ decay occurs, it is extremely rare, with a half-life longer than 1026 years. To approach
the effective neutrino mass beyond the inverted mass ordering region and to reach the normal region,
ton-scale decay nuclei are required. Therefore, factors such as availability, the abundance ratio of the
target isotopes, and the ease of isotope enrichment need to be considered.

Background reduction significantly affects the sensitivity of the experiment. For an exposure Mt, where
M tons of double beta decay nuclei are monitored over t years, the sensitivity of the half-life T 0ν

1/2 without
background is proportional to the exposure,

T 0ν
1/2 ∝ (ln 2)ε

NA

A
Mt (1.37)

Here, ε is the signal detection efficiency, NA is the Avogadro constant and A is the atomic number of
target nuclei. However, in a presence of significant background, the sensitivity is proportional to the
square root of the exposure,

T 0ν
1/2 ∝ (ln 2)ε

NA

A

√
Mt

b∆E
(1.38)
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Here, b∆E is the number of background events occurring within the signal region of ∆E width per unit
time and unit mass. Therefore, it is necessary to minimize background contaminations. One major source
is environmental radioactivity that generates background events near the Qββ energy, for example, in
the case of 136Xe, such as 214Bi from the uranium series and 208Tl from the thorium series. Cosmic
rays could generate background events, so it is necessary to conduct experiments deep underground. If,
for example, β-rays tracks or signal waveform shapes are available, it may further reduce background
events beyond just energy selection. Even with these methods, the background that ultimately cannot
be eliminated is 2νββ. The high-energy tail of 2νββ cannot be distinguished from 0νββ by anything
other than energy differences. The amount of 2νββ contamination in the region −∆E from Qββ is
approximately proportional to (∆E/Qββ)

6[28]. Therefore, it is also important to improve the energy
resolution.

1.6 On-going 0νββ search experiments
Various 0νββ experiments are being conducted with various nuclides. The Q values, natural abundances,
and (lower limits of) half-lives of 2νββ and 0νββ for candidate nuclides are summarized in Tab. 1.2.

Table 1.2 Summary of the candidate isotopes used in 0νββ search experiments. Qββ values are
from [29]. Natural abundances are from [30]. Lower limits of T 0ν

1/2 are 90% C.L..

nuclei Qββ (keV) natural abundance T 2ν
1/2 (years) T 0ν

1/2 lower limit (years)
48Ca 4268 0.187%

(
6.4+0.7+1.2

−0.6−0.9

)
× 1019[31] 2.0× 1022[31]

76Ge 2039 7.73% (2.022± 0.018± 0.038)× 1021[32] 1.8× 1026[33]
82Se 2998 8.73% (9.39± 0.17± 0.58)× 1019[34] 2.5× 1023[34]
96Zr 3356 2.80% (2.35± 0.14± 0.16)× 1019[35] 9.2× 1021[35]

100Mo 3034 9.82% (6.90± 0.15± 0.37)× 1018[36] 1.5× 1024[37]
116Cd 2813 7.49% (2.74± 0.04± 0.18)× 1019[38] 1.0× 1023[38]
130Te 2528 34.08%

(
7.71+0.08+0.12

−0.06−0.15

)
× 1020[39] 3.2× 1025[40]

136Xe 2458 8.8573%
(
2.34+0.80+0.30

−0.46−0.17

)
× 1021[41] 3.8× 1026[27]

150Nd 3371 5.638% (9.34± 0.22+0.62
−0.60)× 1018[42] 2.0× 1022[42]

Currently, the KamLAND-Zen experiment has provided the most stringent lower limit on the half-
life of 136Xe 0νββ decay at 3.8 × 1026 years (90% C.L.)[27]. Figure 1.7 shows a schematic view of
the KamLAND-Zen experiment. They encapsulated 745 kg of 91% enriched xenon, dissolved in liquid
scintillator, inside a nylon inner balloon (IB) with a diameter of 3.8 meters. The IB is in an outer balloon
with a diameter of 13 meters, which is in a stainless steel spherical tank contains 1 kiloton of liquid
scintillator. The tank has a diameter of 18 meters and equipped with 1,325 17-inch photomultiplier tubes
(PMTs) and 554 20-inch PMTs to detect scintillation light produced by xenon 0νββ decay. The exterior
of the stainless steel tank functions as a water Cherenkov detector for shielding and cosmic-ray tagging.
It consists of 3200m3 of ultra-pure water and 140 20-inch PMTs. Since scintillation light is used as a
signal, the estimated energy resolution is relatively modest i.e. 6.7% /

√
E(MeV)[27] and the significant

background is the 2νββ of 136Xe, which limits the sensitivity of the experiment. In addition, spallation of
136Xe and 12C in the liquid scintillator by cosmic-ray muons, as well as the subsequent neutron captures
on 1H, 12C, and 136Xe, produce unstable nuclei. Among these, long-lived isotopes that are difficult to
eliminate through delayed coincidence techniques constitute a significant background.

Many of these issues can be effectively addressed by employing a xenon gas time projection chamber
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Fig. 1.7 Schematic view of the KamLAND-Zen experiment. This figure is taken from [43].

(TPC). The characteristics of the xenon gas TPC, a promising candidate for the search for 0νββ, are
described below.

136Xe is an element with many advantages for 0νββ search experiments. As shown in Tab. 1.2, it has a
relatively high natural abundance of 8.9%, and isotope separation technology is well-established, making
enrichment easier. It is chemically stable and easy to purify. Additionally, being a gas, it allows for easier
scalability to large detector masses compared to crystalline detectors such as germanium. Furthermore,
the half-life of 2νββ decay is longer compared to other nuclides, resulting in less contamination in 0νββ

signals. It can be a medium of a gas detector, for which the signal consists of ionization electrons
and ions generated by the passage of charged particles. The average energy W required to produce
one ionization electron in xenon gas is 22.1 eV[44], and the Fano factor is 0.13[45], resulting in a intrinsic
energy resolution of 0.26% (FWHM) at the energy of Qββ . This energy resolution is significantly superior
to that of liquid scintillators, allowing for a substantial reduction in the contamination of 2νββ.

TPC, proposed by D. R. Nygren[46], is a detector that enables three-dimensional track reconstruction
by detecting ionization electrons generated by the passage of charged particles. An electric field is applied
within the detector to drift the ionization electrons toward the readout plane. The energy of the charged
particle is measured from the amount of the ionization electrons detected at the readout plane. By
using the scintillation light produced by the charged particle as the event timing and measuring the time
when the ionization electrons are detected, the position along the drift direction can be determined. By
pixelating the readout plane, it is possible to reconstruct the three-dimensional track of the particle. Since
a drift electric field is applied in the TPC, long-lived nuclear ions produced by spallation are collected
to the cathode electrode. As a result, beta rays emitted from these ions can be effectively removed by
applying a fiducial volume cut. Neutral 137Xe, produced via neutron absorption, has a half-life of 3.8
minutes and a beta decay Q-value of 4.16MeV. It is an unavoidable background source even in xenon
gas TPCs, but its activation can be suppressed by mixing 0.1% of 3He with the xenon[47]. In addition,
three-dimensional track information can be utilized to identify reaction particles. Alpha and electron
tracks can be distinguished based on their different ranges. Additionally, beta rays undergo multiple
scattering and have a high energy loss only at low energies, resulting in a characteristic “blob” at the end
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Fig. 1.8 Schematic diagram[50] (left) and cross-sectional view[51] (right) of the NEXT-White detector.

of the track. This allows for obtaining information on the number and direction of the electron tracks.
This information can be used to eliminate background in 0νββ search experiments.

From the above perspectives, the xenon gas TPC can be considered to be one of the ideal detectors for
0νββ searches. In the following, experiments using the xenon gas TPCs for 0νββ searches are described.

1.6.1 NEXT

The concept of using a xenon gas TPC for 0νββ search was proposed by D.R Nygren[48] and the NEXT
experiment[49] achieves high energy resolution and particle tracking performance with a xenon gas TPC
by using a process called “electroluminescence (EL)”. The EL process refers to the excitation of gas atoms
by electrons accelerated in a high electric field, followed by the emission of photons as the de-excitation
of gas atoms. This process is different from the avalanche process in that it is a linear signal amplification
process induced directly by the initial electrons, hence it has smaller fluctuations in the amplification.

They have completed measurements with a prototype detector NEXT-White, which uses about 5 kg

of xenon. Figure 1.8 shows a schematic diagram and a cross-sectional view of the NEXT-white detector.
When charged particles pass through, primary scintillation (S1) is emitted, and subsequently, ionization
electrons are collected on the anode side and amplified in the EL region (S2). They have two detection
planes: an energy plane using 12 photomultiplier tubes (PMTs) on the cathode side and a tracking plane
using 1792 silicon photomultipliers (SiPMs) on the anode side[51]. The S1 and S2 signals are detected
by the PMTs in the energy plane. The S1 signal is used to determine the event timing, and the S2
signal is used to measure the energy E of the charged particles. The track pattern is obtained by the
tracking plane located behind the anode. They achieved a resolution of 1% (FWHM) at 2.6MeV with
this detector[51] and conducted lifetime measurements of 2νββ[41]. They are now taking data with an
100 kg detector, NEXT-100.

They have developed an analysis method to further reduce background by deconvoluting diffused
and blurred track images using the Richardson-Lucy algorithm[52]. Additionally, they are working on
technology to achieve background-free experiment by directly detecting 136Ba2+ produced from the decay
of 136Xe[53].

1.6.2 PandaX

PandaX-III experiment also uses a xenon gas TPC to search for 0νββ decay. A schematic diagram of
the PandaX-III detector is shown in Fig. 1.9. Their working gas is a 10 bar Xe-(1%) trimethylamine
gas mixture, and the detector contains about 140 kg 90% enriched 136Xe inside the TPC[54]. TMA
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Fig. 1.9 Cross-sectional view of the PandaX-III detector. Figure from [54].

absorbs xenon scintillation light but has the effect of suppressing the diffusion of ionized electrons during
drift. Therefore, it is possible to obtain more detailed track information. Additionally, the Penning effect
promotes ionization, which can improve energy resolution. They use Micromegas for the ionization signal
detection, measuring both energy and track. They achieved the energy resolution of 14% (FWHM) at
60 keV in the 5 bar Xe-(1%)TMA gas mixture[55]. They developed background reduction techniques
using the Kalman filter[56]. They are also developing techniques for background suppression[57] and
event vertex reconstruction[58] using machine learning.

1.6.3 AXEL

The AXEL experiment adopts the xenon gas TPC with the EL process for the ionization signal detection.
Its concept is similar to the NEXT experiment, but it features a unique cell structure in the ionization
detection. Details of the AXEL experiment will be described in the following chapters.

1.7 Outline of this thesis
This paper aims to describe the development of two major technological elements for the AXEL exper-
iment. One is related to the generation of high voltage to form an electric field that drifts ionization
electrons in the TPC. The other concerns the development of a signal-background discrimination using
track information to improve the efficiency of background elimination.

In Part I, including this chapter, we describe the research background and our 0νββ search experiment,
the AXEL project. An overview of the AXEL experiment and details of the 180L prototype detector
currently under development are provided in Chapter 2.

In Part II, we describe the development of a Cockcroft-Walton (CW) multiplier for in-situ high voltage
generation, data acquisition using the 180L detector, and performance evaluation. The development of
the CW multiplier for high voltage generation is discussed in Chapter 3. Data taking using the 180L

prototype detector equipped with the CW multiplier, the analysis of the obtained data, and the evaluation
of the energy resolution and track reconstruction capabilities are provided in Chapter 4.

In Part III, we describe the application of machine learning to track pattern-based signal-background
discrimination, and present a sensitivity study for future experiment utilizing this approach. The creation
of simulation data used for training machine learning models is described in Chapter 5. The comparison
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between the created simulation data and the real data obtained in Chapter 4 is also described, using var-
ious metrics. The construction of the machine learning models and their training results are described in
Chapter 6. The developed model is applied to both the simulation data and the real data for comparison.
The differences between the simulation and real data are also examined in Chapter 6. The achievable
sensitivity for 0νββ half-life using the developed model is discussed in Chapter 7.

Part IV provides a summary of the study. In Chapter 8, we describe the future improvements derived
from the insights gained in this study. Finally, the entire study is summarized in Chapter 9.



25

Chapter 2

AXEL experiment

AXEL (A Xenon ElectroLuminescence) is a experiment to search for 0νββ decay of 136Xe using high
pressure xenon gas TPC. In this chapter, we describe the overview of the experiment and roadmap to
the large ton-scale detector. We also describe in detail the 180L prototype detector which is currently
developed.

2.1 Overview of the experiment
Figure 2.1 shows a schematic view of the AXEL detector. The AXEL detector is a high-pressure xenon
gas TPC that operates by enclosing 10 bar of 136Xe-enriched gas within a pressure vessel. The use of
high-pressure xenon gas enables measurements with large-mass 0νββ nuclei. It is known that the intrinsic
energy resolution based on ionization signals deteriorates when the xenon density exceeds 0.55 g/cm3,
including in the case of liquid xenon[59]. However, assuming a temperature of 300K (room temperature)
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Fig. 2.1 Schematic view of the AXEL 180L prototype detector.
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and a pressure of 10 bar, the xenon gas density is 0.056 g/cm3*1, and thus this issue does not arise. The
AXEL experiment aims to conduct a measurement over approximately 10 ton·year of 136Xe, with the
goal of probing a effective neutrino mass of 20meV, which would allow the inverted mass ordering to be
nearly excluded. The active volume of the 1 ton detector corresponds to approximately 3m in diameter
and 2.5m in length. Even with the installation of an external veto detector, the total size remains within
approximately 10m in diameter and 10m in length, making it feasible within a space comparable to or
smaller than that of the KamLAND-ZEN detector.

The detection principle is as follows. As a charged particle passes through the gas volume of the
detector, it excites and ionizes xenon atoms along the track. The excited atoms result in primary
scintillation light, whose wavelength is around 170 nm, at a timescale of a few tens of nanoseconds[61].
These scintillation photons are detected with vacuum-ultraviolet (VUV) sensitive PMTs installed behind a
cathode electrode. This signal is used as the timing of events. Ionization electrons drift along the uniform
electric field of 100V/cm/bar formed by a field cage toward the detection plane called electroluminescence
light collection cell (ELCC) plane. The ELCC is a cellular ionization-electron detection device utilizing
the EL process. A schematic cross-sectional view of the ELCC is shown in Fig. 2.2. ELCC consists of
the TPC anode and a ground mesh electrodes, with a 5mm-thick polytetrafluoroetylene (PTFE) plate
between them. The plate has round holes arranged in a hexagonal pattern at 1 cm intervals, as the
cells. Ionization electrons, following the electric field lines, enter the cells in the ELCC. The inside the
cell is subjected to an electric field of 3 kV/cm/bar by the voltage difference between the anode and
the ground mesh, where the field is strong enough to induce EL by the entering ionization electrons.
The VUV photons emitted by the EL process in a cell are detected by the cell’s photosensor. The
number of detected photons at each timing and cell positions is proportional to the energy deposit of
the corresponding position on the track. The detail of ELCC used in the 180L prototype detector is
described in Sec. 2.3.2.

The drift velocity of ionization electrons is approximately 1mm/µs, resulting in a drift time on the order
of 1000µs for a 1-meter drift distance. In contrast, the scintillation light is detected within approximately
100 ns, which is sufficiently short. Therefore, the scintillation light can be used as timing information to
determine the position along the drift direction. The EL photons are read out using dedicated electronics
(Sec. 2.3.6) at a sampling rate of 5MS/s. Three-dimensional tracks are reconstructed by combining the
two-dimensional position information from the cells with the drift-time-based position along the drift

*1 The xenon gas density at the given temperature and pressure was obtained from the NIST Chemistry WebBook[60]
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direction.
A Cockcroft-Walton (CW) multiplier is installed inside the pressure vessel to supply high voltage to

the field cage. The details of the CW multiplier and the field cage are described in Chap. 3 and Sec. 2.3.4
respectively.

The AXEL experiment is similar to the NEXT experiment in many aspects, but it is characterized
by ELCC, which reduces the position-dependent variation in detected photon counts. Additionally, the
robust cell structure has the advantage of making it easier to scale up the detector compared to simple
parallel mesh electrodes.

2.2 Roadmap of the AXEL experiment
We, the AXEL group, started with a small size detector and have made it larger step by step.

The demonstration of EL amplification using the ELCC was conducted with xenon gas at 1 bar in a
small pressure vessel[62]. Signal readout was performed using a single VUV-sensitive PMT for all ELCC
channels, resulting an energy resolution of 1.5% in terms of 0νββ Q-value for the 59.5 keV gamma rays
from an 241Am source. In addition, a multi-anode PMT was employed to read out signals from individual
cells, enabling the evaluation of tracking capabilities.

The first prototype was the 10L size detector. The purpose of this prototype was to demonstrate the
ELCC concept of energy measurement and track reconstruction. The FWHM resolution obtained with
the 10L size prototype detector with 4 bar xenon gas was (4.00± 0.30)% at 122 keV, which corresponds
to 0.9% to 2.0% at the 0νββ Q value, 2458 keV[63].

The second prototype is the 180L size detector, which is currently being operated. The development
of the 180L prototype has two phases. In the first phase, the number of ELCC channels was 168 and the
energy resolution of (1.73± 0.07)% at 511 keV was obtained with 4 bar xenon gas, which corresponds to
0.79% to 1.52% at the Q value[64]. In the second phase, we upgraded the number of ELCC channels to
672, and obtained the energy resolution of (0.73± 0.11)% at 1836 keV with 7.6 bar[65].

In these studies, a DC high-voltage power supply was used as the power source to form the drift electric
field. But as discussed in Chap. 3, scaling up the detector requires higher voltages, which introduces
several challenges. In this study, in-situ voltage generation by a Cockcroft-Walton (CW) multiplier is
developed as an alternative and a long-term operation of 40 days is demonstrated.

Based on the know-how gained from these studies, we plan to build a third prototype detector of
1000L size. The pressure vessel is already placed on the Kamioka Observatory and background study
and demonstration of 0νββ decay search will be conducted.

After these prototype detectors, a 1-ton size detector will eventually be constructed underground for
0νββ decay search. The sensitivity estimation for the 1-ton size detector is discussed in Chap. 7.

In the next section, the detail of the current 180L size detector is described.

2.3 180 L prototype detector
Figure 2.3 shows a 3D CAD rendering of the 180L prototype detector. The 180L prototype detector is
installed in a cleanroom in Kyoto university. Inside the pressure vessel, the ELCC plane for detecting
ionization electrons and the PMTs for detecting scintillation light are placed facing each other. A quasi-
cylindrical field cage is installed between them to establish a drift electric field. The field cage has a
flat section that provides space for installing the CW multiplier. Outside the pressure vessel, frontend
electronics and the gas system are installed. The following subsections describe each of these components
in detail.
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Fig. 2.3 A 3D CAD image of 180L prototype detector.

2.3.1 Pressure vessel

The pressure vessel of the 180L prototype detector is shown in Fig. 2.4.

Fig. 2.4 Body side (left) and lid side (right) of the pressure vessel.

The pressure vessel consists of two parts, a lid and a body, which are coupled by flanges of JIS
10K550A. It is made of stainless steel and can withstand pressures up to 0.98MPa. To enhance the
pressure resistance, elliptical heads are used on both the lid and the body sides. The diameter is 559mm

and the length is 836mm. The vessel has a wall thickness of 6mm, and the total weight, including the
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1

69mm

79mm

Fig. 2.5 A picture of an ELCC unit without the anode electrode. The PTFE body of the boundary
cells is designed with half the standard thickness to fit the cover layer. One unit consists of 56(=
7× 8) cells. This unit is laid out to form the ELCC plane.

lid and the body, is 350 kg. The lid side has four JIS 80A ports mounted in a circle and one JIS 50A port
mounted in the center. The JIS 50A port is used as a gas line for evacuation, xenon filling, circulation,
and extraction. One of the 80A ports on the lid side is used for a feedthrough of flexible printed circuit
(FPC) cables to supply voltage to the photosensors of ELCC plane and to read out their signals. Another
one of the 80A port is used for cables of high voltage and thermal sensors. One of the 80A ports on the
body side is equipped with a feedthrough for the PMT’s power and signal lines, while the other is used
for gas circulation. The lid side is fixed, while the body slides open along a guide rail.

2.3.2 ELCC

The ELCC plane consists of multiple ELCC units, each composed of 56(= 7 × 8) cells (Fig. 2.5). Each
cell is equipped with a SiPM, a Hamamatsu VUV sensitive S13370-3050CN multi-pixel photon counter
(MPPC), mounted behind the ground mesh. The mesh is made of stainless steel wire with a diameter of
0.03 mm and an aperture of 77.8%. To prevent fraying, the non-cell portions of the mesh are sandwiched
between two 100µm thick perfluoroalkoxy alkane (PFA) films and thermally welded[66]. The unit has a
flexible printed cable, which is used to apply voltage to the MPPC and read out signals. The cable is
connected to the front-end electronics (Sec. 2.3.6) via a feed-through.

The target value of the field strength in the cell is 3 kV/cm/bar but has not been achieved due to
discharges between the anode and the ground electrodes*2. In the previous study[64], discharge between
the anode and the ground mesh electrodes occurred at the boundaries of the ELCC units and at the
screw holes to fix the ELCC units. As a countermeasure against these discharges, the PTFE plate was
divided into two layers and a cover layer was added to cover the gaps between units. Also, the screws
fixing the ELCCs were modified so that they do not penetrate the PTFE plate[66]. Figure 2.6 top shows
these modifications. However, electrical discharges had still occurred, so additional countermeasures are
applied in this study. The two-layer structure in the previous study showed discharges presumably on the
surface of the polyimide sheet sandwiched between the layers. Therefore, polyimide sheets are not used,
and the two-layer structure is employed only at the perimeter cells of the unit. In addition, to prevent

*2 As of 2025, an electric field strength of 3 kV/cm/bar has been achieved through the implementation of a novel discharge
mitigation technique for the ELCC.
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Fig. 2.6 Schematic cross-sectional view of the ELCC structures. The two-layer structure of the
previous study[65] is shown on the top, and the tapped hole structure of the amplification section,
the current upgrade, is shown on the bottom.

discharge along the holes of the cell, the holes are tapped using JIS M5 threads as shown in Fig. 2.6
bottom.

For the second phase of the 180L prototype detector, 12 ELCC units are used. Figure 2.7 shows
the ELCC during its installation into the 180L prototype detector. The ELCC units are arranged in
a hexagonal pattern. At each of the four boundaries of a unit, there is a half-thickness column that is
shared with adjacent units and covered by a common cover layer to prevent discharges from the anode
electrode mounted on top to the ground mesh through the gaps between the units.

The ELCC signals from each unit are transmitted to the front-end electronics (Sec. 2.3.6) located
outside the pressure vessel via a 0.9m-long FPC cable through the feedthrough. The FPC cable is
divided into two segments: a 0.5m inner cable located inside the pressure vessel, and a 0.4m outer
cable fixed at the feedthrough. Each cable is connected via HIROSE ELECTRIC FX11LA-116S-SV and
FX11LA-116P-SV connectors mounted at each ends. To prevent warping during the heating process of
surface mounting of the connector, a 0.5mm thick polyimide sheet (Dupont Cirlex) is attached to the
FPC around the connector. Out of the 116 pins of the connector, 112 are used for the high voltage
supply and signal lines of 56 MPPCs, while the remaining 4 pins on the outermost periphery are used for
grounding. The FPC is double-sided, with 100µm line width and 500µm pitch, and is routed such that
the high-voltage and signal lines for each ELCC channel are arranged back-to-back. The four ground
lines are also routed in a back-to-back configuration, with two lines on each side, running along both
sides of the cable. The characteristic impedance of the cable, calculated based on the design parameters,
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1

Φ500mm

Fig. 2.7 ELCC during its installation into the 180L prototype detector. A separate cover part is
attached to cover the boundary of the unit.

is 70.4Ω.

2.3.3 PMT

PMTs are used for detection of primary scintillation light which determines the timing of the signal.
Since the scintillation light of xenon is a VUV light around 170 nm, we used the VUV sensitive PMT,
Hamamatsu R8520-406. The PMT has a 20.5 × 20.5 mm2 sensitive area and its quantum efficiency for
170 nm wavelength is about 30%. Considering a photoelectron collection efficiency of 70%, the resulting
photon detection efficiency is 21%. The PMT can be used under high pressure up to 10 bar, and by not
using potting material, outgassing is also minimized. PMT installation in the 180L prototype detector
is shown in Fig 2.8. Seven PMTs are installed in the 180L prototype detector.

A guard mesh connected to the ground is placed in front of the PMTs to protect the PMTs from the
cathode voltage. An aperture of the guard mesh is 67%. If the distance between the cathode and the
guard mesh is too short, unintended EL amplification may occur. The threshold for the EL process is
E/p = 0.83 kV/cm/bar[67]. As described in Sec. 4.1, a voltage of 34.3 kV was applied to the cathode
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1

□ 24mm

Fig. 2.8 PMT installed in the 180L prototype detector. A guard mesh connected to the ground is
installed in front of the PMTs to protect the PMTs from cathode voltage.

1

L400 mm

Φ505 mm (outer electrode)

Fig. 2.9 Overall (left) and top view (right) pictures of the field cage.

during the measurement conducted in this study under 6.8 bar of xenon gas. Under these conditions,
the reduced electric field between the cathode and the guard mesh was E/p = 0.32 kV/cm/bar, which is
below the EL threshold.

Power supply and signal transmission of the PMTs are carried out using coaxial cables with PTFE
jacket via the feedthrough. The signal of PMTs is amplified 100 times by preamplifiers before being sent
to the CAEN v1724 digitizer. This 8 channel digitizer operates with a 14-bit resolution and a dynamic
range of 2.25V, sampling at a rate of 100MHz. The PMT waveforms are transmitted to a PC via an
optical link of 80MB/s transfer rate.

2.3.4 Field cage

The field cage is a frame for creating a uniform electric field that guides ionization electrons to the
detection plane. Figure 2.9 shows the assembled field cage. The field cage of the 180L prototype consists
of D-shaped electrodes. Each D-shaped electrode is formed by wrapping a 12 mm-wide band. Two types,
differing in the diameter of the rounded part, approximately 500mm, are arranged alternately with a
10mm pitch. Two types of electrodes are arranged in an alternating pattern of large and small sizes with
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overlapping sections, effectively shielding against the intrusion of a ground potential from the pressure
vessel. The electric field strength inside the field cage was simulated, and it was confirmed to be uniform
within ±5% over the region up to a radius of 229.3mm, including the ELCC plane[68]. Each electrode
is held in place by fixing it to six pillars made of poly ether ether ketone (PEEK). The flat section of the
electrodes allows the CW multiplier to be placed between the pressure vessel and the electrode. On top
of the field cage, the cathode made of a mesh is attached. The aperture of the mesh is 71%, allowing
scintillation light to pass through while preventing leakage of the electric field. Forty bands of electrode
are used for the field cage in this study. The first 20 bands are made of 3mm thick aluminum and the
rest is made of 1.5mm thick oxygen-free copper. Aluminum was initially adopted due to its low cost
and its ability to reflect VUV light, which was expected to enhance the detection efficiency of primary
scintillation light. Although oxygen-free copper does not reflect scintillation light, it was adopted later
because it offers advantages such as lower outgassing and reduced radioactive impurities compared to
aluminum. A 15mm thick high-density polyethylene (HDPE) tube is inserted between the field cage and
the pressure vessel for insulation. The voltage to the cathode electrode and each stage of the field cage
is supplied by a the CW multiplier described in Chap. 3.

2.3.5 Gas system

Gas system has functions of vacuuming air, filling, circulating, and extracting xenon. A schematic diagram
of the gas system is shown in Fig. 2.10.

An evacuation pump unit consists of a turbo molecular pump (Osaka Vacuum, TG350FCAB) and a
dry scroll pump (Anest Iwata, ISP250C). The exhaust speed of the turbo molecular pump is 330L/s. A
Pirani gauge and a cold cathode gauge are installed upstream of the pump. These vacuum gauges are
used not only for monitoring the vacuum level, but also for evaluating the outgassing rate —including
potential leaks— by observing the rate of pressure increase after isolating the vacuum pump by closing the
valve. Additionally, another Pirani gauge is installed near the pressure vessel to evaluate the outgassing
rate of the 180L prototype detector.

A circulation pump (IBS Inc, MB-601HPAL) with a maximum flow rate of 70L/min is used to fill and
circulate gas. It is also used to recover xenon gas from the pressure vessel into storage cylinders. This
circulation pump is a sealed metal bellows pump capable of operating at a maximum discharge pressure
of 690 kPaG. The flow rate of the circulation pump is monitored by a mass flow meter (Bronkhorst,
F-111CM-40K-AAD-88-K) installed on the downstream side of the pump. The circulation pump requires
the downstream pressure to be below about 50 kPaG at startup. If the circulation pump stops due to a
power outage or an interlock during circulation, the pressure in the piping may exceed 50 kPaG, making
it impossible to restart the circulation pump as it is. Therefore, a buffer chamber with a size of 3L is
installed and, in such situations, the IN-V2 and the CC-V1 valves leading to the 180L pressure vessel
are closed, and the BF-V1 valve is opened to lower the pressure in the circulation pipeline, allowing the
circulation pump to be restarted.

During gas circulation, purification is carried out using a molecular sieve (Applied Energy Systems,
250C-V04-I-FP) and a getter (API, API-GETTER-I-RE). The molecular sieve is used to remove impu-
rities other than N2, such as O2, H2O, and CO2, while the getter is used to remove N2. The gas purity
is monitored by a dew point meter (Michell Instruments, PURA) installed on the upstream side of the
circulation pump, with a measurement range from −120 ◦C to −40 ◦C.

Xenon gas is stored in four 47L cylinders. During gas recovery, xenon gas is transferred from the 180L

pressure vessel to the cylinders using a circulation pump, but about 0.3 bar of xenon gas remains on the
upstream side of the pump. This residual gas is recovered by solidifying it using a cylinder immersed
in liquid nitrogen. This cylinder is connected to an emergency recovery 47L cylinder via a 0.2MPaG
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rupture disk to prepare for local pressure increases due to depletion of liquid nitrogen or other causes.
After recovering the xenon gas, the SP-Ar and SP-V1 valves are opened and the argon gas is introduced

into the pressure vessel at 1 barA to eliminate the pressure difference between the inside and outside of
the pressure vessel before opening the pressure vessel to the atmosphere.

2.3.6 Front-end electronics and data acquisition system

Signals from the MPPCs of each ELCC unit are connected to the front-end electronics (AxFEB)[69]
outside the pressure vessel through the FPC cable. Figure 2.11 shows the block diagram of the AxFEB.
AxFEB is responsible for both supplying voltage to the MPPCs and reading out signals. A gain of MPPC
can be adjusted by a DAC connected to the anode of MPPC that can be fine-tuned for each channel
separately from the bias voltage applied to the cathode of the entire MPPC. Since the MPPC signal must
be read out by DC coupling to suppress waveform distortion, the amplifier circuit is configured to cancel
the baseline variations caused by the DAC[69]. The MPPC signals are converted to digital waveforms by
two types of ADCs, ADCL and ADCH. ADCL is 12-bit with a dynamic range of 2V peak to peak and a
sampling rate of 5MS/s. Before the signal is input to ADCL, it is amplified by a factor of 5 and further
shaped by a second-order Sallen-key filter with a time constant of 220 ns. ADCL is used to record EL
signals with a time width of about 100µs. The number of photons incident on the MPPC is determined
from the integral of the waveform. The time structure of the waveform is used both to reconstruct the
position along the drift direction of the track and to correct for the non-linearity in the output of the
MPPC when a large number of photons is incident in a short period of time. ADCH is 12-bit with a
dynamic range of 2V peak to peak and a sampling rate of 40MS/s. It is used to measure dark pulses
whose width is about tens of ns. Before the signal is input to ADCH, it is amplified by a factor of 165.
The ADCH waveform is used to evaluate the magnitude of dark pulses and to equalize the gain of each
MPPC via the DAC adjustment. In ADCH, 8 channels are aggregated into one ADC using a multiplexer,
and data is acquired while switching.

A block diagram of the data acquisition system is shown in Fig. 2.12. The waveform data from the
ELCC and PMT are stored on separate PCs. To issue the trigger, a trigger board, Hadron Universal
Logic module (HUL) [70] is used. The 180L prototype detector uses 12 AxFEBs, each holding waveform
data for 56 channels of MPPCs. The HUL receives the sum of the 56-channel MPPC waveforms from
each AxFEB via LVDS and calculates the sum of all boards. This sum is then averaged over a set width,
and a trigger is issued when a certain threshold is exceeded. The signal sum of the channels set as veto
is also sent from the AxFEB to the HUL, and a veto signal is issued when the threshold exceeds. HUL
outputs two NIM signals, the send-trigger signal and the send-header signal. The send-header signal is
used as the trigger for both digitizers, AxFEBs and v1724. The send-trigger signal is recorded by the
digitizer for the PMTs and is used to indicate the trigger timing within the PMT waveforms. The event
matching of ELCC waveforms and PMT waveforms is performed during the analysis phase using the
timing information. There are two types of triggers for ADCL: the fiducial trigger and the whole trigger,
and one type of trigger for ADCH : the high gain trigger, issued by the HUL. The whole trigger is issued
when the summed signal height of all channels exceeds a threshold. The fiducial trigger is issued similarly
except that the veto channels must have no hit signals. The whole trigger is to collect the data of xenon
Kα characteristic X-ray (29.68 keV) for calibration, while the fiducial trigger is to accumulate higher
energy events contained in the fiducial volume. The use of all channels in the whole trigger is motivated
by the calibration method based on xenon Kα X-rays[65]. Ionization electrons produced by Kα X-ray
interactions diffuse during drift and are typically detected across multiple adjacent channels. Therefore,
to calibrate channels located at the boundaries of the fiducial region, signals from neighboring channels,
including those configured as veto channels, are also required. Since the whole trigger is configured with
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a low threshold to take xenon Kα X-rays, it is issued more frequently than the fiducial trigger of interest.
Therefore, a downsampling ratio can be set to control the actual frequency at which whole triggers are
issued. The high gain trigger is issued periodically during intervals when the ADCL triggers are inactive,
in order to acquire ADCH waveforms. However, as described in Chap. 4, temporal variations in photon
counts during data acquisition are corrected using xenon Kα, and therefore the ADCH data obtained
while data taking are currently not used.

2.3.7 High voltage

Figure 2.13 shows a schematic diagram of the high-voltage system in the 180L prototype detector.
A MATSUSADA PRECISION Inc. HFR10-20N is used as the power supply for applying the anode
voltage. Its rated voltage is −20 kV and the rated current is 500µA. The cathode power supply was
initially MATSUSADA PRECISION Inc. HFR10-30N, which is replaced by the CW multiplier in this
study. Details of the CW multiplier are described in Chap. 3. The anode power supply can control the
output voltage with a control voltage of 0-5V, and it allows for smooth variation of the output voltage
using a potentiometer for resistance division. The output voltage of the anode power supply is delivered
to the ELCC anode inside the pressure vessel through a feedthrough using a single-wire cable with a
silicone-rubber jacket. When the design voltage of 3 kV/cm/bar EL electric field and 100V/cm/bar drift
electric field are applied at 8 bar, the current flowing in the anode power supply is 56µA. A protection
circuit with diodes and resistors are configured to prevent the anode power supply from being damaged
by reverse currents associated with discharge. In addition, an interlock is implemented to stop the anode
power supply when an excessive current flows through it, which is regarded as a discharge. The anode
power supply has a monitor voltage with 5V output for rated voltage and current. The current value is
monitored by the Graphtec GL820 data logger, and an interlock is triggered when a current over 450µA
flows.
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Fig. 2.10 Schematic diagram of the gas system.
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Fig. 2.11 The block diagram of the AxFEB. Figure from [69]
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Fig. 2.13 Schematic diagram of the high voltage system in the 180L prototype detector.
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In-situ high voltage generation with
Cockcroft-Walton multiplier
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Chapter 3

Design and performance of the
Cockcroft-Walton multiplier

A high voltage is applied to the field cage to generate the electric field necessary for drifting ionization
electrons. In case of the 180L prototype and the 1000L detector, the target voltage is −44.8 kV and
−79.8 kV at 8 bar respectively. To feed such a high voltage from outside the pressure vessel, high voltage
feedthroughs compatible with high pressures are needed. For example, in the NEXT-White detector,
specially developed low-radioactivity feedthroughs are used to apply potentials to both the cathode
electrode and the EL amplification gate electrode[71]. Another approach is to introduce a relatively low
voltage from outside the pressure vessel and boost it inside the pressure vessel. The CW multiplier[72]
can be used to convert a low voltage AC input to a high voltage DC output. This approach was proposed
for liquid argon TPC’s[73], but has not been realized in actual operation. One difficulty comes from
the large baseline variation on the signal line caused by the AC input, which makes signal readout and
analysis difficult. If the AC input is turned off after charging the capacitors in the CW multiplier, this
baseline shift disappears, but it is difficult to monitor that the voltage is properly maintained.

In the AXEL experiment, the EL photons induced by the ionization electrons are used as signals.
Since the ionization signal is converted to light to be read out and the light signal is amplified with quite
high efficiency by photon counters, it is highly resistant to electronic noise. We have developed a CW
multiplier to supply high voltage to the AXEL detector and installed to the 180L prototype detector. In
this chapter, the developed CW multiplier is detailed. The content of this chapter and the following one
is structured based on the previously published paper[74].

3.1 Design of the CW multiplier
A schematic diagram of the CW multiplier is shown in Fig.3.1. The CW multiplier is composed of multiple
stages of a basic circuit, consisting of two capacitors and two diodes, connected in series. The AC voltage
causes the potential of the capacitor on the upper side of the figure to oscillate. The rectifying action
of the diode causes a charge to accumulate in the capacitor on the lower side of the figure, resulting in

Fig. 3.1 Schematic diagram of the CW multiplier. The red section corresponds to one stage of the circuit.
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Fig. 3.2 CW multiplier and resistor chain board implemented as a flexible printed circuit.

a DC high voltage at the output. The ideal output voltage V of an N -stage CW multiplier is given as
V = 2NU , where U is the amplitude of the AC input voltage, but the actual output voltage of a CW
multiplier is lower than the ideal voltage due to the parasitic capacitance of diodes and load resistance[75].

To install the CW multiplier inside the pressure vessel, there are several constraints regarding size and
material. The multiplier has to be installed in a narrow space between the HDPE tube and the field cage.
In case of the 180L prototype, the width is limited to about 20 cm and height to 3 cm. The length is also
limited to 40 cm to fit to the length of the field cage. Since the voltage required for the drift electric field
is proportional to the drift length, the voltage must be increased within the length of the field cage.

The CW multiplier has to be composed of low outgassing materials. This is because electronegative
impurities such as oxygen capture ionization electrons, leading to a reduction in EL photon counts and a
consequent degradation of energy resolution. The typical outgassing rate of the prototype detector was
1.23×10−4 Pam3/s[65], with which xenon gas purity was kept sufficiently high by continuous purification
using the molecular sieve and the getter. The outgassing of the CW multiplier should be well below this
rate.

To achieve compact dimensions and minimize outgassing, a flexible printed circuit (FPC) board popu-
lated with surface-mount devices was adopted. FPC made in this study consists of an 18µm-thick copper
electrode sandwiched between a 25µm-thick polyimide base and coverlay, NIKKAN INDUSTRIES F-30V
and CISV respectively. One board is 111.7mm long and contains 10 CW stages, and a resistor chain to
evenly divide the electrical potential to be applied to the electrodes of the field cage. The FPC board has
C-shaped terminals at both ends, allowing them to be connected to each other (Fig. 3.2). This enables
the construction of a CW circuit with more stages. The right side of the board in Fig. 3.2 shows a resistor
chain, which divides the CW output voltage at the top and supplies it to the TPC electrodes spaced at
1 cm intervals. Each stage has a resistance of 200MΩ, resulting in a total of 2GΩ per board.

The deviation from the ideal output voltage of the CW multiplier can be reduced by using large
capacitors. However, capacitors with higher voltage ratings tend to have smaller capacitance. The circuit
was designed to operate at 2 kV peak-to-peak input and capacitors with a voltage rating of 2 kV and
as large a capacitance as possible were selected. Consequently, a Knowles Syfer’s 0.1µF 2220 chip size
ceramic capacitor was adopted. Diodes are also subjected to a maximum input peak-to-peak voltage,
those with a voltage rating of 2 kV and fast response characteristics, Micro Commercial Components
FM2000GP with a reverse recovery time of 500 ns and typical junction capacitance of 8 pF were selected.
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While a higher resistance value helps suppress deviations from the ideal output of the CW multiplier,
the resistance must also be low enough to supply the induced charge generated by the drift of ionization
electrons in the TPC. This trade-off is evaluated based on the time constant of the circuit formed by
the top-stage capacitor and the resistor chain. When the rated voltage is applied to the top-stage
capacitor, the stored charge is 0.1µF × 2 kV = 0.2mC. A reaction on the order of MeV typically
generates approximately 105 ionization electrons. Assuming the maximum operation rating as 10 kHz,
motivated by the rate of the 180L detector with sources, if the time constant is set to 1000 seconds, the
total induced charge during that period would be approximately 0.1% of the capacitor’s stored charge
and sufficiently small. The corresponding resistance value is 10GΩ. Given a drift length of 40 cm, this
translates to 250MΩ per centimeter. Therefore, Bourns Inc. CHV2512-JW-107ELF 100MΩ resistors
were selected, with two used per stage.

Since each component has a voltage rating of 2 kV, achieving the required voltage of −44.8 kV for the
drift length of 40 cm would ideally require only 23 stages in the CW multiplier. However, in practice, the
circuit was designed with 40 stages, taking into account the operation at a AC voltage lower than the
rated voltage of the circuit elements and the deviation from the ideal gain. As a result, each board was
equipped with 10 stages, with one stage per centimeter.

3.2 High voltage generation
The actual output voltage of the CW multiplier is lower than the ideal output voltage[75]. One of the
causes is that a portion of the current used to charge the CW multiplier is consumed by the charging
and discharging of the parasitic capacitances of components such as diodes and input cables. The effect
from diodes is described by the following equation,

VCW = 2NU

[
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where N is the number of stages, U is the amplitude of the AC input voltage, Cd is the parasitic
capacitance of the diode, and C is the capacitance used in the CW multiplier. This expression is valid
under the assumption that the load resistance is sufficiently large. As shown in Eq. 3.1, the effect of the
parasitic capacitance is independent of the input voltage and frequency. Another factor is the continuous
removal of charge from the CW multiplier due to the load resistance. When the parasitic capacitance Cd

is small, this effect can be described by the following equation,

VCW = 2NU

{
1− 1

fRC

[
2

3
N2 +

1

2
(1− ε1)N +

(
1

2
ε1 −

1

6

)]}
(3.2)

where R is the resistance per stage, f is the frequency of the AC input. ε1 represents the fraction of
the AC input cycle during which the smoothing column capacitors are charged. From Eq. 3.2, it can be
seen that the reduction in output voltage due to the load resistance can be mitigated by increasing the
frequency of the AC input voltage.

The frequency dependence of the output voltage was measured with the setup shown in Fig. 3.3. Seven
FPC boards and a PTFE plate to secure them were prepared. To prevent electrical discharge, two grooves,
oriented perpendicular to the electric field, were machined at 1 cm intervals in front, back, and side of
the PTFE plate. Before making the frequency measurement, a test was performed with an input peak-
to-peak voltage of 1800V, near the voltage rating, to the CW multiplier in a same setup that in Fig. 3.3.
Because discharges happened on two boards during these tests, frequency measurements were only made
on the remaining five boards. To feed the AC input power to the CW multiplier, a sine wave from a
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Fig. 3.3 Schematic diagram (left) and a picture (right) of the measurement of the CW multiplier
high voltage generation.

Fig. 3.4 CW output voltages as a function of input frequency at 800V peak-to-peak input(left)
and at 1200V(right).

function generator GW Instek AFG-2005v was amplified by an AC amplifier Matsusada HJOPS-2B10.
The maximum output voltage and current of the AC amplifier is ±2 kV, 10mA respectively, and the slew
rate is 150V/µs and bandwidth is 18 kHz (−3 dB). The output of the CW multiplier was connected to
the ground through a resistor chain Rf on the boards and an ampere meter Agilent Technologies U3401A.
The output voltage VCW is obtained from the measured current value Ia as VCW = −Ia ×Rf . Here the
resistance value Rf is 2GΩ per 10 stages of the resistor chain on the boards.

The measurement results are shown in Fig. 3.4. The input peak-to-peak voltages are 800V and 1200V.
Data points missing at high frequencies are due to instabilities in the amplifier output, which caused
oscillations. As more boards were added, the frequency at which that happened became progressively
lower. This is thought to be due to the increase in capacitive load with more boards, which leads to the
amplifier’s output current reaching its limit.*1

*1 Operation at higher frequencies has been confirmed to be feasible with the use of higher power audio amplifiers and
transformers, and implementation is planned for future development.
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1

discharge

Fig. 3.5 Trace of surface discharge on the FPC of CW circuit. A discharge occurred across a 3mm
gap between the pads on the FPC board, resulting in the board being burned.

3.3 CW surface insulation
During the test operation of the CW multiplier at a peak-to-peak voltage of 1800V, a surface discharge
occurred on the capacitor and FPC surface, and the output voltage of the CW multiplier deteriorated
(Fig. 3.5). To allow for higher voltage in- and output, the circuit was coated with the methyl silicone
resin, Shin-Etsu Chemical Co. Ltd. KR-251, which was applied as follows:

(1) Ultrasonically clean the circuit in ethanol for 15 minutes.
(2) Submerge the circuit in a vat containing KR-251 and run it through ultrasonic cleaning for 15

minutes to defoam.
(3) Degas the circuit under vacuum for one hour while submerged in KR-251.
(4) Lift the circuit out of the KR-251 bath and dry it under vacuum for 4 hours.

Since the connecting electrodes are also coated in this method, the contacts were restored by gently
scraping off the coating with tweezers after drying. A test was conducted in air using a setup with a
single coated FPC board with a setup described in Sec.3.2. With an input of 5 kHz and 1900V peak-
to-peak, no discharge was observed for 10 minutes, confirming an improvement in withstand voltage.
Even with the above procedure, air bubbles around the circuit elements could not be completely avoided
(Fig. 3.6). To estimate the impact of outgassing from these bubbles on gas purity, the outgassing rate of
a coated FPC was measured.

3.4 Outgassing rate of the coated CW circuit board
A vacuum test was performed using an FPC board that was cut into about one-fourth and then coated.
The cut board was placed in a NW50 pipe connected to a turbo molecular pump, evacuated for about 5
days. The outgassing rate was estimated from the pressure rise as a function of time after closing off the
vacuum connection to the pump. The pressure changed from 1.7× 10−4 Pa to 91Pa over about 14 hours.
The estimated outgassing rate is 8.9 × 10−7 Pam3/s including leaks in the vacuum system. Since the
180L prototype detector uses four circuit boards, the outgassing is estimated to be 1.4 × 10−5 Pam3/s,
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1

5.7mm

Fig. 3.6 Example of air bubbles remaining in gaps between circuit elements.

Fig. 3.7 CW and resistor chain are mounted on a PTFE jig and installed on the field cage. The
field cage and anode electrode are connected via a resistor FPD4D200MOHMF (black plate seen
against the white PTFE at the end of the field cage).

which is about an order of magnitude less than the operational outgassing rate 1.2 × 10−4 Pam3/s for
the prototype without CW multiplier[65].

3.5 Monitoring of the HV output voltage for the 180 L detector
To actually supply HV to the 180L detector, four CW multiplier and resistor chain boards were serially
connected and fixed on a PTFE plate, which was installed on the flattened outside of the field cage
as shown in Fig. 3.7. To prevent electrical discharges, two grooves, oriented perpendicular to the drift
direction, were machined at 1 cm intervals on the front, back, and side surfaces of the PTFE plate. A
stainless steel screw connected each electrode of the field cage to its corresponding stage in the registor
chain. Although it is preferable to use coaxial cables to suppress AC pickup on the MPPC signal line, a
silicon-rubber insulated single-wire cable was used for the input to the CW multiplier because the use of
coaxial cables caused oscillation of the AC amplifier due to the capacitive load of the cable.*2

*2 The integration of a high-power audio amplifier and a transformer as the power supply enables voltage application
through coaxial cables.
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Fig. 3.8 Schematic diagram of the HV supply to the 180L prototype detector

Unlike the setup shown in Fig. 3.3, the 180L detector has the end of the resistor chain connected to
the anode electrode, making it impossible to directly monitor the output voltage of the CW multiplier.
To estimate the output voltage of the CW multiplier, the monitoring voltages of the anode HV power
supply were used. Figure 3.8 shows the schematic diagram of the HV supplies to the 180L prototype
detector. Va and Vc means the anode and cathode voltage, respectively. The output voltage VCW of the
CW multiplier is given by,

VCW = Vc =
(
1 +

Rf

Ra

)
Va +RfIa, (3.3)

Here, Ra is the additional load resistor (Fig. 3.8) for the anode power supply, which is 200MΩ, and Rf

is the resistance of the entire TPC resistance chain, which is 8.1GΩ. The anode voltage Va and current
Ia are - as indicated above - taken from the monitoring outputs of the anode power supply.

3.6 Countermearsure for surface discharge on HDPE tube
Before acquiring data with the 180L detector, a high voltage test of the CW multiplier was conducted
in 6.9 bar xenon gas, resulting in a discharge with a loud noise before reaching 30 kV. The discharge
was captured by a USB camera module ELP-USB13MAF-V75J and the motion detection program “mo-
tion”[76]. The camera was installed adjacent to the PMT, facing the ELCC surface. The discharge image
stored by motion is shown in Fig. 3.9. Upon opening the pressure vessel, discharge marks were observed
on the surfaces of the HDPE tube and the FPC board. As shown in Fig. 3.10, on the FPC board, the
marks are located between resistors. From this, it was inferred that the discharge occurred along the
path from the field cage electrode to the pressure vessel via the surface of the HDPE tube (Fig. 3.11).
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Fig. 3.9 The discharge image stored by motion. The cathode mesh electrode is visible in the
foreground, with the ELCC surface in the background, and the discharge occurs near the cathode.

Fig. 3.10 The discharge on FPC board. Traces of surface discharge bypassing between the resistor
chain are visible.

EL
C

C
 p

la
ne

 

PM
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HDPE tube

Fig. 3.11 The presumed discharge path. It was considered that the discharge traveled from the
field cage electrode along the surface of the HDPE tube towards the pressure vessel.
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Fig. 3.12 Grooves carved into the HDPE tube as a countermeasure against the discharge. In the
background, the PMTs and the guard mesh can be seen.

The surface discharge on the resistor chain was thought to be due to the instantaneous large potential
fluctuations caused by the electrode discharge, resulting in dielectric breakdown of the FPC surface. As
a countermeasure against the discharge, 12 grooves with a depth of approximately 1mm were created
at about 1 cm intervals on the inside surface of the HDPE tube using a router (Fig. 3.12). In addition,
improvements were made to the voltage input to the CW multiplier. The boosting of the CW multiplier
is performed by gradually increasing the amplitude of the sine wave from the function generator on the
input side. Previously, this was manually controlled using a rotary knob, but a program to automatically
boost at a constant rate using serial communication was developed. To prevent damage to the CW circuit
from continuous discharges, an interlock was implemented to detect discharges and stop the input to the
CW multiplier. The discharges were detected by the motion program and saved as video files on a PC.
The folder in which the videos were created was monitored and when a new file was detected, an alarm
signal from the data logger was triggered to stop the input to the CW multiplier. Since the condition for
issuing the interlock is the generation of a video file, the input to the CW multiplier is stopped even if
the discharge is at the ELCC. However, during the data taking starting from July 8 to September 13 in
2024, there were only two interlocks, so there were no practical problems in acquiring the source data.
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Chapter 4

Data taking with CW multiplier, analysis, and
performance evaluation

In this chapter, we describe the data acquisition using the 180L detector equipped with the CW multiplier,
the analysis of the obtained data, and the evaluation of the detector’s performance.

4.1 Data taking with CW multiplier
In preparation for data acquisition using the 180L detector equipped with the CW multiplier, the pressure
vessel was closed and evacuated for about 5 days before introducing xenon gas. The pressure reached
4.5 × 10−2 Pa and the outgassing rate was 1.5 × 10−4 Pam3/s. Then, xenon gas was filled to about
6.8 barA. The active volume of the detector is 19.6L, which corresponds to a xenon mass of approx-
imately 0.73 kg*1 assuming a xenon gas temperature and pressure of approximately 300K and 6.8 bar

during the measurement. Before applying HV, gas purification was performed for 9 days. The detector
operating voltages were then adjusted while taking data on a trial basis. After another 9 days to optimize
detector operating conditions, data was taken from July 8, 2024 to September 13, 2024, with intervals in
between. The data used in the analysis were acquired for a total of 40 days. The measurement period was
determined with the aim of acquiring approximately 1000 photoelectric absorption events of 2615 keV

gamma rays from the source described below, in order to compare them with simulation data.
At 6.8 bar xenon gas, an anode voltage of −10.2 kV and a cathode voltage of −38.1 kV are required

to achieve an EL amplification field of 3 kV/cm/bar and a drift field of 100V/cm/bar. As a discharge
happened around −38 kV during detector optimization, data-taking was conducted at the 90% of the
design value, −34.3 kV, which gives a 90V/cm/bar drift electric field. The ELCC is designed to achieve
a 100% collection efficiency of ionization electrons when the ratio between the EL amplification field and
the drift electric field is 3 : 0.1. Therefore, the applied voltage to the ELCC was also set at the 90%

of the design value, too. The applied voltages were hence −9.18 kV for the anode and −34.3 kV for the
cathode.

A test measurement was conducted to ensure that the ELCC signal is not affected by pickup noise
from the AC input of the CW multiplier. A sample waveform of an ELCC channel without signal hits is
shown in Fig 4.1. The applied AC frequency of the CW multiplier is 6 kHz and the corresponding cycle
is 167µs. The baseline is stable within 1 to 2 ADC counts. The distribution of the baseline standard
deviations σbl for all the ELCC channels is shown in Fig. 4.2. The mean standard deviation is 0.46, while
it is 0.45 without high voltage applied. The effect of baseline fluctuations within one ADC count on the
energy resolution is small enough compared to other factors. Therefore, the effect of AC pickup due to

*1 The xenon gas density at the given temperature and pressure was obtained from the NIST Chemistry WebBook[60]
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Fig. 4.1 Example waveform of an ELCC channel without signal hits. Sampling rate is
5× 106 samples/s (0.2µs/sample). One ADC count corresponds to 0.488mV. The input frequency
of 6 kHz for the CW multiplier corresponds to 167µs.

Fig. 4.2 Distribution of the standard deviation of the baseline of the ELCC channels.

the CW multiplier is not a problem.
To evaluate the actual energy resolution and track reconstruction performance at the Q value of xenon

0νββ decay, measurements were conducted using a gamma-ray source. Thorium-doped tungsten rods
were used as a gamma-ray source. This is a commercial product for welding and contains 2% thorium
and hence contains 208Tl in the thorium series. A 208Tl nucleus emits a gamma ray of 2615 keV, which is
close to the energy of β-rays from the 136Xe 0νββ, 2458 keV. The weight of the thorium-doped tungsten
rods used was 1 kg at the beginning and later doubled. The intensity is 80 kBq and 160 kBq respectively.
The rods are attached to the upper side of the cylindrical part of the pressure vessel (Fig. 4.3).

The outer cells of the ELCC plane were set as veto to ensure that the energy of the particle track is
fully captured without leakage. Two dead channels and two high dark current channels, shown in Fig. 4.4,
were found. In the dead channels, although the AxFEB was supplying voltage normally, no signal was
observed from the MPPC. During installation checks, reconnecting the FPC cable occasionally restored
the signal, suggesting that the issue was likely due to poor contact in the connector or cable. The high
dark current channels cannot be used for energy measurements but can still be utilized as veto. Then, the
high dark current channels were also added to the veto, as were the channels surrounding dead channels.
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L150mm

viewing angle

Fig. 4.3 Installation of 1 kg (left) and 2 kg (right) of thorium-doped tungsten rods on the pressure
vessel. Ten rods (200 g) are bound together with curing tape and attached to the upper side of the
cylindrical part of the pressure vessel. The sectional view of the 180L prototype detector on the
bottom figure shows the viewing angle.

Various quantities monitored during the data taking period are shown in Fig. 4.5. The sampling
interval is 33 seconds. Moisture content was below the lower limit of the meter’s range for most of the
measurement period. This means that the moisture content was less than 0.05 ppm. The cathode voltage
has a temporal variation of about 1 kV and can drop several kV momentarily. An example case on July 20
is shown in Fig. 4.6. The cathode voltage fluctuated by 0.4 kV around 34.2 kV during this period. As the
cathode voltage is calculated from the monitored anode current and voltage (Eq. 3.3), the sharp cathode
voltage drop of 7 kV observed in one bin near noon in Fig. 4.6 likely is an artifact from a discharge in
the CW or ELCC. The frequency of such a momentary voltage drop was less than a few times per day
and did not stop the data taking. In another incident on July 27, the cathode voltage dropped to about
2 kV. This was caused by an interlock triggered by a discharge in the ELCC, which stopped the input to
the CW multiplier; however, the cathode voltage did not fall to 0 kV. At that time, the anode voltage
of 9.18 kV remained applied, and it is presumed that a reverse current through the diode in the CW
multiplier caused a voltage drop across the resistor chain, resulting in a residual voltage of 2 kV at the
cathode.
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Fig. 4.4 Configuration of veto channels. Dead channels are indicated in red, while high dark
current channels are shown in yellow. The colored channels including these channels were assigned
to veto.

As described in Sec. 2.3.6, there are two types of triggers for ADCL: a fiducial trigger for acquiring high
energy events such as 2.615MeV gamma-rays from the thorium-doped tungsten rods in this measurement,
and a whole trigger for collecting calibration data of xenon Kα X-rays. In this study, the threshold of
the fiducial trigger was set to about 500 keV and the whole trigger to slightly above the baseline. The
fiducial trigger rate at this threshold was 10.5Hz. To reduce data size, the whole trigger was set to be
issued only once per 50 000 times. The measurement conditions are summarized in Tab. 4.1.

Table 4.1 Summary of the measurement conditions.

Gas pressure (6.77± 0.04) bar

Anode voltage (9.200± 0.003) kV

Cathode voltage (34.1± 1.3) kV

EL field (2.72± 0.02) kV/cm/bar

Drift field (89.9± 4.8) V/cm/bar

Gas temperature 27.6 ◦C - 30.0 ◦C

Total measurement time 39.8 days

Average fiducial trigger rate 10.5Hz

AxFEB is acquired ELCC waveforms with a time width of 440µs, including 40µs before the trigger,
and for PMT signals, the waveform digitizer stored PMT waveforms with a window of 900µs with pre-
trigger region of 95% of the recording window. The ELCC waveforms and the PMT waveforms obtained
from a single trigger constitute data for one event.

4.2 Analysis
Here, the method for estimating the photon count of each event from the obtained data is briefly described.
The analysis method was based on the previous study; for details, refer to [65]. In the following, the origin
is defined at the center of the ELCC plane. The z-axis is taken along the direction from the anode to the
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Fig. 4.5 Trends of the gas conditions (upper), and absolute value of high voltages (lower). The
gray-shaded areas are data-taking periods. The drops in the anode and cathode voltage from August
9 to 16 correspond to manual shutdowns, while other voltage drops (including drops on July 10)
correspond to discharges.

cathode, the y-axis points vertically upward, and the x-axis is defined horizontally to form a right-handed
coordinate system.

4.2.1 ELCC waveform analysis

In ELCC, EL photons emitted by drifted ionization electrons is measured individually for each channel
using MPPCs and recorded as waveform data. From the waveform of each ELCC channel, hits are
identified with a certain threshold from the baseline. Photon counts of each hit are calculated using the
MPPC gain. Since MPPC pixels have a recovery time after the charge is released by photon detection to
restore the bias voltage, MPPCs have a non-linear output for high incident light intensity. The MPPC
we use has 3600 pixels and a recovery time of approximately 70 ns. In comparison, the instantaneous
maximum photon count of a 0νββ event can reach approximately 20 000 photons/(MPPC · µs)[66], which
is a non-negligible number relative to the pixel count of the MPPC. Therefore, this MPPC non-linearity
is corrected by following equation using the recovery time which is measured for each MPPC[64]:

Ncor =
Nobs

1− τ
∆t·Npixel

Nobs
(4.1)

where Nobs and Ncor are the photon counts before and after the correction, τ is the recovery time, ∆t is
the time width of 200 ns corresponding to the sampling rate of the ELCC signals. Npixel = 3600 is the
number of pixels of the MPPC.



56 Chapter 4 Data taking with CW multiplier, analysis, and performance evaluation

Fig. 4.6 Zoom up views of the trend of the cathode voltage (top), anode current (middle), and
anode voltage (bottom) on July 20.

Fig. 4.7 Photon count spectrum of the xenon Kα characteristic X-ray before and after the correction.

From the hits, clusters are formed by grouping those that are spatially and temporally adjacent. Photon
counts of each cluster or each event are obtained by summing up those of hits after the gain of the EL
process in each ELCC cell (hereafter, EL gain) is corrected for. The EL gain is defined as the average
detected photon count for one ionization electron. The EL gains are different cell-by-cell due to small
difference of ELCC structure (machining inaccuracy, placement inaccuracy, surface condition difference
etc.) and photon detection efficiency differences of MPPCs. To determine the correction factor, clusters
by xenon Kα characteristic X-ray detected throughout the measurement are used. Figure 4.7 shows
an example of the photon count spectrum of the xenon Kα characteristic X-ray before and after the
correction. After the correction, it is evident that the peaks of the Kα (29.68 keV) and the Kβ (33.62 keV)
characteristic X-rays are clearly separated.

The average EL gain in this measurement was found to be 11.5, which is smaller than the 12.5 in the
previous study[65]. This is presumably because the number of photons reaching the MPPC decreased due
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Fig. 4.8 Distribution of the time intervals between scintillation and the end of the ELCC signal.
The peak at 363µs is formed by the events across the cathode plane.

to the change of the geometry of ELCC cell; 4.5mm open hole in the previous study to 4.1mm tapped
hole in this study (Sec. 2.3.2). Therefore, alternative methods to mitigate discharges in the cells will be
employed in the future.

4.2.2 PMT waveform analysis

To select primary scintillation photon, hits are identified from the PMT waveform with a certain threshold
from the baseline. Since EL light from ELCC cells as well as primary scintillation light makes hits, those
with a width of less than 400 ns and at least 1µs away from other hits are selected as primary scintillation
candidates. We refer to hits of these candidates as “scintillation-like hits”, and other hits as “EL-like
hits”. Of these scintillation-like hits, when two or more PMTs has hits within same 100 ns time window,
they are considered as primary scintillation light hit clusters. This criterion is based on the fact that
the signal from primary scintillation light typically a single photon per PMT, making it necessary to
distinguish them from randomly occurring PMT dark pulses. Events with multiple clusters are rejected
in this study, as it is unclear which cluster is truly associated with the event timing. The distribution of
the time intervals between the selected primary scintillation candidate and the end of the ELCC signal
is shown in Fig. 4.8. The peak at 363µs is considered to be formed by events crossing the cathode,
z = 40 cm. From this, the drift velocity of ionization electrons was derived to be 1.10mm/µs. The
z-positions of ELCC hits are reconstructed using this drift velocity. As can be seen in Fig. 4.8, more
events were detected at larger time intervals (i.e., longer drift length). This is likely because, for events
with longer drift length, the scintillation light is generated closer to the PMTs, resulting in improved
detection efficiency due to a larger solid angle coverage. Entries with time interval exceeding 363µs are
presumably events in which EL light induced photoelectrons on the cathode mesh, which then drift and
are subsequently detected by ELCC. A small peak is also observed around 0µs. This likely reflects events
in which the primary scintillation light was not detected, and the EL light from the ELCC was mistakenly
identified as primary scintillation light by the PMTs.

There are additional selections to avoid timing mismatches. Events in which multiple send-trigger
signals are accidentally detected are excluded, as they can cause timing mismatches depending on which
signal corresponds to the actual onset of the ELCC event. In addition, there were events in which EL-like
hits were observed in the region where the scintillation-like hits were expected. Since EL-like hits are
set of narrow hits, misidentifying some of them as scintillation-like hits can lead to timing mismatches.
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Fig. 4.9 Temporal variation of the photon count of xenon Kα characteristic X-rays before (left)
and after (right) correction. The energy peak of the xenon Kα is determined by performing a
Gaussian fit to the histogram of the photon counts. Red lines represent the peak position and its
fitting error.

These events were also removed.

4.2.3 Fiducial volume cut and overall corrections

The fiducial volume cut is applied to reject events with hits in the veto channel and restrict the z-
position to the 8 cm < z < 36 cm region. As will be described later, the restriction in the z-direction was
determined based on the range in which the z-dependence of the photon count remains linear. There
are small photon-count clusters generated by a few electrons and they disturb the fiducial volume cut.
These electrons are considered to be produced by the photoelectric effect by EL light or by the release of
electrons attached to impurities. After eliminating these small clusters, from events before the fiducial
volume cut is applied by using the information from ELCC and PMT. Then, following overall corrections
are applied.

Correction for temporal variation of photon counts
A temporal variation in EL light intensity was observed. One possible cause is the temporal variation
in gas purity, which likely led to changes in the amount of impurities that absorb EL light. Therefore,
corrections were applied for 30 minute intervals in this study, using the xenon Kα energy peaks. Figure
4.9 shows the time evolution of the photon counts from xenon Kα before and after correction. The photon
counts corresponding to the xenon Kα were corrected to be uniform in time.

Correction of the z-dependence of the photon count
Some of ionization electrons are lost during drift due to attachment to impurities. The attenuation length
is determined from the z-dependence of the photon count of xenon Kα clusters. Figure 4.10 shows the
dependence in this study, from which the attenuation length was determined to be (27 500± 1020)mm.
This corresponds to an electron lifetime of (25.0±0.9)ms. The photon counts for every waveform sample
are corrected using this attenuation length. In Fig. 4.10, deviations are observed for the smallest and the
largest drifts, but the cause is not known. A possible reason is the mis-reconstruction of the z-position.
The mis-reconstruction originates from the low detection efficiency of scintillation light. Currently, a new
module with higher detection efficiency is under development, which utilizes an acrylic plate coated with
a wavelength-shifting material and an MPPC glued behind it. Another possible reason for the deviation
on the smallest drifts is insufficient MPPC non-linearity correction. On the smallest drifts, diffusion of
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Fig. 4.10 Dependence of the photon counts of Kα clusters on the z-position. The red line shows a linear fit.

ionization electrons during drift is small, resulting in a relatively higher photon counts per unit time and
very large MPPC non-linearity. The MPPC signal is shaped by an analog filter with a time constant
of 220 ns and digitized at a finite sampling rate of 5MHz[69], and the correction may be inaccurate for
such a case. This effect may be validated by comparing simulation data with and without the inclusion
of MPPC non-linearity.

Overall fine-tuning for the non-linearity of MPPCs
The effective recovery time of an MPPC can vary from the pre-measured one due to temperature changes,
etc. If there remains an overall difference between the effective and the independenly calibrated MPPC
non-linearity, the effect appears as a linear relation between the photon counts and corrected squared
sum, CSS:

∑
i r

i
(
N i

rec

)2 of events as follows[65].

∑
i

riN i
rec −Ntrue =

∑
i

riN i
obs

1− k′N i
obs

−Ntrue ' ∆k
∑
i

ri(N i
rec)

2 (4.2)

Here, i runs over every sampling of the waveforms of every hit channel, ri is the correction factor other
than the MPPC non-linearity, N i

obs and N i
rec are the photon counts before and after the MPPC non-

linearity correction (Sec. 4.2.1), and Ntrue is the true total photon count of the event. ∆k = k − k′ is
the difference between the true and calibrated MPPC non-linearity. The true (calibrated) non-linearity
parameter k(′) is expressed as k = τ (

′)/(∆t · Npixel) using the true (calibrated) MPPC recovery time
τ , sampling interval ∆t, and the number of MPPC pixels Npixel. In this study, the photopeaks of the
911 keV gamma rays from 228Ac, 1461 keV gamma rays from 40K, and the double escape peak of 2615 keV
gamma rays from 208Tl were used to evaluate this effect. Distributions of photon counts vs. CSS for
these peaks are shown in Fig. 4.11. As described in [65], the observed slopes indicate the overall bias
in the MPPC non-linearity correction through the recovery time of MPPCs. The obtained overall bias
∆τ = τ − τ ′ was 6.11 ns, compared to the mean calibration value of 72.9 ns. The MPPC non-linearity
correction, EL gain correction, correction for the temporal variation of the photon counts and correction
of the z-dependence of the photon counts are then repeated with the recovery times shifted by this overall
bias.
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Fig. 4.11 Photon counts vs. CSS of the photopeak of 911 keV gamma rays from 228Ac (top left),
1461 keV gamma rays from 40K (top right) and double escape peak of 2615 keV gamma rays from
208Tl (bottom).

Table 4.2 Summary of the mean photon counts and resolutions for peaks in Fig. 4.12.

Energy photon counts resolution [FWHM]

xenon Kα 29.68 keV (1.549 64± 0.000 08)× 104 (4.431± 0.097)%

xenon Kβ 33.62 keV (1.761 33± 0.000 19)× 104 (4.364± 0.023)%

228Ac 911.2 keV (4.804 52± 0.000 31)× 105 (1.103± 0.017)%

environmental 40K 1461 keV (7.704 36± 0.001 82)× 105 (1.065± 0.066)%

Double escape of 208Tl 2615 keV 1593 keV (8.400 14± 0.000 34)× 105 (0.980± 0.009)%

208Tl 2615 keV (1.378 68± 0.000 59)× 106 (0.672± 0.083)%

4.3 Energy resolution
The obtained EL photon count spectrum is presented in Fig. 4.12. The 208Tl 2615 keV gamma ray peak
and the single escape peak are clearly seen. Each peak of the spectrum was fitted with a combination
of a Gaussian and a linear function, and the results are summarized in Table 4.2. By interpolating
these results, the energy resolution at the 136Xe 0νββ Q value of 2458 keV was estimated. Two types of
energy dependence were considered: a case in which statistical fluctuation dominate (a

√
E) and a case

in which systematic errors proportional to the energy exist (a
√
E + bE2). Figure 4.13 shows the result

of the interpolation to the 0νββ Q value. Characteristic X-rays are used for EL gain correction in the
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Fig. 4.12 Photon count spectrum after applying all corrections and cuts. The drop in the spectrum
below 3×105 photons is due to the downsampling of the whole trigger. To reduce the data size and
acquire high-energy events efficiently, the whole trigger is issued only once every 50 000 occurrences.

Table 4.3 Summary of the fitted functions to the energy resolutions.

Function a b resolution at the 0νββ Q value [FWHM]

a
√
E 0.336± 0.005 - (0.678± 0.010)%

a
√
E + bE2 0.297± 0.029 (2.99± 2.59)× 10−4 (0.788± 0.077)%

analysis, which may lead to an apparently better energy resolution than the actual one. Double escape
events involve the emission of two charged particles — an electron and a positron — and may exhibit
different energy resolution behavior compared to single-electron photoabsorption events. Therefore, the
interpolation was performed using only the data points corresponding to photoabsorption events of gamma
rays (indicated by black dots in the figure). The Fit results are summarized in Tab. 4.3. The estimated
energy resolution at the 0νββ Q value is (0.678±0.010)% for a

√
E and (0.788±0.077)% for a

√
E + bE2.

As shown in Tab. 4.3, the value of b in the form a
√
E + bE2 is small and generally consistent with zero,

suggesting that the contribution to the energy resolution is predominantly due to statistical fluctuations.

4.4 Breakdown of the energy resolution
The energy resolution of the 2615 keV γ-ray events obtained in the previous section was analyzed in terms
of its contributing factors based on [65][68]. Table 4.4 summarizes the breakdown. In the following, we
describe the details of each estimate according to the source of error.

4.4.1 Fluctuation in the signal generation process

This section discusses the following four factors contributing to fluctuations in signal generation.
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Fig. 4.13 Measured FWHM energy resolutions at various energies and interpolation to the 136Xe Q value.

Fluctuation of the number of initial ionization electrons
The fluctuation in the initial number of ionization electrons εinit is given by the following equation.

εinit = 2.355×
√
F

N
= 2.355×

√
FW

E
(4.3)

where E is the energy of the event. F and W is the Fano factor and the average energy to produce one
ionization electron (Sec. 1.6). Consequently, the fluctuation at 2615 keV is estimated to be 0.25%.

Recombination
When the drift electric field is weak, ionization electrons are lost due to recombination, resulting in
a deterioration of the energy resolution. Figure 4.14 shows the relationship between the electric field
and energy resolution when measuring 662 keV gamma rays with an ionization chamber[59]. At drift
fields equivalent to ≥ 100V/cm/bar, the energy resolution reaches 0.5%, whereas in an applied field of
89.9V/cm/bar, the resolution deteriorates to 0.6%. This corresponds to 0.17% when scaled to 2615 keV.

Fluctuation of the attachment
The attenuation length of ionization electrons in this measurement was found to be 27 500mm, and the
variaton in the photon counts within the fiducial region 8 cm < z < 36 cm was at most 1.02%. Therefore,
using the average number of photons for 2615 keV events, Nph = 1.379 × 106, the fluctuation due to
attachment εatt is expressed by the following equation and is estimated to be at most 0.02%.

εatt = 2.355×
√
0.0102×Nph

Nph
(4.4)
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Table 4.4 Breakdown of the energy resolution of 2615 keV γ-ray events.

Fluctuation of the number of initial ionization electrons (Sec. 4.4.1) 0.25%

Mis-reconstrunction of z-position (Sec. 4.4.4) 0.24%

Fluctuation of the EL generation and detection (Sec. 4.4.1) 0.20%

Error in EL gain calibration (Sec. 4.4.2) 0.18%

Error in time dependence correction (Sec. 4.4.2) 0.18%

Recombination (Sec. 4.4.1) 0.17%

Variation in time bin of time variation correction (Sec. 4.4.2) 0.12%

Offset of the baseline (Sec. 4.4.3) ≤ 0.11%

Error in z dependence correction (Sec. 4.4.2) ≤ 0.06%

Fluctuation of the attachment (Sec. 4.4.1) ≤ 0.02%

Accuracy of the MPPC recovery time (Sec. 4.4.2) ≤ 0.03%

Position dependence of the EL gain (Sec. 4.4.3) ∼ 0%

Waveform filtering in the AxFEB (Sec. 4.4.3) ∼ 0%

Estimation total 0.52% to 0.54%

Data total (0.67± 0.08) %

Fig. 4.14 Drift electric field dependence of the intrinsic energy resolution (%FWHM) measured for
662 keV γ-rays. Gas densities are shown at right of the curves. This figure is taken from [59].

Fluctuation of the EL generation and detection
The fluctuation of the EL generation and detection εELgain is given by the following equation, using the
average number of ionization electrons Ne = E/W and the average EL gain g = 11.5 (Sec. 4.2.1).

εELgain = 2.355×
√

1

gNe
(4.5)

Consequently, the fluctuation at 2615 keV is estimated to be 0.20%.
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4.4.2 Correction error

This section discusses the following five factors contributing to errors in the correction process.

EL gain correction
The error in EL gain correction originates from the accuracy in determining the photon count of the Kα

peak for each channel used in the correction, and is given by the following equation,

εELcor = 2.355×
√∑

ch(εchNch)2

N
∼ 2.355× ε

√∑
chN

2
ch

N2
(4.6)

where εch is the error of the peak photon count for each channel, ε is the mean error, Nch is the mean
photon count for each channel, and the N is the mean photon count at 2615 keV. ε = 0.53% is derived
from the mean of the fit errors for the Kα peak for each channel.

∑
chN

2
ch/N

2 is also calculated for each
event, and 0.021 is obtained as the mean of its distribution. Therefore, the contribution is estimated
to be εELcor = 0.18%. This contribution can be interpreted as 2.355 × ε/√neff , where neff denotes the
effective number of hit channels. From this relation, neff = 47.2 is obtained.

Accuracy of the MPPC recovery times
The contribution of the MPPC recovery time error can be separated into the error associated with the
recovery time of individual MPPCs and the overall systematic bias. The recovery time of individual
MPPCs has been measured with a precision about 0.5 ns. Simulations have shown that this contribution
is negligible[66]. The effect of the overall bias is estimated from Eq. 4.2. After the overall fine-tuning
for the non-linearity of MPPCs, the difference of the non-linearity parameter ∆k = (8.33± 2.08)× 10−7

is obtained. The stanadrd deviation of the distribution of CSS for 2615 keV events ∆CSS is 1.96× 108,
and the mean photon count N is 1.379 × 106. Therefore, the contribution is expressed by the following
equation and is estimated to be at most 0.03%.

εMPPC = 2.355× ∆k ×∆CSS

N
(4.7)

Error in time dependence correction
The temporal variation in photon count is corrected using the peak photon count of the Kα characteristic
X-ray in each time bin (Sec. 4.2.3). The relative error of the peak photon count is, on average, 0.076%, and
based on the error propagation, the relative error of the correction factor is also 0.076%. Therefore, the
error associated with the time dependence correction is estimated to be εtcor = 2.355×0.076 % = 0.18 %.

Variation in time bin of time variation correction
The impact of temporal variation within a time bin was estimated from the peak values of adjacent
time bins. Over the 30-minute interval between time bins, the average temporal variation in relative
error was 0.18%. Assuming uniform variation within each bin, the resulting error is estimated to be
εtbin = 2.355× 0.18 %/

√
12 = 0.12 %.

Error in z dependence correction
The error in the z dependence correction originates from the error in determining the attenuation length.
The variation in photon count ∆Ncor due to deviations in the attenuation length is given by the following
equation.

∆Ncor =
∑
i

riN i
obs

(
1 +

zi

λ′

)
−
∑
i

riN i
obs

(
1 +

zi

λ

)
'
(

1

λ′ −
1

λ

)
zNcor (4.8)
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Here i runs over every sampling of the waveforms of every hit channel, ri is the correction factor other
than the z dependence correction, zi is the z-position of each sampling of the waveform, λ(′) is the
true (estimated) attenuation length, and z is the photon-count weighted centroid position of event in z

direction. Therefore, the slope in photon counts vs. z× photon counts distribution shows the difference
of the attenuation length. In this study, the photopeaks of the 911 keV gamma rays from 228Ac, 1461 keV
gamma rays from 40K, and the double escape peak of 2615 keV gamma rays from 208Tl are used to evaluate
this effect and 1/λ

′−1/λ = (4.24±0.69)×10−6 mm−1 is obtained. Since the standard deviation ∆(zNcor)

at 2615 keV is obtained as 6.80× 107 mm and the mean photon count N = 1.379× 106, the contribution
is estimated to be at most 0.06% by the following equation.

εzcor = 2.355×
(

1

λ′ −
1

λ

)
× ∆(zNcor)

N
(4.9)

4.4.3 Hardware-origin error

This section discusses contributions originating from hardware components.
The EL gain varies depending on the relative position within the cell in which the ionization electron

enters[77]. This effect has been taken into account in the simulation and a comparison with the case
assuming uniform gain within the cell has shown that the impact is negligible.

The signal from the ELCC is shaped by a Sallen-Key filter on the AxFEB and subsequently digitized.
The effects of this filtering and digitization have also been evaluated through simulation and found to be
negligible.

Offset of the baseline
Since the waveform is digitized, the baseline cannot be determined with a precision better than 1 ADC
count. Therefore, when the total number of hit clocks (hereafter referred to as hit volume) fluctuates, the
integrated value can vary by up to the fluctuation multiplied by 1 ADC count. The standard deviation
of the hit volume distribution ∆V at 2615 keV is 2296 clocks. Using the mean MPPC gain of g = 0.954
ADC/1 p.e. and the mean photon count N = 1.379× 106, the variation caused by a maximum offset of
1 ADC count across all channels is calculated to be at most 0.41%, as given by the following equation.

∆N = 2.355× ∆V

g ×N
(4.10)

The contribution of this variation to the energy resolution εoffset1 is estimated using the effective number
of hit channels neff obtained in Sec. 4.4.2 (EL gain correction), yielding εoffset1 = 0.41 %/

√
neff = 0.06 %.

In addition, even when the hit volume is identical, variations in the offset values can also contribute to
fluctuations. The mean of the hit volume distribution V at 2615 keV is 1.165× 104 clocks. Therefore, if
the offset uniformly distributes from 0 to 1, the variation caused by this effect is calculated to be 0.60%,
as given by the following equation.

∆N = 2.355× V√
12× g ×N

(4.11)

The contribution of this variation to the energy resolution εoffset2 is estimated as εoffset2 = 0.60 %/
√
neff =

0.09 %. By combining these two contributions, the impact of the baseline offset is estimated to be at
most 0.11%.
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4.4.4 Mis-reconstruction of z-position

This section discusses the error arising from mis-reconstruction of the z-position due to incorrect detection
of scintillation light.

Let ε denote the detection efficiency of scintillation light, and µacc the average number of accidental
scintillation hits. Then, the probabilities that the number of scintillation hit clusters nsci is 0 or 1 are
given by the following expressions.

P (nsci = 0) = (1− ε)e−µacc (4.12)

P (nsci = 1) = (1− ε)µacce
−µacc + εe−µacc (4.13)

From the measured distribution of number of scintillation hit clusters, solving the above equations simul-
taneously yields ε = 0.701 and µacc = 0.402. Under these conditions, the probability of mis-reconstruction
due to failure in detecting scintillation light and the presence of accidental scintillation hit is calculated
to be 14.6%, as given by the following equation.

Pmiss =
(1− ε)µacce

−µacc

P (nsci = 1)
(4.14)

Assuming that the peak photon count at 2615 keV follows a Gaussian distribution with mean N and
standard deviation σ, and that a fraction p of events fluctuates by N×d, the resulting increase in variance
is given by N2pd2(1−p), and the corresponding coefficient of variation is d

√
p(1− p). If the distribution

of z position due to mis-reconstruction is uniform within the fiducial region 8 cm < z < 36 cm, the
variation of photon count is uniformly distributed within a dmax =1.02% range (Sec. 4.4.1, Fluctuation
of the attachment). Based on this, the contribution to the resolution εzmis is estimated to be 0.24%, as
given by the following equation.

εzmis = 2.355×
dmax ×

√
Pmiss × (1− Pmiss)√

12
(4.15)

4.4.5 Summary

The energy resolution of 2615 keV γ-ray events was measured to be (0.67± 0.08) %, while the estimated
resolution ranges from 0.52% to 0.54%, indicating an unknown contribution of 0.25%. One unaccounted
factor is the fluctuation due to MPPC non-linearity. As described in Sec. 4.2.1, the MPPCs have a
non-linear output under high light intensity. Whether multiple photons simultaneously hit a given pixel
is governed by a statistical process, which introduces an associated error. However, this error has been
provisionally estimated at 0.09% based on simulation, and it does not fully account for the total unknown
contribution of 0.25%. Therefore, further investigation into other contributing factors is necessary.

In this measurement, the drift electric field strength was set to 89.9V/cm/bar, and the EL field was
reduced to 2.72 kV/cm/bar. These conditions affect recombination and the fluctuation of EL generation
and detection, respectively. If the electric fields had been applied according to the design specifications,
their contributions would be estimated as 0.19% and ∼ 0%, respectively. Therefore, the degradation in
resolution due to reduced electric field strength is estimated to be 0.18%, suggesting that its impact on
the overall energy resolution is limited.
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Fig. 4.15 An example of reconstructed track of 2615 keV events. In the 3D plot, the size of the
points is proportional to the photon counts. One blob can be seen at the end of the track.

4.5 Track topology
Reconstructed tracks of a 2615 keV and a 1593 keV of gamma induced electrons are shown in Fig. 4.15
and Fig. 4.16, respectively. The 2615 keV corresponds to the photoelectric absorption peak of gamma
rays from 208Tl, and the event looks like a single electron track. The 1593 keV corresponds to the double-
escape peak of the 2615 keV gamma rays from 208Tl, and the event presumably consists of two tracks,
one electron and one positron, originating from a single vertex due to pair creation. At the end of the
each track, there is a blob associated with high energy loss and multiple scattering. In the 2615 keV

event, there is one blob produced at the electron stop. The 1593 keV event produces two blobs at the
end of electron and positron track, respectively. Upon scanning multiple one cluster events we observe
that most of 2615 keV events appeared as single electron track as that in Fig. 4.15, while at 1593 keV,
they appeared as tracks with one electron and one positron as is in Fig. 4.16. Multi-cluster events were
also checked by eye and they are likely caused either by bremsstrahlung photons emitted by electrons
or by simultaneous interactions involving multiple photons. Since two blobs are expected in the 0νββ

event as well, this track information can be used to distinguish the single-electron events from gamma
ray backgrounds when the blobs are clearly seen as in these figures.
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Fig. 4.16 An example of reconstructed track of 1593 keV events. In the 3D plot, the size of the
points is proportional to the photon counts. There are 2 blobs corresponds to the end of the track
of an electron and a positron.
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Chapter 5

Simulation for machine learning

5.1 Background assumptions
The purpose of using machine learning in the AXEL experiment is to discriminate between signals
and background events using the 3D track information obtained by TPC. As described in Sec. 1.6, the
high energy resolution of the xenon gas TPC utilizing EL amplification makes the contamination from
2νββ negligible. According to [28], the contamination fraction F from 2νββ approximately scales as
F = 7Qδ6/me, where δ = ∆E/Q is the FWHM energy resolution expressed as a fraction, Q is the Q
value of 0νββ and me is the electron mass. For 1 ton of 136Xe, the annual number of 2νββ decays
is approximately 1.3 × 106, with the half-life of 2.34 × 1021 years[41]. Even without considering the
detector efficiency, the number of events leaking into the region of interest due to the energy resolution
is less than 6.9 × 10−7 per year when δ = 0.5% and it is negligible. Prompt gamma rays resulting
from the absorption of cosmic-ray-induced neutrons can be eliminated by surrounding the detector with
veto detectors and applying coincidence techniques. Long-lived nuclei produced by the nuclear spallation
of 136Xe are collected on the cathode of the TPC. Electron-ion recombination in gas is weak, and a
study investigating the decay chain of 222Rn in a xenon gas TPC has shown that the resulting ions are
collected at the cathode with nearly 100% efficiency over a 530mm drift region[78]. Therefore, β-rays
and associated γ-rays from these long-lived nuclides can be removed by applying a fiducial cut near the
cathode, and coincidence techniques. α tracks are very short and can be easily rejected thanks to the
track reconstruction capability of the TPC. A potential issue with beta sources is the production of 137Xe
through neutron absorption by 136Xe[51]. 137Xe has a half-life of 3.8 minutes and undergoes β-decay with
a Q-value of 4.16MeV. The continuous β-spectrum includes components with energies near the Q-value
of 0νββ, which can contribute to the background. Due to its relatively long lifetime, it cannot be vetoed
by coincidence with cosmic-ray muon events. This background is unavoidable when using 136Xe; however,
it can be mitigated by adding 3He, which has a large neutron absorption cross section[47].

Consequently, the potential background sources include electrons produced by photoelectric absorption
of gamma rays with energies near the Q-value of xenon 0νββ, as well as electrons from the decay of
cosmogenically produced 137Xe, which acts as a β-emitter and cannot be vetoed by coincidence techniques.
In this study, three types of background sources are considered: 214Bi, 208Tl, and 137Xe. 214Bi is a
nucleus in the uranium series and undergoes beta decay to 214Po, emitting a 2448 keV gamma ray with a
probability of approximately 1.5%, close to the Q-value of 136Xe 0νββ. The energy difference is 0.69%,
which cannot be completely separated by the designed FWHM energy resolution of 0.5% in the AXEL
experiment. 208Tl is a nucleus in the uranium series and undergoes beta decay to 208Pb, emitting a
2615 keV gamma ray with a probability of approximately 99.8%. Although this energy is significantly
higher than the Q-value, it can contribute to events near the Q-value if it undergoes Compton scattering
in components outside the TPC, such as the pressure vessel, losing energy before being photoelectrically
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absorbed within the TPC. As previously mentioned, 137Xe is produced via neutron capture induced by
cosmic rays, and the continuous component of its beta spectrum includes events near the 0νββ Q-value,
which contribute to the background. To distinguish these backgrounds, the track information will be
used. In the 0νββ event, multiple scattering of two electrons at the stop produces two blobs, whereas
only one blob is produced in the γ ray background from 214Bi and 208Tl, or β ray background from 137Xe.
These characteristics can be used for discrimination.

In this study, the following procedures were used to build and validate the machine learning model.
Simulations of 0νββ events and γ ray background events were performed using Geant4[79]. The generated
ionization electrons are converted into signal waveforms considering the detector response; diffusion in
the drift, EL light generation at the ELCC, analog filtering and digitization in the frontend board. The
waveform is reconstructed into a 3D track by the same analysis as Chap. 4. These track data are split into
datasets for training and validation of machine learning models. The machine learning model is trained
to discriminate tracks into 0νββ signal and background based on training data, and its performance is
evaluated on a validation data set. The photoelectric absorption events of the 2615 keV gamma rays from
208Tl, observed in the measurements described in Chap. 4, were also input into the model. The behavior
of these events was then compared with that of the simulated background data.

5.2 Creation of data set for training model

5.2.1 Event generation using Geant4

The particles produced by the 0νββ decay and the γ-ray reaction were simulated using Geant4. Differ-
ences in beta-ray energy manifest as variations in track length. Although the Q-value of 0νββ in xenon
is 2458 keV and the gamma ray from 214Bi has an energy of 2448 keV, the simulation energy was set to
2615 keV for both 0νββ and gamma rays in order to enable a direct comparison of track shapes with the
2615 keV events obtained in Chap. 4.

The 0νββ events were generated uniformly within the xenon gas volume in the geometry. The energy
and opening angle of the electrons emitted in the 0νββ decay were sampled according to the following
distribution[80],

dΓ

dE1d cos θ
∝ 1− β1β2 cos θ (5.1)

where Γ denotes the decay rate, E1 is the energy of one of the emitted electrons (with E2 = Qββ +2me−
E1), β1 and β2 represent the velocities of the respective electrons normalized by the speed of light and θ
is the opening angle between them.
γ-ray events were generated vertically downward from an area above the gas volume, 260mm wide and

370mm long, which corresponds to the sensitive area of the TPC. However, as will be discussed later in
this section, it was found that electrons emitted via the photoelectric effect are strongly biased in the
direction of incident γ-rays. Consequently, using these data for model training could lead to incorrect
learning, where vertically downward tracks are mistakenly classified as background. To mitigate this
issue, we applied an additional process that randomly rotates each track in 4π steradians around the
midpoint of its spatial coordinates, thereby eliminating the directional bias of electron emission.

To reduce data size, only events that dropped all energy into xenon gas were stored. In this study,
1.2× 106 0νββ events and 3.6× 109 γ-ray events were generated.
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Fig. 5.1 Sauter-Gavrila distribution at the energy of photoelectron E = 2580 keV, β = 0.986 and γ = 6.05

Emission direction of electrons in the photoelectric effect
The direction of the electron emitted by photoelectric absorption is considered to follow the Sauter-Gavrila
distribution with respect to the incident direction of the gamma ray[81][82],

dσ

d(cos θ)
∼ sin2 θ

(1− β cos θ)4

{
1 +

1

2
γ(γ − 1)(γ − 2)(1− β cos θ)

}
(5.2)

where β and γ are the Lorents factors of the photoelectron. Figure 5.1 shows the angular distribution
described above for an electron with energy corresponding to a 2615 keV gamma ray minus the xenon
binding energy of 34.57 keV (β = 0.986, γ = 6.05). It can be seen that the emission direction of the
electron is highly biased toward the forward direction.

5.2.2 Waveform generation

In this section, we describe a method for generating ADC waveforms from Geant4 simulation data that
resemble those obtained from actual measurements. Since the simulation data were produced in parallel
with the acquisition of real data, some of the parameters used in the waveform generation were derived
from the analysis results of measurement data collected up to July 25.

Generation of ionization electron
Ionization electrons are randomly generated along the track using the information of energy deposit from
Geant4 simulation. A W value of 22.1[44] and a Fano factor F of 0.13[45] are used to determine the total
number of electrons generated.

Diffusion and attachment
The position of the electrons are then randomly displaced by the amount of diffusion expected after the
drift from the generation point to the point 2 cm before ELCC. The diffusion constants were calculated
using Garfield++[83] for pure xenon at 6.8 bar, and the obtained values are 0.118 cm/

√
cm for trans-

verse diffusion, 0.033 cm/
√
cm for longitudinal diffusion, respectively. Considering the effect of electron
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attachment, the electrons were eliminated with the following probabilities according to the z-position.

Pattach = 1− exp(−z/Latt) (5.3)

Here, z is the z-position of the electron, Latt is the attenuation length due to the attachment, respectively.
As the attenuation length, we used Latt = 36 000mm estimated from measurements up to July 25. For
the full dataset, the estimated attenuation length is (27 500± 1020)mm.

EL photon conversion
For each electron, the number of photons generated in the EL process is calculated according to a Poisson
distribution with mean EL gain g. The mean EL gain is set to g = 10.8, estimated from measurements
up to July 25. In order to incorporate the effect of the EL gain being different for each ELCC channel,
we fluctuate it channel-by-channel by the standard deviation of 5.9%, which were determined from the
distribution of the photon counts of the Kα peak of each channel.

MPPC non-linearity
The recovery time τ of each MPPC, which determines the linearity characteristic is randomly set according
to the nominal distribution of mean 73.2 ns and standard deviation 2.5 ns based on the recovery times
measured in the calibration. In the model, the gain of one MPPC pixel with a hit decreases by a factor
of 1− exp(−t/τ) at time t after the hit, the effective gain of the MPPC g is given by,

g[i] = g0

(
1−

∞∑
j=0

Nobs[i− j]
Npix

exp(−j∆t/τ)
)

(5.4)

where i, j are time indices with a calculation time step ∆t, g0 is the gain of MPPC under conditions with
no prior hits and Npix is the number of pixels of the MPPC. Nobs is the number of photons observed
and is related to the true number of photons incident on the MPPC, Ntrue, by Nobs = g/g0×Ntrue. The
calculation time step ∆t is set to 20 ns. Thus, the mean number of photons observed Nobs is given by

Nobs[i] = Ntrue[i]−
Ntrue[i]

Npix

∞∑
j=0

Nobs[i− j] exp(−j∆t/τ) (5.5)

The number of photons at each time index was determined by a binomially distributed random number
B(n, p) with n = Ntrue and p = Nobs/Ntrue.

Analog filter
An analog filter was applied to the photon count at each clock. The schematic diagram of second-order
Sallen-key filter used in AxFEB is shown in Fig. 5.2. The transfer function G(s) = Vout/Vin of this filter
is given by

G(s) =

1

R1R2C1C2

s2 + s

(
1

R1C1
+

1

R2C1

)
+

1

R1R2C1C2

(5.6)

where s = jω, j is the imaginary unit and ω is the frequency of the input signal. For AxFEB, R1 = R2 =

1kΩ and C1 = C2 = 220 pF. With R1C1 = R2C2 = τ , the inverse Laplace transform of Eq. 5.6 yields
the following impulse response function,

y(t) =
t

τ2
exp(−t/τ) (5.7)
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Fig. 5.2 The schematic diagram of second-order Sallen-key filter.

The filtered photon count was obtained considering the contribution of past clocks using the response in
Eq. 5.7. The filtered photon count was then converted to an ADC count by multiplying it by the MPPC
gain and rounding to the nearest integer. MPPC gain was set to the 0.9577 ADC/1 p.e. according to
the previous study[66].

5.2.3 Analysis

The sequential array of the ADC data obtained are used as ELCC waveforms and analyzed in the same
way as the previous chapter. In this study, the scintillation is not simulated and the timing information
is created with the event occurrence timing set to t = 0. The values given in the previous section, the
MPPC gain, MPPC non-linearity and the decay length, are also used for this analysis, too. A fiducial
volume cut was also applied, but with the cut range set to 2 cm < z < 39 cm in order to maximize the
usable volume. Fine-tuning (Sec. 4.2.3) was not performed because the non-linear parameters of MPPC
are known.

For the real data, the cut conditions described in Chap. 4 were slightly relaxed as follows to increase
the amount of data available for comparison with the simulation. The fiducial volume cut range was
modified to 2 cm < z < 39 cm, consistent with the simulation. Additionally, the extra selection criteria
for avoiding timing mismatches described at the end of Sec. 4.2.2 were not applied.

Then, events within one FWHM of the peak energy were selected. The simulation data were further
divided into training and validation datasets in a 3:1 ratio. The number of selected events in the simulation
and real data is summarized in Tab. 5.1.

Table 5.1 The number of events after applying the analysis.

data 0νββ events background events

simulation train data 17680 8383

simulation validation data 5894 2794

real data - 835

5.2.4 Elimination of the Compton-scattering events

From the post-analysis data set, we further cut events with multi clusters, which is mainly due to the
Compton effect. Since multiple clusters are also produced by electron bremsstrahlung, which we do
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Fig. 5.3 Distribution of photon counts of the cluster with the largest photon count in an event.
In the background data (bg), a dip that corresponds to the Compton edge is observed at around
1.2× 106 photon count.

not want to cut, the cutting method was studied by focusing on the photon counts of the clusters. The
distribution of photon counts of the cluster with the largest photon count in the event is shown in Fig. 5.3.
In the background data, a dip that corresponds to the Compton edge is observed at around 1.2 × 106

photon count. The Compton edge is given by Eq. 5.8 is 2382 keV for the 2615 keV γ ray, corresponding
to 91.1% of the total energy.

Ece =
2E2

me + 2E
(5.8)

Here, E is the energy of initial γ ray, and me is the mass of electron. We set the threshold to cut the
Compton effect at 92% of the peak. The survival efficiency of 0νββ and background events by this cut
is 99.3% and 75.1%, respectively.

5.3 Data set characteristics
In this section, we compare the characteristics of the simulation data with the real data obtained in
Chap. 4. In addition to comparisons between simulation datasets, comparisons between real data and
training data were also performed for the background. We focused on the overall and local photon count,
the number of clusters, and the volume and the position the tracks as factors influencing the model’s
output. The number of events is 17 554 for the simulated 0νββ data, 6230 for the simulated background
data, and 503 for the real 208Tl data after the Compton-scattering cut. In the following, the error bars
of each histogram bin represent the standard deviation according to the Poisson distribution. Given the
differences in the amount of data, each bin of the histograms was normalized to the proportion of the
total number of events.

5.3.1 Overall photon count

Figure 5.4 shows the distribution of the photon counts of events. The photon count of the simulated
data is 7.4% smaller than that of the real data. This is mainly due to the ELgain in the simulation was
configured based on measurement results obtained up to July 25 (Sec. 5.2.2), resulting in a value that
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Fig. 5.4 Comparison of photon count distributions. The left panel shows the comparison with
simulated 0νββ and background, while the right panel shows the comparison between simulated
background and real data.

was 6.1% smaller compared to the real data. An possible explanation for the remaining difference is that,
in the real data, EL light is generated randomly during the drift within the ELCC cell, whereas in the
simulation data, it is generated all at once upon reaching the ELCC. This discrepancy may have led to
an excessive application of the MPPC non-linearity in the simulation, resulting in insufficient correction
during the analysis. Differences in overall photon count between real and simulation data could affect
machine learning; however, in our model, normalization is applied, and thus such differences are not
expected to influence the results.

5.3.2 Local photon count

In the analysis of ELCC waveforms, the photon count for each hit within an event is calculated based on
the pulse height and the time width. The distribution of the photon count of the highest-photon-count
hit among these is shown in Fig. 5.5. This quantity is related to the spatial concentration of ionization
electrons that generate the EL signal. The distribution of 0νββ is slightly larger than the background
in the simulation data. In the comparison between real data and simulation, the real data tends to be
larger and has a wider distribution. One of the factors is the difference in EL gain discussed in Sec. 5.3.1.
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Fig. 5.5 Comparison of the photon count distributions of the highest-photon-count hits in each
event. Comparison with simulated 0νββ and background are shown in left, simulated background
and real data are shown in right.

Another factor is the bias introduced by the veto around the dead or high dark current channel (Fig. 4.4)
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in the real data, which results in tracks being concentrated in a narrow region.

5.3.3 Number of clusters

Figure 5.6 shows the distribution of the number of clusters (Sec. 4.2.1) of events. The simulation data
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Fig. 5.6 Comparison of cluster number distributions. The left panel shows the comparison with
simulated 0νββ and background, while the right panel shows the comparison between simulated
background and real data.

tends to show more clusters in the background than in the 0νββ events. This is likely due to the
gamma-ray background causing Compton scattering followed by photoelectric absorption, resulting in
clusters forming at distant locations. Additionally, photons from bremsstrahlung create clusters at distant
locations. In the 0νββ, the decay energy is shared between two electrons, whereas in background events,
the electron generated by photoelectric absorption carries the entire energy, making it more energetic
and more likely to cause bremsstrahlung. The distribution of the number of clusters in the simulation
and in the real data is relatively consistent. Figure 5.7 shows a comparison of simulation and real data
without the Compton-scattering cut described in Sec. 5.2.4. Compared to Fig. 5.6, the number of clusters
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Fig. 5.7 Comparison of cluster number distributions for simulated background and real data with-
out the Compton-scattering cut.

has increased for both simulation and real data, but the increase is greater for real data. This may be
because the real data include accidental coincidence events such as those shown in Fig. 5.8. Although
such events are not considered in the simulation, they are eliminated by the Compton-scattering cut.
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Fig. 5.8 An example track of accidental coincidence event. It is likely that the total energy of the
events occurring at the same time coincidentally matches 2615 keV.

5.3.4 Track volume

Figure 5.9 shows the distribution of the number of hit channels of each event. This corresponds to the
degree of spread of the tracks in the xy plane. In the simulation data, the 0νββ tends to have fewer hit
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Fig. 5.9 Comparison of number of hit-channels distributions. The left panel shows the comparison
with simulated 0νββ and background, while the right panel shows the comparison between simulated
background and real data.
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channels compared to the background. This is likely because, in the 0νββ, the decay energy is divided
between two electrons, resulting in shorter ranges for each electron. In the comparison between the
background simulation data and the real data, the real data tends to have fewer hit channels. This is
likely be caused by the dead or high dark current channels as discussed in Sec. 5.3.2, which result in
tracks being concentrated in a narrow region. The distribution of the real data more closely resembles
that of the 0νββ simulation data, which may influence the machine learning model’s classification. This
issue is discussed in detail in Sec. 6.6. A similar trend can be seen in the distribution of the hit volume
which is the total number of ADC clocks for all hits for an event(Fig. 5.10).
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Fig. 5.10 Comparison of hit volume distributions. The left panel shows the comparison with
simulated 0νββ and background, while the right panel shows the comparison between simulated
background and real data.

5.3.5 Track position

For the comparison of track position, following two quantities are considered.

Photon-count weighted centroid position
Figure 5.11, 5.12, 5.13 show the distributions of the photon-count weighted centroid position of hits in
the x, y, z direction, respectively. The difference in the x direction between the real and simulated data
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Fig. 5.11 Comparison of distributions for photon-count weighted centroid of hits in the x-direction.
The left panel shows the comparison with simulated 0νββ and background, while the right panel
shows the comparison between simulated background and real data.

is due to positional constraints imposed by the veto pattern settings around dead channels and high dark
current channels, as described in Sec. 5.3.2. The slight positive bias of the y direction of the background
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Fig. 5.12 Comparison of distributions for photon-count weighted centroid of hits in the y-direction.
The left panel shows the comparison with simulated 0νββ and background, while the right panel
shows the comparison between simulated background and real data.
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Fig. 5.13 Comparison of distributions for photon-count weighted centroid of hits in the z-direction.
The left panel shows the comparison with simulated 0νββ and background, while the right panel
shows the comparison between simulated background and real data.

in the simulation data may be due to the fact that the generation of γ-ray events is not isotropic, but
rather vertically downward (Sec. 5.2.1). The z direction tends to be smaller in the real data than in the
simulated data. This may be due to the low detection efficiency of scintillation photon in the real data,
which may lead to a miss reconstruction of the z position.

Rise and fall z position
Rise and fall z-positions refer to the z-position of the earliest and latest hits in the event, respectively.
Figure 5.14, 5.15, 5.16 show the distribution of the rise, fall position and its difference, respectively.
The difference between 0νββ and background in the simulation data may reflect the difference in track
volume described in Sec. 5.3.4. In comparison with the real data, both rise and fall positions tend to be
smaller in the real data, but the difference between rise and fall is not so large. This also suggests the
z-misreconstruction in the real data. The difference between fall and rise position is possibly due to the
track size bias caused by veto. The distribution of the real data is closer to that of the 0νββ rather than
the simulation background, which could potentially affect the machine learning model’s discrimination.
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Fig. 5.14 Comparison of rise positions in z direction. The left panel shows the comparison with
simulated 0νββ and background, while the right panel shows the comparison between simulated
background and real data.
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Fig. 5.15 Comparison of fall positions in z direction. The left panel shows the comparison with
simulated 0νββ and background, while the right panel shows the comparison between simulated
background and real data.

5.3.6 Summary

The comparison between the 0νββ and background in the simulation data is summarized as follows. The
0νββ data showed a tendency to have fewer clusters compared to the background. This is likely due to
the Compton effect and bremsstrahlung. In the 0νββ data, the energy is divided between two electrons,
resulting in shorter ranges for each electron compared to the single electron in the background, leading
to a tendency for smaller track sizes.

The comparison between the simulated background data and the real 208Tl data is summarized as
follows. Due to differences in simulation settings, particularly EL gain, there is a 7.4% difference in
the overall photon counts. Accidental coincidence events, which are not considered in the simulation,
are eliminated by the Compton-scattering cut, resulting in a good match between the cluster number
distributions in the simulation and real data. However, the track sizes tend to be smaller in the real data,
which is likely due to the bias introduced by the veto around the dead or high dark current channels in the
actual data. Regarding the z-position of the tracks, the actual data shows a tendency to be smaller, which
may be influenced by mis-reconstruction in z-position due to the low scintillation detection efficiency.
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Fig. 5.16 Comparison of difference of fall and rise positions in z direction. The left panel shows
the comparison with simulated 0νββ and background, while the right panel shows the comparison
between simulated background and real data.
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Chapter 6

Track pattern recognition by machine learning

In this chapter, we construct a machine learning model using the simulation data generated in the
previous chapter. We begin by describing the preprocessing steps applied to the data before feeding it
into the model. Next, we explain the model architecture used in this study, along with the training
procedure and evaluation metrics. Finally, we present the training results for several model variations.
The characteristics of events where the model’s classification does not work well are also investigated,
and the reasons for the differences between the actual data and the validation data are considered.

6.1 Preprocessing
For each of the selected events, the rectangular volume containing the track is divided into appropriate
lattice voxels and the corresponding photon count, or energy deposit of the track in other words is assigned
to each voxel. This information is fed into the machine learning model. To assign the photon counts to
the voxels, additional transformations are performed as follows.

6.1.1 Geometrical transformation

ELCC cells are arranged in a hexagonal lattice, so voxelization with a square lattice would result in
unequal contributions to each voxel. Therefore, the layout of the ELCC cell is converted to a square
lattice shape by a skew transform Askew and y-directional expansion Ay−exp in advance.

Askew =

1 tan π
6 0

0 1 0

0 0 1

 , Ay−exp =

1 0 0

0 2/
√
3 0

0 0 1

 (6.1)

Figure 6.1 shows an example of a track projected in the x-y plane (left) before and (right) after the
transformation, respectively. This transformation allows the original track information to be preserved
by voxelizing it into a grid with 10mm intervals in the xy direction. Although this transformation
alters the distances between individual track points, the relative positions of adjacent cells are preserved.
As described in Sec. 6.2.2, the model used in this study employs operations that incorporate spatially
adjacent information but do not rely on the actual distances between points. Therefore, applying this
transformation is considered to be unproblematic.

6.1.2 voxel binning

The original data set has a resolution of 10mm, the pitch of the ELCC, in the xy direction. The resolution
in the z direction is determined by the ADCL sampling interval and the drift velocity of the ionization
electrons, which is approximately 0.2mm. The ionization electrons diffuse during drift, with diffusion
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Fig. 6.1 An example of a track projected to the x-y plane before (left) and after (right) transfor-
mation respectively.

Fig. 6.2 PDF of photon counts in voxels with at least one photon.

coefficients of 0.118 cm/
√
cm in the xy direction and 0.033 cm/

√
cm in the z direction. Due to the lack of

GPU memory, all information in the z direction cannot be used and must be merged at coarser intervals.
In this study, segmentation into voxels was performed at a pitch of 10mm in the xy direction and in the
z direction in a range of 2.5mm to 10mm, depending on the model.

6.1.3 Photon count transformation

Figure 6.2 shows the probability density function (PDF) of the photon counts in voxels with at least
one photon, based on training data voxelized at 10mm intervals for z direction. Considering the ELCC
plane and the 40 cm drift region of the 180L prototype detector, the number of voxels in the x, y and z

directions was set to (x, y, z) = (30, 36, 40). In both 0νββ and background events, the maximum photon
count of a voxel is about 105 photons. Photon counts less than 1/1000 of the maximum value occur with
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Fig. 6.3 A diagram of a neuron (left) and multilayer perceptron (right).

an approximately 100 000 times higher rate. We scaled the photon counts to account for the possibility
that these relatively small values may be difficult to maintain in the neural network. The scaling pattern
is as follows,

(1) identical
Does not scale photon counts.

(2) normalize
Normalize to the range [0-1] by dividing the photon counts by the maximum value in the event.

(3) digitize
Divide from 1 photon to the maximum number of photons in the event by 10 on the linear scale.
The value of each voxel is converted to [0, 0.1, · · · , 1.0].

(4) log-digitize
Divide from 1 photon to the maximum number of photons in the event by 10 on the log scale. The
value of each voxel is converted to [0, 0.1, · · · , 1.0].

(5) exponential
Let the (i,j,k)-th voxel value be Pijk. For each non-zero voxel, convert Pijk to exp(Pijk/max(P ))/e.

The latter three patterns scale small values: pattern 3 and 4 discretize the values, while pattern 5
smoothly scales the values to the range (1/e, 1].

6.2 Neural network
In this section, we describe the learning principles of the neural network and the settings for the base
model, loss function, and optimizer.

6.2.1 Principal of neural network

Neural networks are networks that mimic the neurons of the brain. A diagram of a neuron and a multilayer
perceptron (MLP), a basic neural network, are shown in Fig. 6.3. Given an input xi the neuron computes
the sum of its inputs, each with a different weight wi and a bias b. Then, it outputs f(

∑
i wix+ b) with

a nonlinear “activation function” f . MLPs are composed by combining many such neurons. A certain
number of neurons make up one layer, and the output of each neuron is the input for the next layer. The
layer between the input and output is called the “hidden layer”. The hidden layers and the connections
between each neuron allow for complex representations. By adjusting the weights appropriately, the



88 Chapter 6 Track pattern recognition by machine learning

output

fully 
connected
layersflatten

pooling

convolution

input

convolution

pooling

Fig. 6.4 A conceptual diagram of a CNN. The first convolution and pooling layer is colored corre-
sponding to each filter.

mapping F between various patterns of the input vector ~x and the output vector ~y can be approximated.
Model learning is done by iteratively adjusting weights. Some data reflecting the distribution of the

inputs and target values to be approximated are used as the training data. The weights are adjusted to
minimize the “loss”. The loss is calculated by comparing the output and the known target value using a
dedicated function. Since it is generally impossible to input all training data into the network at once due
to lack of memory capacity, a certain number of randomly selected data is input as a “mini-batch”. The
weights are updated for each mini-batch, and one round of training using all the data is called an “epoch”.
If training is performed correctly, the loss on the training data decreases with each epoch. Since the model
is trained to reproduce the inputs and target values of the training data, it must be checked to ensure
that it approximates the correct target values for data other than the training data. For this reason,
validation data are prepared separately from the training data, and performance is evaluated using this
validation data. If the model is trained to merely reproduce the specific input-target relationships of the
training data, the loss on the validation data will not decrease and may even increase with each epoch.
This phenomenon is known as overfitting. Common countermeasures include increasing the size of the
training dataset, as well as applying techniques such as dropout[84].

6.2.2 Convolutional Neural Network

In a MLP, each neuron is independent. In contrast, a network can be created that takes into account the
relationships that neighboring pixels have with each other, such as in an image. The convolutional neural
network (CNN) is one of its kind. A conceptual diagram of a CNN for a two-dimensional image is shown
in Fig. 6.4. In the convolutional layer, weights with size n×m, called a filter or a kernel, are multiplied
and summed with the input while shifting its positions. This allows the information from adjacent pixels
to be incorporated. The pooling layer reduces the spatial dimensions of the data by computing either
the average or the maximum value within a specified input window. This makes the output robust to
minute changes in position. The features extracted through repeated convolution and pooling operations
are eventually flattened into a one-dimensional vector and fed into a fully connected network, similar to
an MLP.

6.2.3 DenseNet

The performance of the network improves by increasing the depth of the layers, but if it becomes too deep,
the gradient magnitude for updating the weights diminishes, making learning impossible. ResNet[85]
solves this problem by introducing a direct skip connection between the layers, and has achieved a
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Fig. 6.5 A 5-layer dense block with a growth rate of k = 4. Figure from [86].

performance improvement of more than 100 layers deep. DenseNet[86] is a type of convolutional neural
network that further develops ResNet and introduces a structure called “Dense Block” that connects a
layer to all other layers (Fig. 6.5).

xl = Hl([x0,x1, . . . ,xl−1]) (6.2)

Here, Hl(·) is a non-linear transformation to l-th layer, xi represents the feature-maps of the i-th layer,
and in particular x0 represents the input image. [x0,x1, . . . ,xl−1] represents the concatenation of the
feature-maps produced in layers 0, . . . , l− 1. If the input has k0 features and k features are generated at
each layer, then the input at the l-th layer has k0 + k × (l − 1) feature maps. This parameter k is called
“growth rate” of the network. To facilitate down-sampling for the feature maps, there are “transition
layers” between dense blocks. The transition layer consists of a batch normalization layer (Sec. 6.2.4),
followed by a convolutional layer with a kernel size of 1 × 1, and an average pooling layer with a 2 × 2

window. The output size of feature maps is reduced to bθmc, where m is the number of input feature
maps and 0 < θ < 1 is the reducing parameter. We followed Densenet-121 and set θ = 0.5.

In [86], several networks are proposed depending on the number of layers and growth rate. In this
study, the lightest model, DenseNet-121, was used as a base model. The changes from Densenet-121 are
as follows.

(1) 2-D convolution changed to 3-D convolution.
(2) Removed the first 7× 7 convolution and 3× 3 max pooling layers.
(3) Change growth rate from 32 to 12.
(4) In the dense block and transition layer, the BatchNormalization[87] layer was changed to the

InstanceNormalization[88] layer.

The removal of the first convolution and pooling layer, (2), was taken considering the difference in size
of the input data. In [86], image of 224×224 size is assumed as input. In this study, since the xy direction
has only 30 × 36 resolution, we decided not to reduce the size by convolution and pooling in the input
part. The lower growth rate, (3), is due to GPU memory limitations. The change in the normalization
method, (4), is related to the stability of the training and will be discussed in detail in the next section.
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6.2.4 Normalization

During training, the distribution of inputs to each layer changes as a result of updates to the model’s
weight parameters. This is called the internal covariance shift and makes the training process slower.
The normalization layer is inserted before an activation function. The normalization layer normalizes the
mean and the variance according to a specific axis of the input data. This is said to improve learning
speed and also behave as regularization[87].

Batch normalization is performed by the following formula,

y =
x− E[x]√
Var[x] + ε

∗ γ + β (6.3)

where E and Var are the mean and the variance of the distribution of the input along the spatial and mini-
batch axes. In other words, if the input mini-batch data shape are represented by a vector (n, c, d, h, w)

where n is the index of the events, c of the feature maps, d, h, w of each spatial axes respectively,

E[x]c =
1

NDHW

N∑
n=1

D∑
d=1

H∑
h=1

W∑
w=1

xncdhw, Var[x]c =
1

NDHW

N∑
n=1

D∑
d=1

H∑
h=1

W∑
w=1

(xncdhw − E[x]c)
2 (6.4)

where N,D,H and W are the size of the corresponding quantity. β and γ are used to scale and shift
the normalized output and have the size of the feature maps C. They were set to β = 0 and γ = 1 for
this study. ε is set to small value 1 × 10−5 to prevent dividing by zero. Batch normalization includes
the events axis n in the mean and variance calculations, thus requiring the use of mean and variance
information across the dataset rather than single data. Then, moving averages of the mean and variance
obtained from the input data during training are used as an alternative to the mean and variance for the
entire dataset.

We initially used batch normalization according to the Densenet-121 implementation, but the accu-
racy for validation data varied by several tens of percent from epoch to epoch, making stable learning
impossible. This may be due to the fact that the mean and variance stored in the batch normalization
layer are not properly representative of the data set because the mini-batch size was relatively small (8
to 32) in this study (Sec. 6.4.2) due to lack of GPU memory.

To avoid this learning instability, we employed instance normalization. The formula for instance
normalization is the same as for batch normalization (Eq. 6.3), but processing in the events axis n
is not performed.

E[x]nc =
1

DHW

D∑
d=1

H∑
h=1

W∑
w=1

xncdhw, Var[x]nc =
1

DHW

D∑
d=1

H∑
h=1

W∑
w=1

(xncdhw − E[x]nc)
2 (6.5)

As a result, the mean and variance are computed per event, eliminating the need to estimate these
statistics over the entire dataset. Therefore, the moving average of the mean or variance of the data set is
no longer calculated, but is obtained from the input data each time, both during training and evaluation.

6.2.5 Loss function

A loss function represents the difference between the model output and the target value, and the model is
trained to minimize the loss for the training data. In classification problems, the target value represents
the label of the correct class. In this study, we used cross entropy loss, which is commonly used for
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classification problems. The loss for a single data of index n is given by,

ln = −wyn
log

(
exp(xn,yn

)∑C−1
c=0 exp(xn,c)

)
(6.6)

Here, C is the number of classes to be identified, in this case, C = 2; single track (background) or two
tracks (0νββ). xn is the output of the model, whose size is equal to the number of classes. yn is the
target value, in this case, 0 for the single track and 1 for the two tracks. Hence, for example, xn,0 means
the output value of the model for the single track class on the n-th event. The weight wyn

is used to
compensate for the contribution to the loss function in cases where there is a significant imbalance in the
amount of data between classes. The term in the log function is a “softmax function”, which converts
the output of the model to probability values for the class. This loss is calculated for each mini-batch of
size N , and mean of the losses are used to update the model parameters.

l(x, y) =

N∑
n=1

1∑N
n=1 wyn

ln (6.7)

6.2.6 Optimizer

An optimizer updates the model parameters according to a specific algorithm to reduce losses. A number
of parameter update algorithms have been proposed. Here, some of the optimizers are described below
according to the implementation of PyTorch[89].

The simplest algorithm is stochastic gradient descent (SGD), whose algorithm is as follows,

Algorithm 1 SGD
Input: γ, θ0, f(θ)
Output: θt
t← 0
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1)
θt ← θt−1 − γgt

end while
return θt

where γ is the learning rate and determines the scale at which the parameters are updated, θ0 is the
initial model parameters, and f(θ) is the function to be minimized and corresponds to the loss function.

SGD is simple, but convergence is slow if the gradient gt is not oriented toward the true minimum of
f(θ). One method to solve this problem is “momentum”[90], which adds a weighted past gradient to the
current gradient.
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Algorithm 2 SGD+momentum
Input: γ, µ, θ0, f(θ)
Output: θt
t← 0
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1)
if t > 1 then
bt ← µbt−1 + gt

else
bt ← gt

end if
gt ← bt (∗)
θt ← θt−1 − γgt

end while
return θt

A slightly different version of momentum is the Nesterov’s Accelerated Gradient[91] (NAG). The algo-
rithm of NAG is a transformation of the (∗) line of Alg. 2 into gt ← gt + µbt.

In addition to these algorithms, methods that adaptively vary the amount of parameter updates have
been proposed, one of which is Adam[92]. The algorithm of the Adam optimizer is as follows,

Algorithm 3 Adam
Input: γ, β1, β2, θ0, f(θ)
Output: θt
m0 ← 0
v0 ← 0
t← 0
while θt not converged do
t← t+ 1
gt ← ∇θft(θt−1)
mt ← β1 ·mt−1 + (1− β1) · gt
vt ← β2 · vt−1 + (1− β2) · g2t
m̂t ← mt/(1− βt

1)
v̂t ← vt/(1− βt

2)
θt ← θt−1 − γ · m̂t/(

√
v̂t + ε)

end while
return θt

Here mt and vt is a exponential moving averages of the gradient and the squared gradient, respectively.
These moving averages are estimates of the 1st moment and the 2nd raw moment of the gradient. The
moving averages are initialized as 0, so moments are biased towards zero. m̂t and v̂t are the bias-corrected
estimates. |m̂t/v̂t| is a quantity called signal-to-noise ratio (SNR) that indicates the indeterminacy of
the direction of the gradient and approaches 0 near the optima. Therefore, scaling the learning rate γ by
SNR facilitates convergence.

We used Adam optimizer with parameters γ = 1 × 10−3, β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8.
These values are set to those of the original paper. We also tried SGD+momentum and NAG, but did
not adopt them due to slow learning convergence.

6.3 Valuation index
The combination of model predictions and true labels is represented by the confusion matrix in Tab. 6.1.
Positive and Negative represent 0νββ and background, respectively. We use the following two metrics,
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Table 6.1 Confusion matrix. The abbreviations used in the table are as follows: TP (true positive),
FN (false negative), FP (false positive), and TN (true negative).

Prediction

Positive Negative

Label
Positive TP FN

Negative FP TN

accuracy and receiver operating characteristic curve, to compare model performance.

6.3.1 Accuracy

The accuracy is the percentage of correctly classified events and is expressed by the following formula,

Accuracy =
TP + TN

TP+ FP + TN+ FN
(6.8)

Prediction of the model is positive if the probability of being a signal exceeds 0.5.

6.3.2 Receiver operating characteristic (ROC) curve

The accuracy is simple, but we need to fix the threshold at which we determine a signal. We would like
to set a threshold value that makes the best trade-off between signal efficiency and background event
rejection efficiency. Therefore, we introduce a comprehensive evaluation metric for the threshold value.
A receiver operating characteristics (ROC) is a curve plotting false positive rate (FPR) and true positive
rate (TPR) shown below, varying the signal threshold from 0 to 1.

FPR =
FP

FP + TN
= 1− TN

FP + TN
(6.9)

TPR =
TP

TP + FN
(6.10)

FPR is also interpreted as (1 - background rejection ratio), as can be seen from Eq. 6.9. TPR means
signal efficiency. The ROC curve is a monotonically increasing curve from (0,0) to (1,1), with the curve
moving toward the upper left indicating better model performance. Therefore, the area under the ROC
curve is used as an evaluation index as Area Under the Curve (AUC) (Fig. 6.6).

6.4 Training the model

6.4.1 Photon scaling

Fig. 6.7 shows the loss and accuracy as functions of epochs for each photon scaling method in Sec. 6.1.3.
The solid line represents the values for the training data, while the dashed line corresponds to those for
the validation data. After around the 10th epoch, the loss on the validation data begins to increase with
each epoch, indicating the onset of overfitting. Table 6.2 shows the result of training for each method
of photon scaling. In this study, number of z division is 40 and size of mini-batch is fixed for 32.
The accuracy and ROC AUC are for validation data and evaluated at epoch with minimum loss. Scaling
to compensate for small photon counts (digitize, log-digitize, exponential) are all less accurate than
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Fig. 6.6 An example of ROC curve.
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Fig. 6.7 Loss (left) and accuracy (right) as functions of epochs for each photon scaling method.
The solid line represents the values for the training data, while the dashed line corresponds to those
for the validation data.

simple normalization or identical. Although no significant difference is observed between the identical
and normalization methods, applying normalization removes information about the total photon count in
each track. As a result, the energy-based cut and the topological cut performed by the machine learning
model become independent. Therefore, the scaling method is fixed to “normalize” and the number of z
divisions are varied for further optimization.

6.4.2 Number of divisions of z

Fig. 6.8 shows the loss and accuracy as functions of epochs for each z division. As in the previous section,
the loss on the validation data begins to increase after around the 10th epoch. However, the increase
in loss becomes more gradual as the number of divisions in the z direction increases. This suggests
that increasing the number of divisions allows the model to learn more detailed information about the
tracks, thereby extending the training cycle before overfitting occurs and enabling the acquisition of more
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Table 6.2 Training result for each scaling method.

epoch loss accuracy ROC AUC

Scaling method

identical 10 0.263 90.7% 0.925

normalize 10 0.269 90.8% 0.925

digitize 10 0.322 88.2% 0.901

log-digitize 10 0.312 87.9% 0.904

exponential 10 0.344 86.6% 0.884
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Fig. 6.8 Loss (left) and accuracy (right) as functions of epochs for each z division. The solid
line represents the values for the training data, while the dashed line corresponds to those for the
validation data.

generalizable features. Table 6.3 shows the result of training for each number of z divisions. In this study,

Table 6.3 Training result for each number of z division.

epoch loss accuracy ROC AUC

Number of z division
40 10 0.269 90.8% 0.925

80 13 0.248 91.2% 0.933

160 17 0.241 91.7% 0.936

three patterns of division are considered: 40 (1 cm), 80 (0.5 cm), and 160 (0.25 cm). Further division was
not performed, as it resulted in a significant increase in computation time and the calculations could not
be continued due to hardware failure. The model with 40 divisions is the normalize model of the previous
section. Since increasing the number of divisions increases the size of voxels, the mini-batch sizes are set
to 32, 16, and 8, respectively, due to memory limitations. Increasing the number of divisions increases
the number of epochs required for training, but also improves accuracy: 91.7% with 160 divisions. Given
the minimal difference between the 80-division and 160-division models, a DeLong’s test[93][94] was
conducted to compare their AUCs. The resulting p-value was 0.228, indicating no statistically significant
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Fig. 6.9 The likelihood distribution of simulation and real data (top) and its zoom up view (bot-
tom). Histograms are normalized so that the total of all bins equals one. The blue and orange lines
are for the simulation 0νββ and background, respectively, while the green line for the real data.

difference and suggesting that increasing the number of divisions does not provide a clear advantage. In
the following evaluations, the 160-division model with normalization for scaling was used as the best-case.

6.5 Likelihood histogram
We applied the best model obtained in the previous section to the validation data and real data. The
softmax function (Sec. 6.2.5) was applied to the model outputs to obtain the signal likelihood for each
event. Figure 6.9 shows the histogram of the obtained signal likelihood distribution. Ideally, the signal
likelihood should be close to 1 for 0νββ and close to 0 for the background. For the simulation data, the
0νββ and background are well separated, but some of the background data shows high signal likelihood.
This trend is more pronounced in the real data, indicating that the expected performance from the
validation data is not being achieved in the real data. In the following sections, we investigate the
characteristics of misclassified events to infer what information the model utilizes. We also discuss how
the distribution of summary quantities differs between simulation and real data, and how these differences
influence the likelihood distribution.
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Fig. 6.10 Overall-misclassified comparison of the cluster number distributions of background events
(left), and 0νββ events (right).
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Fig. 6.11 Overall-misclassified comparison of the distributions of the number of hit channels of
background events (left), and 0νββ events (right).

6.6 Misclassified events
The machine learning model outputs the posterior probability that input events belong to each class
(0νββ or background) when equal prior probabilities are assigned. In this section, the characteristics of
events with a probability of 90% or higher for the incorrect class, are investigated. To understand the
characteristics of misclassified events, distributions of summary quantities similar to those in Chap. 5
were created for the validation data.

Differences are observed in the distribution concerning the number of clusters and the track volume,
while no significant differences were observed in the other distributions. Figure 6.10 shows the overall-
misclassified comparison of the cluster number distributions of background events and 0νββ events.
Compared to the overall distributions, misclassified events in background tend to have fewer clusters,
while misclassified events in 0νββ tend to have more clusters. Considering that the background tends
to have a higher number of clusters, as mentioned in Sec. 5.3.3, this trend of misclassification is natural.
Figure 6.11 shows the comparison of the distributions of the number of hit channels. Compared to the
overall distributions, misclassified events in background tend to have fewer hit channels, while misclassified
events in 0νββ tend to have more hit channels. A similar trend is observed in the hit volume (Fig. 6.12).
These observations are also considered to reflect the tendency for the track volume of 0νββ to be smaller
than that of the background in the simulation (Sec. 5.3.4).
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Fig. 6.12 Overall-misclassified comparison of the distributions of the hit volume of background
events (left), and 0νββ events (right).

Based on the comparisons, it is inferred that the model uses information such as the number of clusters
and track volume as one of the criteria for discrimination. In the real data, as mentioned in Sec. 5.3.4, the
track volume of the real data is distributed on the smaller side compared to the simulation background
and is closer to the distribution of the simulation 0νββ. This may be causing the shift in the likelihood
distribution. In the next section, the causes of the differences in the distribution of track volumes are
examined.

6.7 Dataset bias

6.7.1 Veto by dead channels and high dark current channels

The difference in signal likelihood between the validation data and the real data, as mentioned in Sec 6.5,
is due to the characteristics of the datasets. The most apparent difference is that the real data has
a veto set as shown in Fig. 4.4, which biases the track shapes. To evaluate the effect, a dataset was
created from the validation data by removing events with hits at the veto channels in Fig. 4.4, and this
dataset was re-evaluated by inputting it into the model. By applying the veto, the data size is reduced to
approximately one-sixth to one-eighth. The number of 0νββ events decreases from 5854 to 926, and the
background events from 2051 to 254. Changes are observed in the distribution of summary quantities.
Figure 6.13 shows the comparison of the distribution of photon-count weighted centroid position between
the validation data and the real data, with and without the application of the veto. By applying the veto,
the distribution of the photon-count weighted centroid position in the x direction becomes closer to that
of the real data. In the y-direction, the application of the veto slightly narrows the distribution width.
However, the distribution of the centroid position in the z direction does not show significant changes.
Figure 6.14 shows a similar comparison for the number of hit channels and the hit volume. Both tend to
be smaller in the real data compared to the simulation, and when the veto is applied to the simulation
data, the distribution tends to asymptotically approach that of the real data.

Figure 6.15 shows a comparison of the signal likelihood of the data after applying the veto. The high-
side tail of the background’s signal likelihood is closer to that of the real data. This suggests that the
discrepancy in the likelihood distribution discussed in Sec. 6.5 is primarily due to biases in the track
distribution introduced by vetoes on dead channels and high-dark channels. In the absence of these
vetoes, the model is expected to perform comparable to its performance on the validation data.
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Fig. 6.13 Comparison of the distribution of photon-count weighted centroid in x (upper left), y
(upper right), z (bottom) direction between the validation data and the real data, with and without
the application of the veto. Orange and purple lines are the validation data with and without the
application of the veto, while green is the real data.

6.7.2 Z position

Applying a veto to the simulation data brings the track volume distribution closer to the real data, but
it still does not match perfectly. Another possible cause is the difference in the distribution of the track’s
z-position. Ionization electrons diffuse as they drift toward the ELCC, with less diffusion occurring at
smaller z-positions due to the shorter drift distance. As shown in Fig. 6.13, the distribution of the centroid
position in the z direction in the real data is skewed towards the smaller side compared to the simulation
data. This could be due to z mis-reconstruction, but it is also possible that the tracks are actually
distributed towards the smallest drift side. Figure 6.16 shows a scatter plot of the centroid position in
the z direction and hitvolume in the real data. There is a positive correlation between the two, with
a correlation coefficient of 0.60. In contrast, the correlation with the number of hit channels is low at
0.32, indicating no significant correlation. This is because changes in the number of hit channels require
diffusion of about 10mm, the pitch of the ELCC, whereas changes in hit volume can be observed with
diffusion corresponding to the 200 ns clock of the ADCL, which is about 0.2mm.

To compare track volumes while excluding the influence of z-position differences, the z-direction distri-
bution shown in Fig. 6.13 was flattened by applying a weighting based on its inverse. The same weighting
was applied to the track volume, and the resulting distribution is shown in Fig. 6.17. Compared to
Fig. 6.14, the difference in distribution between the real data and the simulation data has decreased.
This suggests that there is a difference in the distribution of the track’s z-position between the real
data and the simulation data, which in turn causes the difference in track volume and subsequently the
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Fig. 6.14 Comparison of the distribution of number of hit channels (left), hit volume (right) be-
tween the validation data and the real data, with and without the application of the veto. Orange
and purple lines are the validation data with and without the application of the veto, while green
is the real data.

difference in the likelihood distribution.
The reason of the difference in the z-position has not been identified, but one possible cause is the

position of the source. In the real data, as shown in Fig. 4.3, the source is attached to the pressure vessel,
and its z-position corresponds to a location 174mm to 474mm from the ELCC surface. In contrast, in the
simulation, as described in Sec.5.2.1, gamma rays are emitted from directly above the sensitive volume
towards the bottom, corresponding to a z-position of 20mm to 390mm. This difference suggests that the
incident direction of the gamma rays differs between the real data and the simulation. In particular, the
real data indicate that gamma rays are more frequently incident from the PMT side toward the ELCC
side than in the opposite direction. Considering that the emission direction of photoelectrons tends to be
biased toward the direction of incident photons (Sec. 5.2.1), as shown in Fig. 6.18, in the real data, the
initial direction of the photoelectrons can be biased toward the ELCC when the fully contained condition
is applied. Given that vetoes are applied around the center of the ELCC surface due to dead channels
and high dark channels, it is possible that the track endpoints are biased toward the smallest drift side,
resulting in the centroid position in the z direction being biased towards the smaller side.
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Fig. 6.15 The likelihood histogram for simulation and real data (top) and its zoom up view (bot-
tom). The blue, orange and green lines are the same as lines in Fig. 6.9. The purple line is the
simulation data after applying the veto. Applying a veto to the simulation data brings the high-side
tail of the signal likelihood closer to that of the real data.
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Fig. 6.16 Scatter plot of the centroid position in the z direction and hitvolume in the real data.
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Chapter 7

Future sensitivity of the AXEL experiment

In this chapter, the sensitivity of the AXEL experiment that can be achieved when applying the back-
ground event exclusion using the CNN model constructed in Chap. 6 is evaluated. The sensitivity
evaluation is carried out according to the procedure described below.

(1) Background source
The number of occurrences is evaluated for each type of background.

(2) Volume cut
The efficiency of tracks being contained within the sensitive volume of the detector and the size of
the machine learning model (180L detector size) is applied.

(3) Energy resolution cut
The efficiency of tracks falling within a specific region of interest (ROI) around the 0νββ Q value
is applied.

(4) Topology cut using machine learning
The selection efficiency corresponding to a threshold applied to the signal likelihood output by the
machine learning model is incorporated.

(5) Sensitivity
Based on the background rate after applying the above selection efficiencies, the upper limit on
the signal is derived using the Feldman-Cousins method[95] and converted into sensitivity.

The following sections describe the details of each procedure.

7.1 Background source
In this section, we estimate the amount of the activity of the backgrounds discussed in Sec. 5.1. The
214Bi and 208Tl isotopes are present in various components of the detector; however, since the pressure
vessel accounts for the majority of the detector’s mass, it is expected to become the dominant source of
background as the radioactivity of other components is reduced. Therefore, in this study, the background
is assumed to originate solely from 214Bi and 208Tl present in the material of the pressure vessel.

A pressure vessel with a φ 4m × L 4m is assumed to accommodate the sensitive volume of the 1-ton
detector, which has dimensions of, for example, φ 3m × L 2.5m at 10 barA. Both ends of the vessel
are closed with ellipsoidal caps, each 0.4 meters in length. Two materials are considered for the pressure
vessel: SUS304 stainless steel and oxygen-free copper. Although oxygen-free copper has lower mechanical
strength, it exhibits lower levels of intrinsic radioactivity. According to JIS B 8265, the minimum wall
thickness t (mm) of a cylindrical pressure vessel is given by the following formula:

t =
PDi

2σaη − 1.2P
(7.1)
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where P is the design pressure (MPa), Di is the inner diameter of the cylindrical shell (mm), σa is the
allowable tensile stress of the material (N/mm2), and η is the weld joint efficiency. Assuming a design
pressure of P = 1MPa for safety, an inner diameter Di = 3960mm, and a weld joint efficiency η = 1,
and using the allowable tensile stress for SUS304 as σa = 129N/mm2 according to JIS standards, the
required wall thickness is calculated to be t = 15.4mm. Based on this result, a wall thickness of 2 cm

is assumed for the SUS304 pressure vessel in this study. For oxygen-free copper, the allowable tensile
stress is σa = 46N/mm2. Applying the same calculation method yields a required wall thickness of
t = 43mm. Accordingly, a wall thickness of 5 cm is assumed for the oxygen-free copper vessel. Under
these assumptions, the mass of the pressure vessel is estimated to be 10.0 tons for SUS304 and 27.8 tons
for oxygen-free copper.

214Bi is a nuclide in the uranium series. The half-life of 238U, 4.5× 109 yr, is much longer than that of
other nuclides in the series, so that the radioactivity of 214Bi is equal to that of 238U. We assume the 238U
content in SUS304 to 3.7mBq/kg, based on the pressure vessels reported in [96]. For 10.0 tons of SUS304
pressure vessel, this corresponds to an activity of 37Bq. For oxygen-free copper, the 238U concentration
CU of 2.9 × 10−12 g/g is assumed based on the data reported in [97]. The corresponding radioactivity
RBi is given by the following expression, using the decay constant of 238U, λU = 1.55 × 10−10 yr−1 =
4.92× 10−18 s−1:

RBi = NA ×
CU

238
× λU (7.2)

From this, the radioactivity of this clean oxygen-free copper is calculated to be 0.036mBq/kg, which
corresponds to a total activity of approximately 1.0Bq for the 27.8-ton pressure vessel. Multiplying these
radioactivities by the 2448 keV gamma ray intensity of 1.545%[98] results in the 2448 keV gamma ray
flux of 1.8× 107 yr−1 for SUS304 pressure vessel and 4.9× 105 yr−1 for oxygen-free copper, respectively.

208Tl belongs to the thorium series and is in radiative equilibrium with 232Th, which has a half-
life of 1.4 × 1010 years. We assume the 232Th content in SUS304 to 0.10mBq/kg based on [96] and
the corresponding activity is 1.0Bq for 10.0 tons of SUS304 pressure vessel. For oxygen-free copper,
the 232Th concentration CTh is taken to be 2.4 × 10−12 g/g based on [97]. The radioactivity for this
clean oxygen-free copper is calculated to be 9.7× 10−3 mBq/kg, which corresponds to a total activity of
approximately 0.27Bq for the 27.8-ton pressure vessel. Multiplying these radioactivities by the 2615 keV

gamma ray intensity of 99.754%[98] results in the 2615 keV gamma ray flux of 3.1× 107 yr−1 for SUS304
pressure vessel and 8.5× 106 yr−1 for oxygen-free copper, respectively.

For 137Xe, we take the rate of 7.91 × 10−8 keV−1kg−1year−1 at around 2.5MeV, as assumed for a
detector using one ton of 136Xe in the NEXT experiment[47], as the basis. Since this value includes the
application of the fiducial cut efficiency (0.829) and two types of topological cut efficiencies (0.548 and
0.064)[99], it is corrected by dividing by these factors. In addition, this rate was evaluated for the Gran
Sasso National Laboratory (LNGS). We convert this to the expected rate at the Kamioka Observatory,
which is the assumed experimental site. The conversion is performed by calculating the cosmic-ray muon
flux I contributing to the production of 137Xe using the equation provided in [100], and applying the
ratio of the fluxes as a correction factor.

I(X) ∼ A
(
X0

X

)η

exp(−X/X0) (7.3)

where A = (2.15±0.08)×10−6 cm−2s−1sr−1, η = 1.93+0.20
−0.12, and X0 = 1155+60

−30 meters of water equivalent.
By substituting the meters of water equivalent values of 3800 for LNGS and 2700 for the Kamioka
Observatory into the equation, and taking the ratio of the resulting muon fluxes, a correction factor of
5.01 from LNGS to Kamioka is obtained. As a result, we assume that the 137Xe rate is 1.36 × 10−5

keV−1kg−1year−1.
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7.2 Volume cut
This section discusses the proportion of events that are generated by the background source and detected
as the fiducial volume contained events.

Gamma rays from 214Bi and 208Tl are emitted isotropically from the pressure vessel. For 208Tl in
particular, it is necessary to evaluate the fraction of events that undergo Compton scattering within the
pressure vessel, lose energy, and are subsequently detected by the TPC with energies near the 0νββ

Q-value. Beta particles from 137Xe are generated randomly within the xenon volume of the detector.
Using the Geant4 simulation data conducted for 2448 keV gamma rays with the geometry of the 1-ton
detector with SUS304 pressure vessel, the proportion of tracks contained within the sensitive volume was
examined*1.

The self-shielding effects was roughly estimated by assuming that gamma rays travel perpendicularly
through the vessel wall. This is a conservative assumption for shielding estimation. Then, the average
attenuation factor F for gamma rays emitted uniformly within the thickness T can be obtained by taking
the expected value of exp(−µt):

F =

∫ T

0

dt

T
exp

(
−µm

ρ
t

)
=

ρ

µmT

(
1− exp

(
−µm

ρ
T

))
(7.4)

where µ, mass attenuation coefficient for 2448 keV gamma rays is 3.961 × 10−2 cm2/g for SUS304 and
3.916 cm2/g for oxygen-free copper[101]. SUS304 is treated as a mixture composed of 74% iron, 18%

chromium, and 8% nickel by mass. Using the densities of SUS304 (7.93 g/cm3) and copper (8.94 g/cm3),
the attenuation factors are calculated to be FSUS304,2cm = 0.743 and FCu,5cm = 0.472, respectively.
Therefore, in the case of oxygen-free copper, a self-shielding correction factor of FCu,5cm/FSUS304,2cm =

0.636 was applied to the number of gamma rays simulated for SUS304.
The CNN model developed in this study requires that the track is contained within the 180L detector

fiducial region. In addition, the model was trained for the 6.8 bar pressure while the simulation data for
the 1-ton detector was generated at 10 bar. Therefore, the track size in the 1-ton detector simulation was
scaled by 10/6.8 and then volume cut was applied. As a result of this cut, 3333 out of 10 000 events for
0νββ and 2630 out of 1× 107 2448 keV gamma ray events remained. For 214Bi, this ratio of 2.63× 10−4

is the cut efficiency. For 208Tl, it is additionally necessary to evaluate the fraction of events that, after
undergoing Compton scattering, are photoelectrically absorbed with energies near the Q-value. To achieve
this, we have made a 2615 keV simulation data set by scaling the energy of the available 2448 keV gamma
simulation data set. Figure 7.1 shows the energy spectrum near the 0νββ Q-value. The number of events
within the defined ROI was estimated using the linear fit function around the Q-value. The ratio of this
number to the number of photoelectric absorption events, was then calculated and used as a correction
factor. Exact number depends on the ROI, but 0.47% for a Qββ ± 5 keV energy window. Finally, the
Compton-scattering cut described in Sec. 5.2.4, was applied, resulting in the survival probability of 99.3%
for 0νββ and 75.1% for the background for both 214Bi and 208Tl.

For 137Xe, since it emits beta particles, only events in the simulation data where electrons were emit-
ted via photoelectric absorption were considered. Among these, the fraction of events that were fully
contained within a region equivalent to a volume of 180L detector region was calculated to be 0.291, and
this value is used as the cut efficiency. Since the emission of xenon characteristic X-rays is not taken
into account, the cut efficiency obtained here is considered to be an underestimate. A more conservative

*1 Although the gamma-ray energy from 208Tl is 2615 keV, we evaluated the proportion of tracks using the simulation
data at 2448 keV, which was already available for the 1-ton detector.
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Fig. 7.1 Simulated energy spectrum of events from the 208Tl’s in gas vessel. It is obtained by
scaling the simulation result of the 2448 keV gamma. The red line represents a linear fit around the
0νββ Q-value region.

approach would be to use the efficiency of 3333/10000 for the electron-only 0νββ case. However, as
discussed in Sec. 7.5, the contribution from 137Xe is negligible, and thus the impact of this difference in
cut efficiency is expected to be small.

7.3 Energy resolution cut
Events are selected whose reconstructed energy is within the region of interest (ROI) centered on the
0νββ Q value. For 214Bi, the contamination level is significantly affected by the energy reconstruction
resolution. Figure 7.2 shows the probability distribution of the reconstructed energy for 0νββ and 214Bi
background with an energy resolution of 0.678% (FWHM) and an ROI of the 0νββ Q value ± 10 keV.
Here, Gaussian distribution is assumed. In this case, the survival probability of 0νββ and 214Bi back-
ground remaining after the cut is 84.2% and 49.8%, respectively. Although narrowing the ROI range
can reduce background contamination, it also decreases the number of signals. Therefore, the range is
optimized to maximize the sensitivity.

7.4 Topology cut using machine learning
A cut is applied based on the CNN model described in Sec. 6.5 using the track information of each
event. The model is trained to distinguish between 0νββ and background events with the same energy.
Therefore energy-based cut described in the previous section and the topology-based cut presented here
is independent. True positive rate (TPR) and false positive rate (FPR) (Sec. 6.3.2) at each threshold
value of the receiver operating characteristic (ROC) curve for the validation data are taken as the signal
efficiency and background efficiency, respectively. The signal threshold is optimized to maximize the
sensitivity.
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Fig. 7.2 Probability distribution of the energy for 0νββ and 214Bi background with an energy
resolution of 0.678% (FWHM) and an ROI of the 0νββ Q value ± 10 keV. The area of the shaded
region represents the efficiency remaining within the ROI.

7.5 Sensitivity for 1-ton detector
With the t years observation of M kg 0νββ neucli, the expected number of 0νββ events is given as follows,

N = log 2 · NA

W
· εsig ·

M · t
T 0ν
1/2

(7.5)

Here, NA is the Avogadro constant, W is the atomic weight of the neucli, εsig is the signal detection
efficiency, and T 0ν

1/2 is the half life of 0νββ decay. If one obtain the upper limit of 0νββ events µup, one
obtain the lower limit of half life T 0ν

1/2 from Eq. 7.5,

T 0ν
1/2 = log 2 · NA

W
· εsig ·

M · t
µup

= log 2 ·NXe · t ·
εsig
µup

(7.6)

To estimate µup from the observation, the Feldman-Cousins method[95] is used in this study. It gives
the upper limit of signals U(n|b) for a given observation n and a mean background level b with certain
confidence interval. To estimate the sensitivity as the expected upper limit for no signal case, the mean
of the upper limit is calculated using a Poisson distribution[102],

µup ≡ E[U(n|b)] =
∞∑

n=0

Po(n|b)U(n|b) (7.7)

where Po(n|b) is a Poisson pdf with variable n and mean b. When the average background level b is large,
the computation time increases significantly. Therefore, for b > 50, evaluation is approximated as,

µup ∼ U(b|b) (7.8)

Sections 7.1 to 7.4 determine the efficiency of signal events and the number of background events. Using
this, we evaluate the sensitivity of a 1-ton detector over a 10-year measurement period. The evaluation
is conducted for two energy resolutions: 0.678% (FWHM) obtained in this study and an anticipated
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Fig. 7.3 Sensitivity in each ROI range. Left is for the SUS304 pressure vessel and right is for the
oxygen-free copper pressure vessel.
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Fig. 7.4 Breakdown of background contributions for SUS304 pressure vessel. The left panel cor-
responds to a energy resolution of 0.320% FWHM, while the right panel corresponds to 0.678%
FWHM.

improved energy resolution of 0.32%[68].
Figure 7.3 shows the sensitivities at each ROI half width for various energy resolutions, comparing

the cases of a SUS304 pressure vessel and an oxygen-free copper pressure vessel. For both materials,
better energy resolution leads to more effective background suppression through energy resolution cuts,
resulting in a higher lower limit on T 0ν

1/2. However, the SUS304 pressure vessel exhibits radioactivity
higher than that of oxygen-free copper, yielding only about one-fourth the lower limit compared to the
oxygen-free copper case. Figure 7.4 and 7.5 shows the breakdown of background contributions for the
case of SUS304 and oxygen-free copper pressure vessel, respectively. In both cases, the contribution
from 137Xe is negligible. For the case of SUS304 pressure vessel, 214Bi accounts for the majority of the
background, whereas in the case of oxygen-free copper pressure vessel, the contribution from 208Tl is
more significant compared to SUS304. Furthermore, the contribution from 208Tl increases as the ROI
becomes narrower.

Table 7.1 summarizes the efficiency of the topology cut, the number of background events, the upper
limit on the signal, and the resulting lower limit on T 0ν

1/2. The best result was obtained with a 0.320%

energy resolution using an oxygen-free copper pressure vessel, yielding a lower limit on T 0ν
1/2 of 1.12×1027

years.
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Fig. 7.5 Breakdown of background contributions for oxygen-free copper pressure vessel. The left
panel corresponds to a energy resolution of 0.320% FWHM, while the right panel corresponds to
0.678% FWHM.

Table 7.1 Summary of the optimized ROI half width, threshold and efficiency of topology cut, the
number of background events, the upper limit on the signal, and the resulting lower limit on T 0ν

1/2.

SUS304 oxygen-free copper

FWHM energy resolution 0.320% 0.678% 0.320% 0.678%

optimized ROI half width 2.5 keV 5.5 keV 4.0 keV 11.5 keV

Topology cut threshold 0.926 0.956 0.931 0.909

Topology cut
efficiency

signal 0.778 0.595 0.757 0.825

background 0.0941 0.0512 0.0863 0.112

Background
count

214Bi 42.7 882 2.19 35.8
208Tl 14.6 32.0 4.02 11.6
137Xe 0.0203 0.0447 0.0325 0.0935

Signal upper limit 12.2 35.8 5.31 12.1

T 0ν
1/2 3.57× 1026 yr 9.61× 1025 yr 1.12× 1027 yr 6.28× 1026 yr
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Chapter 8

Future improvements

In this chapter, we discuss potential improvements aimed at enhancing the sensitivity of the AXEL
experiment.

8.1 CW upgrade
We have been conducting measurements of radiation level of detector components with a germanium
semiconductor detector at the Kamioka Observatory. The ceramic capacitor used in the CW multiplier
was found to have very high radioactivity around 1000mBq/kg in the uranium series. In a 1-ton detector,
roughly 500 capacitors would be used corresponding to a total of about 300mBq. Its activity is close to
that of the potential oxygen-free copper pressure vessel (Sec. 7.1). Therefore, the capacitors used in this
study would significantly degrade the sensitivity of a 1-ton detector experiment. As an alternative to the
ceramic capacitors, we are developing a new low-activity capacitor made of a double-sided FPC board
stacked together.

8.2 Deep learning model upgrade
The model employed in this study is based on the CNN. As the spatial resolution of the input data
increases, memory consumption correspondingly rises. The TPC data are sparse, with values at limited
xyz positions and most points having values of zero. Therefore, it will be possible to improve memory
efficiency by using techniques such as sparse convolution[103] and graph neural networks[104].

As verified in Sec. 6.6, the distribution of track sizes differs between 0νββ and background, with the
tails of the distribution tending to result in misclassified events. The distribution is broadened due to
the diffusion effect during drift within the TPC. Therefore, by using methods such as Richardson-Lucy
deconvolution[105] to reconstruct the tracks before diffusion and then performing discrimination, it may
be possible to reduce misclassified events. Although still under development, Fig. 8.1 shows the track
of a 2615 keV event from 208Tl before and after applying the Richardson – Lucy deconvolution. To
deconvolute the track, a point spread function (PSF) is required that characterizes the diffusion of the
track. In the AXEL experiment, this corresponds to the diffusion of ionization electrons during drift and
the binning effect introduced by the ELCC. However, in Fig. 8.1, only diffusion during drift is considered.
Nevertheless, the result demonstrates that the track becomes noticeably sharper after deconvolution.

In this study, the model was developed for tracks within the size of the 180L detector. This design
choice was made both to facilitate comparison with real data and to accommodate limitations in memory
capacity. As a result, a tight volume cut is required in the sensitivity evaluation of the 1-ton detector,
leading to the loss of approximately 67% of signal events (Sec. 7.2). It can be improved by the usage of
sparse convolution or graph neural network and deconvolution.
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Fig. 8.1 Track of a 2615 keV event from 208Tl before (left) and after (right) applying the
Richardson-Lucy deconvolution.

8.3 Energy resolution improvement
We consider that there are rooms for improvement in the resolution of 0.678% FWHM at the 0νββ Q
value obtained in Sec. 4.3. In a previous study, the breakdown of energy resolution was evaluated using
measurements with 1836 keV gamma rays[65], and it was suggested that various improvements could
enhance the energy resolution to 0.32% (FWHM) at the 0νββ Q value[68]. Improved energy resolution
enables a narrower ROI width in the signal region, which is expected to enhance sensitivity by reducing
background contamination.
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Chapter 9

Conclusion

The discovery of neutrino oscillations revealed that neutrinos have masses, but the reason for their
extremely small masses compared to other charged leptons and quarks remains unknown. If neutrinos
are Majorana particles, the See-saw mechanism can explain their light masses, and it is also a premise
for leptogenesis, a leading mechanism explaining the matter-antimatter asymmetry. Experimentally, the
only feasible way to confirm the Majorana nature of neutrinos is the observation of neutrinoless double
beta (0νββ) decay, and various candidate nuclei are being experimented on.

We are conducting the AXEL project using a high-pressure xenon gas TPC with the aim of observing
the 0νββ decay of 136Xe. By using EL signals for readout, we can suppress amplification fluctuations
and achieve good energy resolution. Additionally, by using the ELCC for reading out signals, we can
reconstruct three-dimensional track information. The electron tracks in the TPC deposit greater energy at
their endpoints and form “blobs”. Therefore, by using track information, we can distinguish between two-
track events from 0νββ and one-track background events originating from gamma rays. We are currently
developing a 180L prototype detector, focusing on the development of elemental technologies, verification
of scaling-up techniques, evaluation of energy resolution near the Q value of 0νββ and demonstration of
background rejection capability using track information.

An important technological element in the TPC is the generation of high voltage to form the drift
electric field. The 180L prototype detector and the next 1000L detector require high voltages of −44.8 kV
and −79.8 kV, respectively. To apply such high voltages from outside the pressure vessel, high voltage
feedthroughs compatible with high pressure are necessary. Another approach is to introduce relatively
low voltage from outside the pressure vessel and boost it inside the vessel. The CW multiplier can be
used for this purpose, as it converts a low voltage AC input to a high voltage DC output. In the AXEL
experiment, the EL photons induced by the ionization electrons are used as signals. Since the ionization
signal is converted to light to be read out and the light signal is amplified with quite high efficiency
by photon counters, it is highly resistant to electronic noise. We developed a CW multiplier to supply
high voltage to the AXEL detector and installed it at the 180L prototype detector. The CW multiplier
was implemented on a flexible printed circuit board and coated with methyl silicone resin as a discharge
countermeasure. Measurements with the 180L prototype detector confirmed that the pickup from the
AC input of the CW multiplier to the signal line is sufficiently small, and stable operation of 40 days
has been achieved. Data of the 2615 keV gamma rays from 208Tl using thorium-doped tungsten rods as
the source confirmed an energy resolution of (0.672 ± 0.083)% FWHM. An interpolation based on the
2615 keV gamma rays from 208Tl and other gamma ray peaks yielded an estimated energy resolution of
(0.678±0.010)% at the Q value of 0νββ, which is close to the design goal of 0.5%. We also reconstructed
the tracks of the 2615 keV gamma-ray photoabsorption events and double escape events, confirming that
they each have one and two blob structures, respectively.

To eliminate background events using track information, we have developed a machine learning model
to discriminate 0νββ and background. The model is constructed with DenseNet which is a convolutional
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neural network (CNN) and was trained using simulation data generated by Geant4. We optimized the
model by varying the normalization and voxelization resolution when inputting the tracks into the model.
The model that normalized the voxel light intensity and divided the z-direction into 160 bins performed
the best, achieving an accuracy of 91.7% and an area under the curve (AUC) of 0.936 on the validation
data. However, when inputting the real 2615 keV gamma-ray data from 208Tl, differences were observed
in the shape of the signal likelihood distribution of gamma-ray backgrounds. This indicates there are
differences between the simulation data used for training the model and the real data. Comparing the
distribution of summary quantities between the training data and the real data, differences were observed
in the position of the centroid and the track volume distribution. The difference in the centroid position
is thought to be due to the application of vetoes for high dark and dead channels in the real data. When
applying vetoes to the simulation data, the distribution of the centroid position in x direction became
closer. However, those of the track volume and the centroid position in z direction did not match, with the
real data tending to be smaller. The cause of this is unknown, but one possible explanation is the angular
dependence of the photoelectrons emitted by photoelectric absorption, combined with the position of the
source. Using the performance of the model on the validation data, we estimated the sensitivity of a
future 1-ton detector. Three types of background sources were considered: 214Bi, 208Tl, and 137Xe.
Among these, 214Bi and 208Tl were assumed to originate from the pressure vessel. Two types of materials
for the pressure vessel were considered: SUS304 and oxygen-free copper. After selecting tracks at the size
of the 180L detector, which is the model training condition, we estimated the sensitivity by optimizing
the cut range based on the energy ROI and the cut threshold of the CNN model. Using the energy
resolution of 0.678% obtained in this study and also an anticipated improvement to 0.32%, we evaluated
the sensitivity. With a 10-year measurement period, we obtained the best sensitivity: 90% C.L. lower
limits on the half-life of 0νββ of 1.12 × 1027 years for the case of 0.320% FWHM energy resolution
and oxygen-free copper pressure vessel. This is 2.9 times better than the current world record, and the
corresponding effective neutrino mass 〈mββ〉 is (16-71) meV using the same nuclear matrix elements as
the result of KamLAND-Zen[27].

To further improve sensitivity in future studies, it is essential to reduce background and enhance signal
efficiency. In particular, background originating from the pressure vessel can be mitigated by employing
materials with lower radioactivity or by using active materials such as plastic scintillators to enable
vetoing. From an analysis perspective, track deconvolution may allow for more detailed reconstruction of
track shapes and improved energy resolution, potentially leading to higher signal efficiency. Additionally,
the use of memory-efficient machine learning models, such as graph networks, may enable optimization
by expanding the volume cut region, thereby contributing to improved signal efficiency.
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